A swing

A running person

While running, a person dissipates about 0.60 J of mechanical energy per step per kg of body mass. If a 60 kg person develops a power of 70 Watt during a race, how fast is she running ($1 \mathrm{step}=1.5 \mathrm{~m}$ long)
What is the force the person exerts on the road?
$W=F \Delta x \quad P=W / \Delta t=F v$
Work per step: $0.60 \mathrm{~J} / \mathrm{kg}$ * $60 \mathrm{~kg}=36 \mathrm{~J}$ Work during race: 36*(racelength(L)/steplength) $=24 \mathrm{~L}$ Power $=W / \Delta t=24 \mathrm{~L} / \Delta t=24 \mathrm{v}_{\text {average }}=70$ so $v_{\text {average }}=2.9 \mathrm{~m} / \mathrm{s}$ $\mathrm{F}=\mathrm{P} / \mathrm{v}$ so $\mathrm{F}=24 \mathrm{~N}$

Momentum

When a bullet hits the wall, its velocity is very much reduced. The wall does no \dagger move, although the force on the ball is the same as the force on the wall
(Newton's 3rd law: $\mathrm{F}_{\text {wall-bullet }}=-\mathrm{F}_{\text {bullet-wall }}$).

Is it only the mass???

Second law: $F_{\text {wall-bullet }}=m_{\text {bullet }} a_{\text {bullet }}=m_{\text {bullet }} v_{\text {bullet }} / \Delta t$ The force also depends on the velocity of the bullet!

More general...and formal.

$F=m a$	Newton's 2nd law
$F=m \Delta v / \Delta t$	$a=\Delta v / \Delta t$
$F=m\left(v_{\text {final }}-v_{\text {inital }}\right) / \Delta t$	
Define $F=\left(p_{\text {final }}=m v\right.$ F $\left.-P_{\text {initial }}\right) / \Delta t$ $F=\Delta p / \Delta t$	

The net force acting on an object equals the change in momentum ($\Delta \mathrm{p}$) in a certain time period (Δt).
Since velocity is a vector, momentum is also a vector, pointing in the same direction as v.

Impulse

$F=\Delta p / \Delta t \quad$ Force=change in (mv) per time period (Δt).
$\Delta p=F \Delta t \quad$ The change in momentum equals the force acting on the object times as long as you apply the force.
Definition: $\Delta p=$ Impulse
What if the force is not constant within the time period Δt ?

$$
\begin{aligned}
\Delta \mathrm{p}=\mathrm{F} \Delta t & =\left(\mathrm{F}_{1} \Delta s+\mathrm{F}_{2} \Delta s+\mathrm{F}_{3} \Delta s\right)= \\
& =\Delta t\left(\mathrm{~F}_{1} \Delta s+\mathrm{F}_{2} \Delta s+\mathrm{F}_{3} \Delta s\right) / \Delta t \\
& =\Delta t \mathrm{~F}_{\text {average }} \\
& \Delta \mathrm{p}=\mathrm{F}_{\text {average }} \Delta t
\end{aligned}
$$

Some examples

A tennis player receives a shot approaching him (horizontally) with $50 \mathrm{~m} / \mathrm{s}$ and returns the ball in the opposite direction with $40 \mathrm{~m} / \mathrm{s}$. The mass of the ball is 0.060 kg .
A) What is the impulse delivered by the ball to the racket?
B) What is the work done by the racket on the ball?
A) Impulse=change in momentum ($\Delta \mathrm{p}$).

$$
\Delta \mathrm{p}=\mathrm{m}\left(\mathrm{v}_{\text {final }}-\mathrm{v}_{\text {vinitial }}\right)=0.060(-40-50)=-5.4 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

B) $W=K E_{\text {final }}-K E_{\text {initial }}=\frac{1}{2} m v_{\text {final }}{ }^{2}-\frac{1}{2} m v_{\text {inital }}{ }^{2} \quad$ (no $P E!$) $=\frac{1}{2} 0.060\left([-40]^{2}-[50]^{2}\right)=-27 \mathrm{~J}$

