Decompositions

What is the torque applied to the door?
Force parallel to the rotating door: $F_{/ /}=F \cos 60^{\circ}=150 \mathrm{~N}$ Force perpendicular to rotating door: $F_{L}=F \sin 60^{\circ}=260 \mathrm{~N}$ Only F_{L} is effective for opening the door:
$\tau=F_{L} \cdot d=260 * 2.0=520 \mathrm{~N} \mathrm{~m}$

Multiple forces causing torque

Two persons try to go through a rotating door at the same time, one on the I.h.s. of the rotator and one the r.h.s. of the rotator. If the forces are applied as shown in the drawing, what will happen?

Nothing will happen! The 2 torques are balanced.

Weight of board: w
What is the tension in each of the wires (in terms of w)?

> Translational equilibrium $\Sigma F=m a=0$
> $T_{1}+T_{2}-w=0$ so $T_{1}=w-T_{2}$

Rotational equilibrium
$\Sigma \tau=0$
$T_{1} 0-0.5^{\star} w+0.75^{\star} T_{2}=0$
$T_{2}=0.5 / 0.75^{\star} w=2 / 3 w$
$\mathrm{T}_{1}=\mathrm{w} / 3$
$T_{2}=2 w / 3$

A and B have the same total mass. If the same torque is applied, which one accelerates faster?

Answer: A

$$
\tau=I \alpha
$$

Moment of inertia I:

$$
I=\left(\Sigma m_{i} r_{i}^{2}\right)
$$

The rotation axis matters!

Example

A monocycle (bicycle with one wheel) has a wheel that has a diameter of 1 meter. The mass of the wheel is 5 kg (assume all mass is sitting at the outside of the wheel). The friction force from the road is 25 N . If the cycle is accelerating with $0.3 \mathrm{~m} / \mathrm{s}$, what is the force applied on each of the paddles if the paddles are 30 cm from the center of the wheel?

$$
\begin{aligned}
& \sum \tau=I \alpha \\
& \alpha=a / r \text { so } \alpha=0.3 / 0.5=0.6 \mathrm{rad} / \mathrm{s} \\
& I=\left(\sum m_{r_{i}}^{2}\right)=M R^{2}=5\left(0.5^{2}\right)=1.25 \mathrm{~kg} \mathrm{~m}^{2} \\
& \tau_{\text {friction }}=-25^{\star} 0.5=-12.5 \\
& \tau_{\text {paddles }}=F^{\star} 0.3+F^{\star} 0.3=0.6 \mathrm{~F} \\
& 0.6 \mathrm{~F}-12.5=1.25 * 0.6, \text { so } \mathrm{F}=22.1 \mathrm{~N}
\end{aligned}
$$

Example.

Consider a ball and a block going down the same $1 m$-high slope. The ball rolls and both objects do not feel friction. If both have mass 1 kg , what are their velocities at the bottom (I.e. which one arrives first?). The diameter of the ball is 0.4 m . Block: $\left[\frac{1}{2} m v^{2}+m g h\right]_{\text {initial }}=\left[\frac{1}{2} m v^{2}+m g h\right]_{\text {final }}$

$$
1 * 9.8^{\star 1}=0.5 \star 1 \star \mathrm{v}^{2} \text { so } \mathrm{v}=4.4 \mathrm{~m} / \mathrm{s}
$$

Ball: $\quad\left[\frac{1}{2} m v^{2}+m g h+\frac{1}{2} I \omega^{2}\right]_{\text {initial }}=\left[\frac{1}{2} m v^{2}+m g h+\frac{1}{2} I \omega^{2}\right]_{\text {final }}$
$I=0.4^{*} M R^{2}=0.064 \mathrm{kgm}^{2}$ and $\omega=\mathrm{v} / \mathrm{R}=2.5 \mathrm{v}$

$$
1^{\star} 9.8^{*} 1=0.5^{\star} 1^{\star} v^{2}+0.5^{*} 0.064^{\star}(2.5 v)^{2}
$$

so $v=3.7 \mathrm{~m} / \mathrm{s}$ Part of the energy goes to the rotation: slgwer!

The spinning lecturer...

A lecturer (60 kg) is rotating on a platform with $\omega=2 \pi \mathrm{rad} / \mathrm{s}$ ($1 \mathrm{rev} / \mathrm{s}$). He is holding two masses of 0.8 m away from his body. He then puts the masses close to his body ($\mathrm{R}=0.0 \mathrm{~m}$). Estimate how fast he will rotate.

$$
I_{\text {initial }}=0.5 M_{\text {lec }} R^{2}+2\left(M_{w} R_{w}{ }^{2}\right)+2\left(0.33 M_{\text {arm }} 0.8^{2}\right)
$$

$$
\begin{aligned}
& 0.4 m \\
& \leftrightarrow I_{\text {final }}=0.5 M_{\text {lec }} R^{2}=1.2 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2} \\
& \quad \text { Conservation of angular mom. } I_{i} \omega_{i}=I_{f} \omega_{f}
\end{aligned}
$$

$$
3.5^{\star} 2 \pi=1.2^{\star} \omega_{f}
$$

$$
\omega_{\mathrm{f}}=18.3 \mathrm{rad} / \mathrm{s} \quad(\mathrm{approx} 3 \mathrm{rev} / \mathrm{s})
$$

A person on a platform that can freely rotate is holding a spinning wheel and then turns the wheel around.
What will happen?
Initial: angular momentum: $I_{\text {wheel }} \omega_{\text {wheel }}$ Closed system, so L must be conserved.
Final: $-I_{\text {wheel }} \omega_{\text {wheel }}+I_{\text {person }} \omega_{\text {person }}$ ely rotate is

Global warming

The polar ice caps contain $2.3 \times 10^{19} \mathrm{~kg}$ of ice. If it were all to melt, by how much would the length of a day change? $M_{\text {earth }}=6 \times 10^{24} \mathrm{~kg} R_{\text {earth }}=6.4 \times 10^{6} \mathrm{~m}$
Before global warming: ice does not give moment of inertia $I_{i}=2 / 5^{\star} M_{\text {earth }} R^{2}$ earth $=2.5 \times 10^{38} \mathrm{~kg} \mathrm{~m}^{2}$
$\omega_{\mathrm{i}}=2 \pi /(24 * 3600 \mathrm{~s})=7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}$
After ice has melted:
$I_{f}=I_{i}+2 / 3^{\star} M R^{2}{ }_{i c e}=2.5 \times 10^{38}+2.4 \times 10^{33}=2.500024 \times 10^{38}$
$\omega_{f}=\omega_{i} \mathrm{I}_{\mathrm{i}} / \mathrm{I}_{f}=7.3 \times 10^{-5 *} 0.9999904$
The length of the day has increased by
$0.9999904 * 24 \mathrm{hrs}=0.83 \mathrm{~s}$.

A top

A top has $I=4.00 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}$. By pulling a rope with constant tension $\mathrm{F}=5.57 \mathrm{~N}$, it starts to rotate along the axis $A A^{\prime}$. What is the angular velocity of the top after the string has been pulled 0.8 m ?

Work done by the tension force:
$W=F \Delta x=5.57^{*} 0.8=4.456 \mathrm{~J}$
This work is transformed into kinetic energy of the top: $K E=0.5 I \omega^{2}=4.456$ so $\omega=149 \mathrm{rad} / \mathrm{s}=23.7 \mathrm{rev} / \mathrm{s}$

