Vectors and Scalars

- Scalar: A quantity specified by its magnitude only - Vector: A quantity specified both by its magnitude and direction.
-To distinguish a vector from a scalar quantity, it is usually written with an arrow above it, or in bold to distinguish it from a scalar.
- Scalar: A
- Vector: $\overrightarrow{\text { A or A }}$

Question

- Are these two vectors the same?
- Are the lengths of these two vectors the same?

Two vectors are equal if both their length and direction are the same!

Vector addition

Vector subtraction

Vector operations in equations

$$
\begin{aligned}
& \binom{X_{a+b}}{Y_{a+b}}=\binom{X_{a}}{Y_{a}}+\binom{X_{b}}{Y_{b}}=\binom{X_{a}+X_{b}}{Y_{a}+Y_{b}} \mathbf{Y} \\
& \binom{X_{a-b}}{Y_{a-b}}=\binom{X_{a}}{Y_{a}}-\binom{X_{b}}{Y_{b}}=\binom{X_{a}-X_{b}}{Y_{a}-Y_{b}} \\
& \quad \text { Example: }
\end{aligned}
$$

$$
\binom{X_{a+b}}{Y_{a+b}}=\binom{5}{2}+\binom{-3}{2}=\binom{2}{4}
$$

begin

Question

The length of a vector and its components

Length of vector (use pythagorean theorem): $l=\sqrt{x_{a}^{2}+y_{a}^{2}}$

$$
\begin{aligned}
& x_{a}=l \cos \theta \\
& y_{a}=l \sin \theta
\end{aligned}
$$

$\tan \theta=y_{a} / x_{a}$

Question

A man walks $5 \mathrm{~km} / \mathrm{h}$. He travels 12 minutes to the east, 30 minutes to the south-east and 36 minutes to the north. A) What is the displacement of the man?
B) What is the total distance he walked?

Relative motion

Motion is relative to a frame!
A woman in a train moving $50 \mathrm{~m} / \mathrm{s}$ throws a ball straight up with a velocity of $5 \mathrm{~m} / \mathrm{s}$. A second person watches the train pass by and sees the woman through a window. What is the motion of the ball seen from the point of view from the man outside the train?

Motion of the ball in rest-frame of train

Question

A boat is trying to cross a $1-\mathrm{km}$ wide river in the shortest way (straight across). Its maximum speed (in still water) is $10 \mathrm{~km} / \mathrm{h}$. The river is flowing with $5 \mathrm{~km} / \mathrm{h}$.

1) At what angle θ does the captain have to steer the boat to go
straight across?
A) 30° B) $\left.45^{\circ} \mathrm{C}\right) 0^{\circ}$ D) -45°
2) how long does it take for the boat to cross the river?
A) 6 min B) 6.9 min C) 12 min D) 1 h
3) If it doesn't matter at what point the boat reaches the other side, at what angle should the captain steer to cross in the fastest way?
A) 30° B) $\left.\left.45^{\circ} \mathrm{C}\right) 0^{\circ} \mathrm{D}\right)-45^{\circ}$

Displacement in 2D

Often, we replace motion
in 2 D into horizontal and
vertical components.

In vector notation: $\Delta r=\Delta x+\Delta y$

Velocity and acceleration

The definitions made in 1D remain the same in 2D:
$\overrightarrow{\bar{v}}=\Delta \vec{r} / \Delta t \ldots$ average velocityin 2D
$\overrightarrow{\mathrm{v}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t} \ldots$ instantaneous velocity in 2D
$\overrightarrow{\bar{a}}=\Delta \vec{v} / \Delta t \ldots$ average acceleration in 2D
$\overrightarrow{\mathrm{a}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t} \ldots$ instantaneous acceleration in 2D

While studying motion in 2D one almost always makes a decomposition into horizontal and vertical components of the motion, which are both described in 1D

- Remember that the object can accelerate in one direction, but remains at the same speed in the other direction.
- Remember that after decomposition of 2D motion into horizontal and vertical components, you should investigate both components to understand the complete motion of a particle.
- After decomposition into horizontal and vertical directions, treat the two directions independently.