Child safety

A friend claims that it is safe to go on a car trip with your child without a child seat since he can hold onto your 12 kg child even if the car makes a frontal collision (lasting 0.05 s and causing the vehicle to stop completely) at $v=50 \mathrm{~km} / \mathrm{h}$ (about 30 miles $/ \mathrm{h}$). Is he to be trusted?
$F=\Delta p / \Delta t$ force=impulse per time period $=m\left(v_{f}-v_{i}\right) / \Delta \dagger$
$v_{f}=0$ and $v_{i}=50 \mathrm{~km} / \mathrm{h}=13.9 \mathrm{~m} / \mathrm{s} \quad \mathrm{m}=12 \mathrm{~kg} \quad \Delta t=0.05 \mathrm{~s}$ $F=12(13.9) / 0.05=3336 \mathrm{~N}$

This force corresponds to lifting a mass of 340 kg or about 680 pounds! DON'T TRUST THIS GUY!

Conservation of Momentum

$$
\begin{aligned}
& F_{21 \Delta t} \Delta m_{1} v_{1 f}-m_{1} v_{1 i} \\
& F_{12} \Delta t=m_{2} v_{2 f}-m_{2} v_{2 i}
\end{aligned}
$$

Before collision

Newton's 3rd law:

$$
F_{12}=-F_{21}
$$

$$
\left(m_{1} v_{1 f}-m_{1} v_{1 i}\right)=-\left(m_{2} v_{2 f}-m_{2} v_{2 i}\right)
$$

Rewrite:

$$
\begin{gather*}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \tag{b}\\
p_{1 i}+p_{2 i}=p_{1 f}+p_{2 f}
\end{gather*}
$$

After collision

CLOSED SYSTEM!

Moving in space

An astronaut (100 kg) is drifting away from the spaceship with $v=0.2 \mathrm{~m} / \mathrm{s}$. To get back he throws a wrench (2 kg) in the direction away from the ship. With what velocity does he need to throw the wrench to move with $v=0.1 \mathrm{~m} / \mathrm{s}$ towards the ship?

Initial momentum: $m_{a i} v_{\text {ai }}+m_{w i} v_{w i}=100 * 0.2+2 * 0.2=20.4 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ After throw: $m_{a f} v_{a f}+m_{w f} v_{w f}=100^{\star}(-0.1)+2^{\star} v_{w f} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Conservation of momentum: $m_{a i} v_{a i}+m_{w i} v_{w i}=m_{a f} v_{a f}+m_{w f} v_{w f}$ $20.4=-10+2^{\star} v_{w f} \quad v_{w f}=15.7 \mathrm{~m} / \mathrm{s}$

Types of collisions

Inelastic collisions

Elastic collisions

- Momentum is conserved
- Some energy is lost in the collision: KE not conserved
-Perfectly inelastic: the objects stick
Before collision together.

After collision

- Momentum is conserved
- No energy is lost in the collision: KE conserved

After collision

Perfectly inelastic collisions

Conservation of P: $m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$
After the collision m_{1} and m_{2} form one new object with mass

$$
M=m_{1}+m_{2}
$$

$$
\begin{gathered}
m_{1} v_{1 i}+m_{2} v_{2 i}=v_{f}\left(m_{1}+m_{2}\right) \\
v_{f}=\left(m_{1} v_{1 i}+m_{2} v_{2 i}\right) /\left(m_{1}+m_{2}\right)
\end{gathered}
$$

Perfect inelastic collision: an example

Before
$25 \mathrm{~m} / \mathrm{s}$

A car collides into the back of a truck and their bumpers get stuck. What is the ratio of the mass of the truck and the car? ($m_{\text {truck }}=c^{\star} m_{\text {car }}$) What is the fraction of KE lost?
$m_{1} v_{1 i}+m_{2} v_{2 i}=v_{f}\left(m_{1}+m_{2}\right)$
$50 m_{c}+20 c^{\star} m_{c}=25\left(m_{c}+c^{\star} m_{c}\right)$
so $c=25 m_{c} / 5 m_{c}=5$
Before collision: $K E_{i}=\frac{1}{2} m_{c} 50^{2}+\frac{1}{2} 5 m_{c} 20^{2}$
After collision: $\quad \mathrm{KE}_{\mathrm{f}}=\frac{1}{2} 6 \mathrm{~m}_{c} 25^{2}$
Ratio: $K E_{f} / K E_{i}=\left(6^{*} 25^{2}\right) /\left(50^{2}+5^{*} 20^{2}\right)=0.83$
17% of the KE is lost (damage to cars!)

