	Some Materials at Atmospheric Pressure	
Substance	J/kg·°C	cal/g·°C
Aluminum	900	0.215
Beryllium	$1\ 820$	0.436
Cadmium	230	0.055
Copper	387	0.092 4
Germanium	322	0.077
Glass	837	0.200
Gold	129	0.030 8
Ice	2 0 9 0	0.500
Iron	448	0.107
Lead	128	0.0305
Mercury	138	0.033
Silicon	703	0.168
Silver	234	0.056
Steam	2 010	0.480
Water	4 186	1.00

Specific Heats of

TABLE 11.1

Example

A 1 kg block of Copper is raised in temperature by 10 °C. What was the heat transfer Q.?

Answer: Q=cm∆T =387*1*10=3870 J 1 cal = 4.186 J Q=924.5 cal

Another one

A block of Copper is dropped from a height of 10 m. Assuming that all the potential energy is transferred into internal energy (heat) when it hits the ground, what is the raise in temperature of the block (c_{copper} =387 J/(kg °C))?

Potential energy: mgh=10 mg J All transferred into heat Q: Q = $cm\Delta T$ $10mg= 387m\Delta T$ $\Delta T=10 q/387=0.25 \circ C$

An example

The contents of a can of soda (0.33 kg) which is cooled to 4 °C is poured into a glass (0.1 kg) that is at room temperature (20 °C). What will the temperature of the filled glass be after it has reached full equilibrium (glass and liquid have the same temperature)? Given c_{water} =4186 J/(kg °C) and c_{glass} =837 J/(kg °C)

Q_{cold}=-Q_{hot}
m_{water}C_{water}(T_{final}-T_{water})=-m_{glass}C_{glass}(T_{final}-T_{glass})
T_{final}=
$$\frac{m_{water}C_{water}T_{water}+m_{glass}C_{glass}T_{glass}}{m_{water}C_{water}+m_{glass}C_{glass}}$$

= (0.33*4186*4+0.1*837*20)/(0.33*4186+0.1*837)= = 4.9 °C

And another

A block of unknown substance with a mass of 8 kg, initially at T=280 K is thermally connect to a block of copper (5 kg) that is at T=320 K (c_{copper} =0.093 cal/g °C). After the system has reached thermal equilibrium the temperature T equals 290 K. What is the specific heat of the unknown material in cal/g °C? Q_{cold}=-Q_{hot}

copper

 $m_{unknown}c_{unknown}(T_{final}-T_{unknown})=-m_{copper}c_{copper}(T_{final}-T_{copper})$

Heating water with a ball of Lead

A ball of Lead at T=100 °C with mass 300 g is dropped in a glass of water (0.3 L) at T=20 °C. What is the final (after thermal equilibrium has occurred) temperature of the system? (c_{water} =1 cal/g °C, c_{lead} =0.03 cal/g °C ρ_{water} =10³ kg/m³)

$$Q_{cold} = -Q_{hot}$$

$$m_{water}C_{water}(T_{final} - T_{water}) = -m_{lead}C_{lead}(T_{final} - T_{lead})$$

$$T_{final} = \frac{m_{water}C_{water}T_{water} + m_{lead}C_{lead}}{m_{water}C_{water} + m_{lead}C_{lead}}$$

= (0.3*1*20+0.3*0.03*100)/(0.3*1+0.3*0.03)= = 6.9/0.309=22.3°C

D) water to steam E) steam from 100 °C to 150 °C

TOTAL

Ice with T=-30 °C is heated to steam of T=150 $^{\circ}C$. How many heat (in cal) has been added in total? $c_{ice} = 0.5 \text{ cal/g} \circ C$ c_{water}=1.0 cal/g °C c_{steam}=0.480 cal/g °C $L_f=540 \text{ cal/g}$ $L_v = 79.7 \text{ cal/g}$ m=1 kg=1000g Q=1000*0.5*30= 15000 cal Q=1000*540= 540000 cal Q=1000*1.0*100=100000 cal Q=1000*79.7= 79700 cal Q=1000*0.48*50=24000 cal =758700 cal Q=

6

Example

A glass window (A=4 m², $\Delta x=0.5$ cm) separates a living room (T=20 °C) from the outside (T=0 °C). A) What is the rate of heat transfer through the window (k_{glass}=0.84 J/(m.s.°C))? B) By what fraction does it change if the surface becomes 2x smaller and the temperature drops to -20 °C?