Parabolic motion: a catapult

Question

- A hunter aims at a bird that is some distance away and flying very high (i.e. consider the vertical position of the hunter to be 0), but he misses. If the bullet leaves the gun with a speed of v_{0} and friction by air is negligible, with what speed v_{f} does the bullet hit the ground after completing its parabolic path?

Answer

- First consider the horizontal direction:
$V_{0 x}=V_{0} \cos (\theta)$
Since there is no friction, there is no change in the horizontal component: $\mathrm{V}_{f x}=\mathrm{V}_{0} \cos (\theta)=\mathrm{V}_{0 x}$
- Next the vertical direction:
$V_{0 y}=V_{0} \sin (\theta)$
$V_{y}(\dagger)=V_{0 y}-g \dagger \quad x_{y}(t)=V_{\text {oy }} \dagger-0.5 \mathrm{~g}^{2}\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
Boundary condition: bullet hits the ground:
$0=\mathrm{V}_{\text {oy }} \dagger-0.5 \mathrm{~g}^{2} \longrightarrow \quad t=0$ or $t=2 \mathrm{~V}_{\text {oy }} / \mathrm{g}$
So, $\mathrm{V}_{\mathrm{fy}}(\dagger)=\mathrm{V}_{\mathrm{Oy}}-\left(2 \mathrm{~V}_{\mathrm{Oy}} / \mathrm{g}\right) \mathrm{g}=-\mathrm{V}_{\mathrm{Oy}}$
- Total velocity $=\left[\mathrm{V}_{0 x}{ }^{2}+\left(-\mathrm{V}_{0 y}\right)^{2}\right]^{1 / 2}=\mathrm{V}_{0}!!!!$
- The speed of the bullet has not changed, but the vertical component of the velocity has changed sign.

A B Pop and Drop
For $A: V_{y}=-0.5 g t^{2}$

$$
V_{x}=0
$$

For B: $V_{y}=-0.5 g t^{2}$

$$
V_{x}=V_{0}
$$

For $\begin{aligned} A: & X_{y}=X_{0}-0.5 g t^{2} \\ X_{x} & =0\end{aligned}$
For B: $\quad X_{y}=X_{0}-0.5 g t^{2}$
$X_{x}=V_{0} \dagger$

Shoot the monkey

The hunter aims his arrow exactly at the monkey

At the moment he fires, the monkey drops off the branch. What happens?

The hor position of the arrow is: $x(\dagger)=d-v_{0} \cos (\theta) \dagger$
$x(\dagger)=0$ a $\dagger \dagger=d / v_{0} \cos (\theta)=\dagger_{x=0}$
Its vertical position is:
$y(t)=v_{0} \sin (\theta) t-0.5 g t^{2}$
$-y\left(t_{x=0}\right)=d \tan (\theta)-0.5 g t^{2}=h-0.5 g t^{2}$
h The vertical position of the monkey is: $y(t)=h-0.5 \mathrm{~g}^{2}$ The horizontal position is 0 d

Another example

- A football player throws a ball with initial velocity of $30 \mathrm{~m} / \mathrm{s}$ at an angle of 30° degrees w.r.t. the ground. How far will the ball fly before hitting the ground? And what about 60° ? And at what angle is the distance thrown maximum?

```
\(X(\dagger)=30 \cos (\theta) \dagger\)
\(Y(t)=30 \sin (\theta) t-0.5 \mathrm{~g}^{2}\)
            \(=0\) if \(t(30 \sin (\theta)-0.5 g t)=0\)
                        \(t=0\) or \(t=30 \sin (\theta) /(0.5 \mathrm{~g})\)
\(X(t=30 \sin (\theta) /(0.5 g))=900 \cos (\theta) \sin (\theta) /(0.5 g)\)
                                    \(=900 \sin (2 \theta) / g\)
if \(\theta=30^{\circ} \quad X=79.5 \mathrm{~m}\)
if \(\theta=60^{\circ} \quad X=79.5 \mathrm{~m}!!\)
```

