Example

TABLE 11.1 Specific Heats of Some Materials at Atmospheric Pressure

Substance	$\mathbf{J} / \mathbf{k g} \cdot{ }^{\circ} \mathbf{C}$	$\mathbf{c a l} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}$
Aluminum	900	0.215
Beryllium	1820	0.436
Cadmium	230	0.055
Copper	387	0.0924
Germanium	322	0.077
Glass	837	0.200
Gold	129	0.0308
Ice	2090	0.500
Iron	448	0.107
Lead	128	0.0305
Mercury	138	0.033
Silicon	703	0.168
Silver	234	0.056
Steam	2010	0.480
Water	4186	1.00

A 1 kg block of Copper is raised in temperature by $10{ }^{\circ} \mathrm{C}$. What was the heat transfer Q.?

```
Answer:
Q=cm}\Delta
    =387*1*10=3870 J
1 cal = 4.186 J
Q=924.5 cal
```


Another one

A block of Copper is dropped from a height of 10 m . Assuming that all the potential energy is transferred into internal energy (heat) when it hits the ground, what is the raise in temperature of the block ($c_{\text {copper }}=387 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$)?

Potential energy: $\mathrm{mgh}=10 \mathrm{mg} \mathrm{J}$ All transferred into heat $Q: Q=c m \Delta T$
$10 \mathrm{mg}=387 \mathrm{~m} \Delta \mathrm{~T}$
$\Delta T=10 \mathrm{~g} / 387=0.25^{\circ} \mathrm{C}$

An example

The contents of a can of soda (0.33 kg) which is cooled to $4^{\circ} \mathrm{C}$ is poured into a glass (0.1 kg) that is at room temperature $\left(20^{\circ} \mathrm{C}\right)$. What will the temperature of the filled glass be after it has reached full equilibrium (glass and liquid have the same temperature)? Given $c_{\text {water }}=4186 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$ and $\mathrm{c}_{\text {glass }}=837 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& m_{\text {water }} c_{\text {water }}\left(T_{\text {final }}-T_{\text {water }}\right)=-m_{\text {glass }} c_{\text {glass }}\left(T_{\text {final }}-T_{\text {glass }}\right) \\
& T_{\text {final }}=\frac{m_{\text {water }} c_{\text {water }} T_{\text {water }}+m_{\text {glass }} c_{\text {glass }} T_{\text {glass }}}{m_{\text {water }} c_{\text {water }}+m_{\text {glass }} c_{\text {glass }}} \\
& =\left(0.33^{*} 4186^{*} 4+0.1 * 837 * 20\right) /(0.33 * 4186+0.1 * 837)= \\
& =4.9^{\circ} \mathrm{C}
\end{aligned}
$$

And another

A block of unknown substance with a mass of 8 kg , initially at $\mathrm{T}=280 \mathrm{~K}$ is thermally connect to a block of copper (5 kg) that is at $\mathrm{T}=320 \mathrm{~K}$ ($c_{\text {copper }}=0.093 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$). After the system has reached thermal equilibrium the temperature T equals 290 K . What is the specific heat of the unknown material in cal/g ${ }^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& Q_{\text {cold }}=-Q_{\text {tot }} \\
& m_{\text {unknown }} c_{\text {unknown }}\left(T_{\text {final }}-T_{\text {unknown }}\right)=-m_{\text {copper }} c_{\text {copper }}\left(T_{\text {final }}-T_{\text {copper }}\right) \\
& c_{\text {unknown }}=-\frac{m_{\text {copper }} c_{\text {copper }}\left(T_{\text {final }}-T_{\text {copper }}\right)}{m_{\text {unknown }}\left(T_{\text {final }}-T_{\text {unknown }}\right)} \\
& c_{\text {unkown }}=\frac{-5000 \cdot 0.093 \cdot(290-320)}{8000 \cdot(290-280)}=0.17 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C} \\
&
\end{aligned}
$$

Heating water with a ball of Lead

A ball of Lead at $\mathrm{T}=100^{\circ} \mathrm{C}$ with mass 300 g is dropped in a glass of water (0.3 L) at $\mathrm{T}=20^{\circ} \mathrm{C}$. What is the final (after thermal equilibrium has occurred) temperature of the system? $\left(c_{\text {water }}=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}, c_{\text {lead }}=0.03 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C} \rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)$

$$
Q_{\text {cold }}=-Q_{\text {hot }}
$$

$$
\begin{aligned}
& m_{\text {water }} c_{\text {water }}\left(T_{\text {final }}-T_{\text {water }}\right)=-m_{\text {lead }} c_{\text {lead }}\left(T_{\text {final }}-T_{\text {lead }}\right) \\
& T_{\text {final }}=\frac{m_{\text {water }} c_{\text {water }} T_{\text {water }}+m_{\text {lead }} c_{\text {lead }} T_{\text {lead }}}{m_{\text {water }} c_{\text {water }}+m_{\text {lead }} c_{\text {lead }}}
\end{aligned}
$$