Elastic collisions

Conservation of momentum: $m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$ Conservation of KE: $\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}$
Rewrite conservation of KE:
a) $m_{1}\left(v_{1 i}-v_{1 f}\right)\left(v_{1 i}+v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right)\left(v_{2 f}+v_{2 i}\right)$ Rewrite conservation of P :
b) $\quad m_{1}\left(v_{1 i}-v_{1 f}\right)$
$=m_{2}\left(v_{2 f}-v_{2 i}\right)$

Divide a) by b):

$$
\begin{aligned}
&\left(v_{1 i}+v_{1 f}\right)) \\
&\left(v_{1 i}-\right.\left(v_{2 i}+\right. \\
&)=\left(v_{2 f}+v_{2 i}\right) \\
& \downarrow \\
& \text { Use in problems }
\end{aligned}
$$ rewrite:

Elastic collision of equal masses

Before collision

Given $m_{2}=m_{1}$.
What is the velocity of m_{1} and m_{2} after the collision in terms of the initial velocity of m_{2} if m_{1} is originally at rest?

After collision

$$
\begin{aligned}
& m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& v_{2 i}=v_{1 f}+v_{2 f} \\
& \left(v_{1 i}-v_{2 i}\right)=\left(v_{2 f}-v_{1 f}\right) \\
& -v_{2 i}=v_{2 f}-v_{1 f}
\end{aligned} \quad \begin{aligned}
& v_{2 f}=0 \\
& v_{1 f}=v_{2 i}
\end{aligned}
$$

Elastic collision of unequal masses

Before collision

After collision

Given $m_{2}=3 m_{1}$.
What is the velocity of m_{1} and m_{2} after the collision in terms of the initial velocity of the moving bullet if a) m_{1} is originally at rest
b) m_{2} is originally at rest
A) $m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$ $3 m_{1} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$ $3 v_{2 i}=v_{1 f}+3 v_{2 f}$
$v_{2 i}=\left(v_{2 f}-v_{1 f}\right)$
$-v_{2 i}=v_{2 f}-v_{1 f}$$\quad \begin{aligned} & v_{2 f}=v_{2 i} / 2 \\ & v_{1 f}=3 v_{2 i} / 2\end{aligned}$
B) $m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$

$$
\begin{aligned}
& \mathrm{v}_{2 f}=\mathrm{v}_{1 \mathrm{i}} / 2 \\
& v_{1 f}=-v_{1 i} / 2 \\
& \left(v_{1 i}-v_{2 i}\right)=\left(v_{2 f}-v_{1 f}\right) \\
& v_{1 i}=v_{2 f}-v_{1 f}
\end{aligned}
$$

Step 1. What is the velocity of m_{1} just before it hits m_{2} ?
Conservation of ME: $\left(m_{1} g h+0.5 m v^{2}\right)_{\text {start }}=\left(m_{1} g h+0.5 m v^{2}\right)_{\text {bottom }}$ $5 * 9.81 * 5+0=0+0.5 * 5 * v^{2}$ so $v_{1 i}=9.9 \mathrm{~m} / \mathrm{s}$
Step 2. Collision: Elastic so conservation of momentum AND KE. - $m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \Rightarrow 5^{*} 9.9+0=5 * v_{1 f}+10 v_{2 f} \Rightarrow v_{2 f}=4.95-0.5^{\star} v_{1 f}$

$$
\cdot\left(v_{1 i}-v_{2 i}\right)=\left(v_{2 f}-v_{1 f}\right) \Rightarrow 9.9-0=v_{2 f}-v_{1 f} \quad v_{1 f}=-3.3 \mathrm{~m} / \mathrm{s} \Leftarrow \underline{0}=-4.95-1.5 v_{1 f}
$$