Maximum if $\sin (2 \theta)$ is maximum, so $\theta=45^{\circ}$
$X\left(\theta=45^{\circ}\right)=91.7 \mathrm{~m}$

Relative motion of 2 objects

What is the velocity of the Ferrari relative to the tractor?
And the other way around?
$100 \mathrm{~km} / \mathrm{h}$
A) $80 \mathrm{~km} / \mathrm{h}$ \& $80 \mathrm{~km} / \mathrm{h}$
B) $20 \mathrm{~km} / \mathrm{h}$ \& $-80 \mathrm{~km} / \mathrm{h}$
C) $80 \mathrm{~km} / \mathrm{h}$ \& $-80 \mathrm{~km} / \mathrm{h}$
D) $100 \mathrm{~km} / \mathrm{h} \& 20 \mathrm{~km} / \mathrm{h}$

Relative motion of 2 objects II

A UN plane drops a food package from a distance of 500 m high aiming at the dropzone X.
What does the motion of the package look like from the point of view of a) the pilot b) the people at the drop zone

Recall of previous Lecture: if the plane is going at $100 \mathrm{~m} / \mathrm{s}$, at what distance d from X should the plane drop the package?

Answer

Horizontal direction: $x(t)=x_{0}+v_{0} t+0.5 a t^{2}$

$$
d=100 t
$$

Vertical direction: $y(t)=y_{0}+v_{0}^{\prime} \dagger-0.5 g t^{2}$
$0=500-0.5 \mathrm{~g}^{2}$
$t=10.1 \mathrm{~s}$
$d=100 * 10.1=1010 \mathrm{~m}$

A careless driver.

> A man driving in his sportscar finishes his drink and throws the can out of his car through the sun roof. Assuming that air friction is negligible and his throw is straight up, what happens?

For the can: horizontal direction: $x(t)=v_{\text {car }} \dagger$

$$
\begin{aligned}
& \text { vertical direction: } \quad y(t)=v_{\text {drink }} t-0.5 g t^{2}=0 \text { if } \\
& t=0(s t a r t) \text { or } t=\left(2 \mathrm{~V}_{\text {drink }} / g\right)^{1 / 2} \\
& \text { At } t=\left(2 \mathrm{~V}_{\text {drink }} / g\right)^{1 / 2}
\end{aligned}
$$

For the car: horizontal direction: $x(t)=v_{\text {car }} \dagger$
After $t=\left(2 \mathrm{~V}_{\text {drink }} / \mathrm{g}\right)^{1 / 2}$ the can drops back on the drivers head!

Range

The range R of a projectile is the horizontal distance it travels before landing.

$$
R=\left(\frac{v_{0}^{2}}{g}\right) \sin 2 \theta \quad \begin{aligned}
& \text { assuming same initial and } \\
& \text { final elevation }
\end{aligned}
$$

What angle θ results in the maximum range?

What if we do not ignore air resistance?

Range (unequal heights)

$$
\begin{aligned}
y & =y_{0}+v_{0, y} t+\frac{1}{2} a t^{2} \\
x & =x_{0}+v_{0, x} t \\
x_{0} & =0, \\
v_{0, x} & =v_{0} \cos \theta, \quad y_{0}=h \\
a & =-g \\
y & =h+\left[v_{0} \sin \theta\right] t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Set $\mathrm{y}=0$ and solve quadratic for t

$$
t=\frac{-v_{0} \sin \theta \pm \sqrt{\left[v_{0} \sin \theta\right]^{2}-4\left[-\frac{g}{2}\right] h}}{-g}=\frac{v_{0} \sin \theta}{g}\left[1 \mp \sqrt{1+\frac{2 g h}{\left(v_{0} \sin \theta\right)^{2}}}\right] \quad \Longrightarrow \quad \text { Range }=v_{0, x} t
$$

Maximum Height

The maximum height (and therefore the "hang time") of a projectile depends only on the vertical component of its initial velocity.