A) $P=kA\Delta T/\Delta x=0.84*4*20/0.005=13440$ Watt B) $P_{orig}=kA\Delta T/\Delta x$ $P_{new}=k(0.5A)(2\Delta T)/\Delta x=P_{orig}$ The heat transfer is the same

Another one.

An insulated gold wire (i.e. no heat lost to the air) is at one end connected to a heat reservoir (T=100 $^{\circ}$ C) and at the other end connected to a heat sink (T=20 $^{\circ}$ C). If its length is 1m and P=200 W what is its cross section (A)?

 k_{gold} =314 J/(m.s.^oC). P=kA Δ T/ Δ x=314*A*80/1=25120*A=200 A=8.0E-03 m²

Water 0.5L And another 100 °C A=0.03 m² thickness: 0.5 cm. 150°C

A student working for his exam feels hungry and starts boiling water (0.5L) for some noodles. He leaves the kitchen when the water just boils. The stove's temperature is 150 °C. The pan's bottom has dimensions given above. Working hard on the exam, he only comes back after half an hour. Is there still water in the pan? (L_v =540 cal/g, k_{pan} =1 cal/(m.s.°C)

To boil away 0.5L (=500 g) of water: $Q=L_v$ *500=270000 cal Heat added by the stove: $P=kA\Delta T/\Delta x=1*0.03*50/0.005=$ =300 cal $P=Q/\Delta t \Delta t=Q/P=270000/300=900 s$ (15 minutes) He'll be hungry for a bit longer...

A house is built with 10 cm thick wooden walls and roofs. The owner decides to install insulation. After installation the walls and roof are 4 cm wood+2 cm isolation+4 cm wood. If k_{wood} =0.10 J/(m.s.^oC) and $k_{isolation}$ =0.02 J/(m.s.^oC), by what factor does he reduce his heating bill?

 $P_{before} = A \Delta T / [0.10 / 0.10] = A \Delta T$ $P_{after} = A \Delta T / [0.04 / 0.10 + 0.02 / 0.02 + 0.04 / 0.10] = 0.55 A \Delta T$ Almost a factor of 2 (1.81)!

Radiation

Nearly all objects emit energy through radiation:

P=σAeT⁴ : Stefan's law (J/s) σ=5.6696×10⁻⁸ W/m².K⁴ A: surface area e: object dependent constant emissivity (0-1) T: temperature (K) P: energy radiated per second.

If an object is at Temperature T and its surroundings are at T_0 , then the net energy gained/lost is: P= $\sigma Ae(T^4-T_0^4)$

emissivity

Ideal reflector e=0 no energy is absorbed

Ideal absorber (black body) e=1 all energy is absorbed also ideal radiator!

A BBQ

The coal in a BBQ cover an area of 0.25 m². If the emissivity of the burning coal is 0.95 and their temperature 500 °C, how much energy is radiated every minute?

P=σAeT⁴ J/s =5.67x10⁻⁸*0.25*0.95*(773)⁴=4808 J/s

1 minute: 2.9×10^5 J (to cook 1 L of water 3.3×10^5 J)

Metal hoop

A metal (thermal expansion coefficient $\alpha = 17 \times 10^{-6} / {}^{\circ}C$) hoop of radius 0.10 m is heated from 20 ${}^{\circ}C$ to 100 ${}^{\circ}C$. By how much does its radius change?

Diving Bell

A cylindrical diving bell (diameter 3 m and 4 m tall, with an open bottom is submerged to a depth of 220 m in the sea. The surface temperature is $25 \, ^{\circ}C$ and at $220 \, \text{m}$, T=5 $^{\circ}C$. The density of sea water is 1025 kg/m³. How high does the sea water rise in the bell

when it is submerged?