Step 3. m_{1} moves back up; use conservation of ME again. $\left(m_{1} g h+0.5 m v^{2}\right)_{\text {bottom }}=\left(m_{1} g h+0.5 m v^{2}\right)_{\text {final }}$
$0+0.5^{*} 5^{*}(-3.3)^{2}=5^{*} 9.81^{*} h+0$
$h=0.55 \mathrm{~m}$

Transporting momentum

For elastic collision of equal masses

$$
\begin{aligned}
& m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& v_{2 i}=v_{1 f}+v_{2 f} \\
& \left(v_{1 i}-v_{2 i}\right)=\left(v_{2 f}-v_{1 f}\right) \\
& -v_{2 i}=v_{2 f}-v_{1 f}
\end{aligned} \quad \begin{aligned}
& v_{2 f}=0 \\
& v_{1 f}=v_{2 i}
\end{aligned}
$$

$$
\begin{array}{ll}
V_{2 f}=0 & V_{1 f}=0 \\
V_{1 f}=V_{2 i} & V_{0 f}=V_{1 i}
\end{array}
$$

Carts on a spring track

$$
\begin{aligned}
& k=50 \mathrm{~N} / \mathrm{m} \\
& v_{0}=5.0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~m}=0.25 \mathrm{~kg}
\end{aligned}
$$

What is the maximum compression of the spring if the carts collide a) elastically and b) inelastically?
A) Conservation of momentum and KE $m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \Rightarrow 0.25 * 5=0.25 v_{1 f}+0.25 v_{2 f} \Rightarrow v_{1 f}=5-v_{2 f}$ $\left(v_{1 i}-v_{2 i}\right)=\left(v_{2 f}-v_{1 f}\right) \Rightarrow 5=v_{2 f}-v_{1 f} \quad v_{1 f}=0 \quad v_{2 f}=5 \mathrm{~m} / \mathrm{s}$
Conservation of energy: $\frac{1}{2} m v^{2}=\frac{1}{2} k x^{2} \quad 0.5^{*} 0.25 * 5^{2}=0.5 * 50 x^{2}$ $x=0.35 \mathrm{~m} \quad$ We could have skipped collision part!!
B) Conservation of momentum only
$m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f} \Rightarrow 0.25 \star 5=0.5 v_{f} \Rightarrow v_{f}=2.5 \mathrm{~m} / \mathrm{s}$
Conservation of energy: $\frac{1}{2} m v^{2}=\frac{1}{2} k x^{2} 0.5^{*} 0.5 * 2.5^{2}=0.5^{\star} 50 x^{2}$ $x=0.25 \mathrm{~m}$ Part of energy is lost!

Impact of a meteorite

Estimate what happens if a 1 km radius meteorite collides with earth: a) Is the orbit of earth around the sun changed?
b) how much energy is released?

Assume: meteorite has same density as earth, the collision is inelastic and the meteorites v is $10 \mathrm{~km} / \mathrm{s}$ (relative to earth)
A) Earth's mass: $6 \mathrm{E}+24 \mathrm{~kg}$ radius: $6 \mathrm{E}+6 \mathrm{~m}$ density=mass $/$ volume $=M /\left(4 \pi r^{3} / 3\right)=6.6 \mathrm{E}+3 \mathrm{~kg} / \mathrm{m}^{3}$ mass meteorite: $4(1000)^{3} / 3 \pi^{\star} 6.6 \mathrm{E}+3=2.8 \mathrm{E}+13 \mathrm{~kg}$ Conservation of momentum: $m_{e} v_{e}+m_{m} v_{m}=\left(m_{e}+m_{m}\right) v_{m e}$ $(2.8 \mathrm{E}+13)(1 \mathrm{E}+4)=(6 \mathrm{E}+24) \mathrm{v}_{\mathrm{me}}$ so $\mathrm{v}_{\mathrm{me}}=4.7 \mathrm{E}-08 \mathrm{~m} / \mathrm{s}$ (no change)
B) Energy=Kinetic energy loss: $\left(\frac{1}{2} m_{e} v_{e}{ }^{2}+\frac{1}{2} m_{m} v_{m}{ }^{2}\right)-\left(\frac{1}{2} m_{m+e} v_{m e}{ }^{2}\right)$ $0.5(2.8 \mathrm{E}+13)(1 \mathrm{E}+4)^{2}-0.5(6 \mathrm{E}+24)(4.7 \mathrm{E}-08)^{2}=1.4 \mathrm{E}+21 \mathrm{~J}$ Largest nuclear bomb existing: 100 megaton TNT=4.2E+17 J Energy release: $3.3 \mathrm{E}+3$ nuclear bombs!!!!!!