$$
=\left(0.3^{\star} 1 \star 20+0.3^{*} 0.03^{\star} 100\right) /\left(0.3^{\star} 1+0.3^{*} 0.03\right)=
$$

$$
=6.9 / 0.309=22.3^{\circ} \mathrm{C}
$$

Example: Heating of $\mathrm{H}_{2} \mathrm{O}$

(a) ice $\quad Q=m c_{i c e} \Delta \mathrm{~T} \quad$ raises T of ice
(b) ice+water
(c) water
$Q=m L_{f}$
$Q=m c_{\text {water }} \mathrm{T}$
melts ice
(d) water + steam $Q=m L_{v} \quad$ vaporizes water
(e) steam $\quad Q=m c_{\text {steam }} \Delta \mathrm{T} \quad$ raises T of steam
A) Ice from -30 to $0^{\circ} \mathrm{C}$
B) Ice to water
C) water from $0{ }^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
D) water to steam
E) steam from $100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ TOTAL

Ice with $\mathrm{T}=-30^{\circ} \mathrm{C}$ is heated to steam of $\mathrm{T}=150^{\circ} \mathrm{C}$. How many heat (in cal) has been added in total?
$c_{\text {ice }}=0.5 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$c_{\text {water }}=1.0 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {steam }}=0.480 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$L_{f}=540 \mathrm{cal} / \mathrm{g}$
$L_{v}=79.7 \mathrm{cal} / \mathrm{g}$
$\mathrm{m}=1 \mathrm{~kg}=1000 \mathrm{~g}$
$Q=1000 * 0.5 * 30=15000 \mathrm{cal}$
Q=1000*540= 540000 cal
Q=1000*1.0*100=100000 cal
Q=1000*79.7= 79700 cal
$\begin{array}{ll}Q=1000 * 0.48 * 50 & =24000 \mathrm{cal} \\ \mathrm{Q}=\quad & 758700 \mathrm{cal}\end{array}$

Example

A glass window ($A=4 \mathrm{~m}^{2}, \Delta x=0.5 \mathrm{~cm}$) separates a living room ($\mathrm{T}=20^{\circ} \mathrm{C}$) from the outside ($\mathrm{T}=0^{\circ} \mathrm{C}$). A) What is the rate of heat transfer through the window ($\mathrm{k}_{\text {glass }}=0.84 \mathrm{~J} /\left(\mathrm{m} . \mathrm{s} .{ }^{\circ} \mathrm{C}\right.$))? B) By what fraction does it change if the surface becomes $2 x$ smaller and the temperature drops to $-20^{\circ} \mathrm{C}$?
A) $P=k A \Delta T / \Delta x=0.84 * 4 * 20 / 0.005=13440$ Wat \dagger
B) $P_{\text {orig }}=k A \Delta T / \Delta x P_{\text {new }}=k(0.5 A)(2 \Delta T) / \Delta x=P_{\text {orig }}$

The heat transfer is the same

Another one.

Heat reservoir

An insulated gold wire (i.e. no heat lost to the air) is at one end connected to a heat reservoir ($\mathrm{T}=100^{\circ} \mathrm{C}$) and at the other end connected to a heat sink ($T=20^{\circ} \mathrm{C}$). If its length is 1 m and $\mathrm{P}=200 \mathrm{~W}$ what is its cross section (A)?

$$
\begin{aligned}
& \mathrm{k}_{\text {gold }}=314 \mathrm{~J} /\left(\mathrm{m} . \mathrm{s.}^{\circ} \mathrm{C}\right) . \\
& \mathrm{P}=\mathrm{kA} A \mathrm{~T} / \Delta x=314^{\star} A^{\star} 80 / 1=25120^{\star} A=200 \\
& A=8.0 \mathrm{E}-03 \mathrm{~m}^{2}
\end{aligned}
$$

Water 0.5 L $100^{\circ} \mathrm{C}$

And another $A=0.03 \mathrm{~m}^{2}$ thickness: 0.5 cm .