Consider the air in the bell. $P_{surf}=1.0\times10^{5}Pa V_{surf}=\pi r^{2}h=28.3 m^{3} T_{surf}=25+273=298 K$ $P_{sub}=P_{0}+\rho_{w}g^{*}depth=2.3\times10^{6}Pa V_{sub}=? T_{sub}=5+273=278 K$ Next, use PV/T=constant $P_{surf}V_{surf}/T_{surf}=P_{sub}V_{sub}/T_{sub}$ plug in the numbers and find: $V_{sub}=1.15 m^{3}$ (this is the amount of volume taken by the air left) $V_{taken by water}=28.3-1.15=27.15 m^{3}=\pi r^{2}h$ $h=27.15/\pi r^{2}=3.8 m$ rise of water level in bell.

Moles

Two moles of Nitrogen gas (N_2) are enclosed in a cylinder with a moveable piston. A) If the temperature is 298 K and the pressure is 1.01×10^6 Pa, what is the volume (R=8.31 J/mol.K)?

b) What is the average kinetic energy of the molecules? $k_{\rm B}{=}1.38{\times}10^{-23}~{\rm J/K}$

```
A) PV=nRT
V=nRT/P
=2*8.31*298/1.01x10<sup>6</sup>=4.9E-03 m<sup>3</sup>
B) E_{kin,average} = \frac{1}{2}mv^{2} = 3/2k_{B}T = 3/2*1.38x10^{-23}*298 = 6.2x10^{-21} J
```

3*10³ J of heat is transferred to a 1 cm³ cube of gold at T=20 °C. Will all the gold have melted afterwards? $L_f=6.44 \times 10^4 \text{ J/kg} T_{melt}=1063 °C c_{specific}=129 \text{ J/kg} °C \rho=19.3 \times 10^3 \text{ kg/m}^3$.

When solid: $m=\rho V=(19.3\times10^3)\times(1\times10^{-6} m^3)=1.93\times10^{-2} kg$. Q=cm Δ T=129*1.93x10⁻²* Δ T=2.5 Δ T To raise to melting point: Δ T=(1063-20)=1043 °C, so Q=2608 J

During the phase change from solid to liquid: Q=L_fm Q=6.44x10⁴*1.93x10⁻²=1.24x10³ J to make liquid. Total needed: 3850 J, only 3000 J available, doesn't melt completely.

Heat transfer

A hot block and a cold block are thermally connected. Three different methods to transfer heat are proposed

Area: A Length L

3

as shown. Which one is the most efficient way (fastest) to transfer heat from hot to cold and what are the relative rates of transfer?

> Use: $P=kA\Delta T/L$ Case 1: $P\sim A/L$ Case 2: $P\sim 0.1A/0.2L=0.5A/L$ Case 3: $P\sim 4A/5L=0.8L$ $P_1:P_2:P_3 = 1:0.5:0.8$ First case is most efficient.

Thermal equilibrium

20 g of a solid at 70 °C is placed in 100 g of a fluid at 20 °C. After waiting a while the temperature of the whole system is 30 °C and stays that way. The specific heat of the solid is: a) Equal to that of the fluid b) Less than that of the fluid c) Larger than that of the fluid d) Unknown; different phases cannot be compared e) Unknown; different materials cannot be compared Q_{fluid}=-Q_{solid} $m_{fluid} c_{fluid} (T_{final} - T_{fluid}) = -m_{solid} c_{solid} (T_{final} - T_{solid})$ $\frac{C_{\text{fluid}}}{C_{\text{solid}}} = \frac{-m_{\text{solid}}(T_{\text{final}} - T_{\text{solid}})}{m_{\text{fluid}}(T_{\text{final}} - T_{\text{fluid}})} = \frac{-20(30-70)}{100(30-20)} = 0.8$ C_{solid} > C_{fluid}