Playing with blocks

$$
\begin{aligned}
& m_{1}=0.5 \mathrm{~kg} \text { collision is elastic } \\
& m_{2}=1.0 \mathrm{~kg} \\
& h_{1}=2.5 \mathrm{~m} \\
& h_{2}=2.0 \mathrm{~m}
\end{aligned}
$$

A) determine the velocity of the blocks after the collision b) how far back up the track does m_{1} travel?
C) how far away from the bottom of the table does m_{2} land d) how far away from the bottom of the table does m_{1} land

Determine the velocity of the blocks after the collision

$m_{1}=0.5 \mathrm{~kg}$ collision is elastic $m_{2}=1.0 \mathrm{~kg}$
$h_{1}=2.5 \mathrm{~m}$
$h_{2}=2.0 \mathrm{~m}$

Step 1: determine velocity of m_{1} at the bottom of the slide Conservation of ME $\left(m g h+\frac{1}{2} m v^{2}\right)_{\text {top }}=\left(m g h+\frac{1}{2} m v^{2}\right)_{\text {bottom }}$ $0.5 * 9.81 * 2.5+0=0+0.5 * 0.5^{*} \mathrm{v}^{2}$ so: $\mathrm{v}_{1}=7.0 \mathrm{~m} / \mathrm{s}$
Step 2: Conservation of momentum and KE in elastic collision $m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$ so $0.5^{\star} 7+0=0.5 \mathrm{v}_{1 f}+v_{2 f}$
$\left(v_{1 i}-v_{2 i}\right)=\left(v_{2 f}-v_{1 f}\right)$ so $7.0-0=v_{2 f}-v_{1 f}$
Combine these equations and find: $v_{1 f}=-2.3 \mathrm{~m} / \mathrm{s} \quad v_{2 f}=4.7 \mathrm{~m} / \mathrm{s}$

How far back up does m_{1} go after the collision?

$$
\begin{aligned}
& m_{1}=0.5 \mathrm{~kg} \text { collision is elastic } \\
& m_{2}=1.0 \mathrm{~kg} \\
& h_{1}=2.5 \mathrm{~m} \\
& \mathrm{~h}_{2}=2.0 \mathrm{~m} \\
& v_{1 f}=-2.3 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{2 f}=4.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Use conservation of ME:
$\left(m g h+\frac{1}{2} m v^{2}\right)_{\text {bottom }}=\left(m g h+\frac{1}{2} m v^{2}\right)_{\text {back up slide }}$
$0+0.5^{\star} 0.5^{\star}(-2.3)^{2}=0.5^{\star} 9.81^{\star} h+0$ $\mathrm{h}=0.27 \mathrm{~m}$

How far away from the table does m_{2} land?

$$
\begin{aligned}
& m_{1}=0.5 \mathrm{~kg} \text { collision is elastic } \\
& m_{2}=1.0 \mathrm{~kg} \\
& h_{1}=2.5 \mathrm{~m} \\
& h_{2}=2.0 \mathrm{~m} \\
& v_{1 f}=-2.3 \mathrm{~m} / \mathrm{s} v_{2 f}=4.7 \mathrm{~m} / \mathrm{s} \\
& h_{1}=0.27 \mathrm{~m} \text { (after collision back up) }
\end{aligned}
$$

This is a parabolic motion with initial horizontal velocity.

Horizontal
$x(t)=x(0)+v_{x}(0) t+\frac{1}{2} a t^{2}$
$x(t)=4.7 \dagger$
$x(0.63)=2.96 \mathrm{~m}$
vertical
$y(t)=y(0)+v_{y}(0) t-\frac{1}{2} g t^{2}$
$0=2.0-0.5 * 9.81 * \dagger^{2}$
$t=0.63 \mathrm{~s}$

How far away from the table does m_{1} land?