At $y_{\max }$, the vertical velocity v_{y} is zero.

$$
\begin{aligned}
& v_{y}^{2}=v_{0 y}^{2}+2 a \Delta y \\
& 0=v_{0}^{2} \sin ^{2} \theta+2(-g) y_{\max } \\
& y_{\max }=\frac{v_{0}^{2} \sin ^{2} \theta}{2 g}
\end{aligned}
$$

Problem

Three projectiles (a, b and c) are launched with the same initial speed but with different launch angles, as shown. List the projectiles in order of increasing (a) horizontal component of initial velocity and (b) time in flight

Problem

Three projectiles (a, b and c) are launched with different initial speeds so that they reach the same maximum height, as shown. List the projectiles in order of increasing (a) initial speed and (b) time of flight.

Problem

Driving down the highway you find yourself behind a heavily loaded tomato truck. You follow close behind the truck, keeping the same speed. Suddenly a tomato falls from the back of the truck. Will the tomato hit your car or land on the road, assuming you continue moving with the same speed and direction?
(Neglect air friction)

Important things!

Constant motion Constant velocity Constant acceleration

About signs:

- Distance, velocity and acceleration have signs (vectors)
- If its velocity is negative, an object is moving in the negative direction ($x(t)=x_{0}-|v| t$)
- If its acceleration is positive, an object is increasing velocity (making it more positive or less negative)
- If its acceleration is negative, an object is decreasing velocity (making it less positive or more negative)
- To keep your signs in check, choose a coordinate system and stick to it when solving the problem.
- Before trying to solve an equation numerically, make a sketch of the motion using the motion diagrams in the previous page.

2D motion

- When trying to understand the motion of an object in 2D decompose the motion into vertical and horizontal components.
- Be sure of your coordinate system; is the motion of the object you want to study relative to another object?
- Write down the equations of motion for each direction separately.
- If you cannot understand the problem, draw motion diagrams for each of the directions separately.
- Make sure you understand which quantity is unknown, and plug in the equation of motions the quantities that you know (given). Then solve the equations.

APPENDIX:

Trigonometry and Vector Components

- Trigonometry is a pre-requisite for this course.
- Now you will learn $\frac{1}{2}$ of trigonometry, and most part of what you need for this course.
- In this discussion, we always define the direction of a vector in terms of an angle counter-clockwise from the $+x$-axis.
- Negative angles are measured clockwise.

Trigonometry and Circles

- The point
lies on a circle of radius r.
- The line from the origin to makes an angle w.r.t. the x axis.
- The trigonometric functions sin and cosine are defined by the x. and y-components of P_{1} :
- $x_{1}=r \cos \left(\theta_{1}\right): \cos \left(\theta_{1}\right)=x_{1} / r$
- $y_{1}=r \sin \left(\theta_{1}\right): \sin \left(\theta_{1}\right)=y_{1} / r$
- Tangent of $\left(\theta_{1}\right)=y_{1} / x_{1}$
- $\tan \left(\theta_{1}\right)=\left[\sin \left(\theta_{1}\right)\right] /\left[\cos \left(\theta_{1}\right)\right]$

Special (simple) cases of sine and cosine

- $\cos \left(0^{\circ}\right)=1$,
- $\cos \left(90^{\circ}\right)=0$,
- $\cos \left(180^{\circ}\right)=-1$,
- $\cos \left(270^{\circ}\right)=0$,

$$
\sin \left(0^{\circ}\right)=0
$$

$\sin \left(90^{\circ}\right)=1$

- Sine and Cosine are periodic functions:
- $\cos (\theta+360)=\cos (\theta)$
- $\sin \left(\theta+360^{\circ}\right)=\sin (\theta)$