A student working for his exam feels hungry and starts boiling water (0.5L) for some noodles. He leaves the kitchen when the water just boils. The stove's temperature is $150^{\circ} \mathrm{C}$.
The pan's bottom has dimensions given above. Working hard on the exam, he only comes back after half an hour. Is there still water in the pan? ($L_{v}=540 \mathrm{cal} / \mathrm{g}, \mathrm{k}_{\text {pan }}=1 \mathrm{cal} /\left(\mathrm{m} . \mathrm{s} .{ }^{\circ} \mathrm{C}\right)$
To boil away $0.5 \mathrm{~L}(=500 \mathrm{~g})$ of water: $Q=L_{v} * 500=270000 \mathrm{cal}$ Heat added by the stove: $P=k A \Delta T / \Delta x=1^{*} 0.03^{*} 50 / 0.005=$ $=300 \mathrm{cal}$
$P=Q / \Delta t \Delta t=Q / P=270000 / 300=900 \mathrm{~s}$ (15 minutes) He'll be hungry for a bit longer...

T_{c}

$$
\begin{array}{lll}
L_{1} & L_{2} & L_{3}
\end{array}
$$

A house is built with 10 cm thick wooden walls and roofs. The owner decides to install insulation. After installation the walls and roof are 4 cm wood +2 cm isolation +4 cm wood. If $\mathrm{k}_{\text {wood }}=0.10 \mathrm{~J} /\left(\mathrm{m} . \mathrm{s} .{ }^{\circ} \mathrm{C}\right)$ and $\mathrm{k}_{\text {isolation }}=0.02 \mathrm{~J} /\left(\mathrm{m} . \mathrm{s} .{ }^{\circ} \mathrm{C}\right)$, by what factor does he reduce his heating bill?
$P_{\text {before }}=A \Delta T /[0.10 / 0.10]=A \Delta T$
$P_{\text {after }}=A \Delta T /[0.04 / 0.10+0.02 / 0.02+0.04 / 0.10]=0.55 A \Delta T$
Almost a factor of 2 (1.81)!

Radiation

Nearly all objects emit energy through radiation:
$\mathrm{P}=\sigma A e T^{4}$: Stefan's law (J / s) $\sigma=5.6696 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}^{4}$
A: surface area
e: object dependent constant emissivity (0-1)
T : temperature (K)
P : energy radiated per second.
If an object is at Temperature T and its surroundings are at T_{0}, then the net energy gained/lost is: $\mathrm{P}=\sigma \operatorname{Ae}\left(\mathrm{T}^{4}-\mathrm{T}_{0}{ }^{4}\right)$

emissivity

Ideal reflector $e=0$
no energy is absorbed

Ideal absorber (black body) $e=1$
all energy is absorbed also ideal radiator!

A BBQ

The coal in a BBQ cover an area of $0.25 \mathrm{~m}^{2}$. If the emissivity of the burning coal is 0.95 and their temperature $500^{\circ} \mathrm{C}$, how much energy is radiated every minute?

```
\(\mathrm{P}=\sigma A e T^{4} \mathrm{~J} / \mathrm{s}\)
    \(=5.67 \times 10^{-8 *} 0.25^{*} 0.95^{*}(773)^{4}=4808 \mathrm{~J} / \mathrm{s}\)
```

1 minute: $2.9 \times 10^{5} \mathrm{~J}$ (to cook 1 L of water $3.3 \times 10^{5} \mathrm{~J}$)

Metal hoop

A metal (thermal expansion coefficient $\alpha=17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$) hoop of radius 0.10 m is heated from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. By how much does its radius change?

$$
\begin{array}{|l|}
\Delta \mathrm{L} \quad \\
\quad=\alpha \mathrm{L}_{0} \Delta \mathrm{~T} \\
\quad=17 \times 10^{-6}\left(2 \pi r_{0}\right) 80=8.5 \times 10^{-4} \mathrm{~m} \\
r_{\text {new }}=\left(L_{0}+\Delta \mathrm{L}\right) / 2 \pi=L_{0} / 2 \pi+\Delta \mathrm{L} / 2 \pi=r_{0}+1.35 \times 10^{-4} \mathrm{~m}
\end{array}
$$

Diving Bell

A cylindrical diving bell (diameter 3 m and 4 m tall, with an open bottom is submerged to a depth of 220 m in the sea. The surface temperature is $25^{\circ} \mathrm{C}$ and at $220 \mathrm{~m}, \mathrm{~T}=5^{\circ} \mathrm{C}$. The density of sea water is $1025 \mathrm{~kg} / \mathrm{m}^{3}$. How high does the sea water rise in the bell when it is submerged?