$m_{1}=0.5 \mathrm{~kg}$ collision is elastic

$$
m_{2}=1.0 \mathrm{~kg}
$$

$h_{1}=2.5 \mathrm{~m}$
$h_{2}=2.0 \mathrm{~m}$
$v_{1 f}=-2.3 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{2 \mathrm{f}}=4.7 \mathrm{~m} / \mathrm{s}$
$h_{1}=0.27 \mathrm{~m}$ (after collision back up)
$x_{2}=2.96 \mathrm{~m}$

Use conservation of ME: m_{1} has $-v_{1 f}=2.3 \mathrm{~m} / \mathrm{s}$ when it returns back at the bottom of the slide.

This is a parabolic motion with initial horizontal velocity.

$$
\begin{array}{ll}
\text { Horizontal } & \text { vertical } \\
x(t)=x(0)+v_{x}(0) t+\frac{1}{2} a t^{2} & y(t)=y(0)+v_{y}(0) t-\frac{1}{2} g t^{2} \\
x(t)=2.3 t & 0=2.0-0.5^{*} 9.81^{*}+t^{2} \\
x_{1}(0.63)=1.45 \mathrm{~m} & t=0.63 \mathrm{~s}
\end{array}
$$

Ballistic balls

Consider only the lowest ball first. $X(t)=1.5-0.5^{*} 9.8^{*} t^{2}=0$ so $t=0.55 \mathrm{~s}$ $V(\dagger)=-9.8 \dagger$ so $V(0.55)=-5.4 \mathrm{~m} / \mathrm{s}$ Collision with earth:

- $m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$ (1: earth 2: ball)

$$
\begin{aligned}
m_{5} & =0.5 m_{4}^{4} \\
m_{4} & =0.5 m_{3} \\
m_{3} & =0.5 \mathrm{~m}
\end{aligned}
$$

- $v_{2 i}=V_{2 f}-V_{1 f}$
$v_{2 f}=\left(m_{2}-m_{1}\right) v_{2 i} /\left(m_{1}+m_{2}\right) \quad m_{1} \gg m_{2}$ so $v_{2 f}=-v_{2 i}=5.4 \mathrm{~m} / \mathrm{s}$
Consider the collision of ball $m(=n+1)$ with ball n
- $m_{n} v_{n i}+m_{m} v_{m i}=m_{n} v_{n f}+m_{m} v_{m f}$
$\cdot\left(v_{n i}-v_{m i}\right)=\left(v_{n f}-v_{m f}\right)$
$v_{m f}=\left[2 m_{n} v_{n i}+\left(m_{m}-m_{n}\right) v_{m i}\right] /\left[m_{n}+m_{m}\right] \& m_{m}=0.5 m_{n}$
so $v_{m f}=\left[2 m_{n} v_{n i}-0.5 m_{n} v_{m i}\right] /\left[1.5 m_{n}\right]=\left[1.33 v_{n i}-0.33 v_{m i}\right]$
- $V_{3 f}=1.33 * 5.4-0.33(-5.4)=9.0 \mathrm{~m} / \mathrm{s}$
- $\mathrm{V}_{4 \mathrm{f}}=1.33 * 9 .-0.33(-5.4)=13.7 \mathrm{~m} / \mathrm{s}$
$\cdot v_{5 f}=1.33^{\star} 13.7-0.33(-5.4)=20 . \mathrm{m} / \mathrm{s}$

Ballistic balls II

Highest point:
$\mathrm{v}(\mathrm{t})=20 .-9.8 \mathrm{t}=0 \mathrm{so} \mathrm{t}=2.0 \mathrm{~s}$ $x(t)=20 t-0.5^{*} 9.8^{*} 2.0^{2}=20 . m!!!$
$m_{5}=0.5 m_{4}^{4}$
$m_{4}=0.5 m_{3}$
$m_{3}=0.5 m^{5}$$\underbrace{5}_{2}$