45-45-90 triangle

- By symmetry,
- $x_{1}=y_{1}$
- Pythagoras:
- $x_{1}{ }^{2}+y_{1}{ }^{2}=r^{2}$
- $2 \cdot x_{1}^{2}=r^{2}$
- $x_{1}=r / \sqrt{ } 2$
- $\cos \left(45^{\circ}\right)=x_{1} / r=1 / \sqrt{ } 2$
- $\cos \left(45^{\circ}\right)=0.7071$...
- $\operatorname{Sin}\left(45^{\circ}\right)=1 / \sqrt{ } 2$

30-60-90 Triangle

- From Equilateral triangle:
- $2 \cdot y_{1}=r$
- Pythagoras:

$$
\begin{aligned}
x_{1}^{2}+y_{1}^{2} & =r^{2} \\
x_{1}^{2}+(r / 2)^{2} & =r^{2} \\
x_{1}^{2} & =\frac{3}{4} r^{2} \\
\cos 30^{\circ} & =\frac{x_{1}}{r}=\frac{\sqrt{3}}{2}=0.866 \ldots \\
\sin 30^{\circ} & =\frac{y_{1}}{r}=\frac{1}{2}
\end{aligned}
$$

Navigating the Quadrants (Circles are better than Triangles)

- First Quadrant:
- $0^{\circ}<\theta<90^{\circ}$
- $\cos (\theta)>0, \sin (\theta)>0$
- Second Quadrant
- $90^{\circ}<\theta<180^{\circ}$
- $\cos (\theta)<0, \sin (\theta)>0$
- Third Quadrant
- $180^{\circ}<\theta<270^{\circ}$
- $\cos (\theta)<0, \sin (\theta)<0$
- Forth Quadrant
- $0^{\circ}<\theta<90^{\circ}$
- $\cos (\theta)>0, \sin (\theta)<0$

Moving from Quadrant to Quadrant: Adding 180 degrees

- $\theta_{2}=\theta_{1}+180^{\circ}$
- $x_{2}=-x_{1}, \quad y_{2}=-y_{1}$
- $\cos \left(\theta_{1}+180^{\circ}\right)=-\cos \left(\theta_{1}\right)$
- $\sin \left(\theta_{1}+180^{\circ}\right)=-\sin \left(\theta_{1}\right)$.

Moving from Quadrant to Quadrant:

 Supplementary angles (reflection about y-axis)- $\theta_{2}=180^{\circ}-\theta_{1}$
- $x_{2}=-x_{1}, \quad y_{2}=+y_{1}$
- $\cos \left(\theta_{2}\right)=x_{2} / r$
- $\sin \left(\theta_{2}\right)=y_{2} / r$
- $\cos \left(180^{\circ}-\theta_{1}\right)=-\cos \left(\theta_{1}\right)$
- $\sin \left(180^{\circ}-\theta_{1}\right)=\sin \left(\theta_{1}\right)$.

Inverting the sign of an angle (reflection about x-axis)

- $\theta_{2}=-\theta_{1}$
- $x_{2}=x_{1}, \quad y_{2}=-y_{1}$
- $\cos \left(\theta_{2}\right)=x_{2} / r$
- $\sin \left(\theta_{2}\right)=y_{2} / r$
- $\cos \left(-\theta_{1}\right)=\cos \left(\theta_{1}\right)$
- Cosine is an EVEN function
- $\sin \left(-\theta_{1}\right)=-\sin \left(\theta_{1}\right)$.
- Sine is an ODD function

Complementary Angles

- $\theta_{2}=90^{\circ}-\theta_{1}$
- $x_{2}=+y_{1}, \quad y_{2}=+x_{1}$
- $\cos \left(\theta_{2}\right)=x_{2} / r=y_{1} / r$
- $\sin \left(\theta_{2}\right)=y_{2} / r=x_{2} / r$
- $\cos \left(90^{\circ}-\theta_{1}\right)=\sin \left(\theta_{1}\right)$
- $\sin \left(90^{\circ}-\theta_{1}\right)=\cos \left(\theta_{1}\right)$.
- Valid for any value of θ_{1}.