Consider the air in the bell.
$P_{\text {surf }}=1.0 \times 10^{5} \mathrm{~Pa} V_{\text {surf }}=\pi r^{2} h=28.3 \mathrm{~m}^{3} \quad \mathrm{~T}_{\text {surf }}=25+273=298 \mathrm{~K}$ $P_{\text {sub }}=P_{0}+\rho_{w} g^{\star}$ depth $=2.3 \times 10^{6} \mathrm{~Pa} V_{\text {sub }}=$? $T_{\text {sub }}=5+273=278 \mathrm{~K}$ Next, use PV/T=constant
$P_{\text {surf }} V_{\text {surf }} / T_{\text {surf }}=P_{\text {sub }} V_{\text {sub }} / T_{\text {sub }}$ plug in the numbers and find:
$\mathrm{V}_{\text {sub }}=1.15 \mathrm{~m}^{3}$ (this is the amount of volume taken by the air left) $V_{\text {taken by water }}=28.3-1.15=27.15 \mathrm{~m}^{3}=\pi r^{2} \mathrm{~h}$
$h=27.15 / \pi r^{2}=3.8 \mathrm{~m}$ rise of water level in bell.

Moles

Two moles of Nitrogen gas (N_{2}) are enclosed in a cylinder with a moveable piston. A) If the temperature is 298 K and the pressure is $1.01 \times 10^{6} \mathrm{~Pa}$, what is the volume $(\mathrm{R}=8.31$ $\mathrm{J} / \mathrm{mol} . \mathrm{K}$)?
b) What is the average kinetic energy of the molecules?

$$
\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

A) $P V=n R T$
$V=n R T / P$
$=2 * 8.31 * 298 / 1.01 \times 10^{6}=4.9 \mathrm{E}-03 \mathrm{~m}^{3}$
B) $E_{\text {kin,average }}=\frac{1}{2} m v^{2}=3 / 2 \mathrm{k}_{B} T=3 / 2^{\star} 1.38 \times 10^{-23 *} 298=6.2 \times 10^{-21} \mathrm{~J}$
$3^{*} 10^{3} \mathrm{~J}$ of heat is transferred to a $1 \mathrm{~cm}^{3}$ cube of gold at $\mathrm{T}=20^{\circ} \mathrm{C}$. Will all the gold have melted afterwards? $L_{f}=6.44 \times 10^{4} \mathrm{~J} / \mathrm{kg} \quad T_{\text {melt }}=1063{ }^{\circ} \mathrm{C} c_{\text {specific }}=129 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ $\rho=19.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

When solid: $m=\rho V=\left(19.3 \times 10^{3}\right) \times\left(1 \times 10^{-6} \mathrm{~m}^{3}\right)=1.93 \times 10^{-2} \mathrm{~kg}$.
$Q=c m \Delta T=129^{\star} 1.93 \times 10^{-2 \star} \Delta T=2.5 \Delta T$
To raise to melting point: $\Delta T=(1063-20)=1043^{\circ} \mathrm{C}$, so $\mathrm{Q}=2608 \mathrm{~J}$
During the phase change from solid to liquid: $Q=L_{f} m$ $Q=6.44 \times 10^{4 *} 1.93 \times 10^{-2}=1.24 \times 10^{3} \mathrm{~J}$ to make liquid.
Total needed: 3850 J , only 3000 J available, doesn't melt completely.

Heat transfer

A hot block and a cold block are thermally connected.
Three different methods to transfer heat are proposed

A: cross section surface of black wire, L:its length

Area: A Length L

$P_{1}: P_{2}: P_{3}=1: 0.5: 0.8$
First case is most efficient.
Case 1: P~A/L
Case 2: P~0.1A/0.2L=0.5A/L
Case 3: P~4A/5L=0.8L
$4 A$ 5L

Thermal equilibrium

20 g of a solid at $70^{\circ} \mathrm{C}$ is placed in 100 g of a fluid at $20^{\circ} \mathrm{C}$. After waiting a while the temperature of the whole system is $30^{\circ} \mathrm{C}$ and stays that way. The specific heat of the solid is:
a) Equal to that of the fluid
b) Less than that of the fluid
c) Larger than that of the fluid
d) Unknown; different phases cannot be compared
e) Unknown; different materials cannot be compared

$$
\begin{aligned}
& Q_{\text {fluid }}=-Q_{\text {solid }} \\
& m_{\text {fluid }} c_{\text {fluid }}\left(T_{\text {final }}-T_{\text {fluid }}\right)=-m_{\text {solid }} c_{\text {solid }}\left(T_{\text {final }}-T_{\text {solid }}\right) \\
& \frac{C_{\text {fluid }}}{C_{\text {solid }}}=\frac{-m_{\text {solid }}\left(T_{\text {final }}-T_{\text {solid }}\right)}{m_{\text {fluid }}\left(T_{\text {final }}-T_{\text {fluid }}\right)}=\frac{-20(30-70)}{100(30-20)}=0.8
\end{aligned}
$$

$C_{\text {solid }}>C_{\text {fluid }}$

