

Example

A toy-rocket of 5.0 kg, after the initial acceleration stage, travels 100 m in 2 seconds. What is the work done by the engine? What is the power of the engine?

W=(Fcosθ)∆h=m_{rocket}g ∆h=4905 J (Force by engine must balance gravity!) P=W/∆t=4905/2=2453 W (=3.3 horsepower)

or

P=(Fcosθ)v=mgv=5.0x9.81x100/2=2453 W

Another rocket

A toy rocket (5kg) is launched from rest and reaches a height of 100 m within 2 seconds. What is the work done by the engine during acceleration?

h(t)=h(0)+v₀t+0.5at² 100=0.5a2² so a=50 m/s² V(t)=V(0)+at V(2)=0+50*2=100 m/s Force by engine=(50+9.81)m=59.81*5=299.05 N (9.81 m/s² due to balancing of gravitation) W=F Δ h=299.05*100=29905 J

Change in potential energy: PE_f-PE_i=mgh_f-mgh_i=4905-0=4905 J Where did all the work (29905-4905=25000 J)go?

Into the acceleration: energy of motion (kinetic energy)

h=100m

Kinetic energyConsider object that changes speed only $\Delta t = 25$ $\Delta x = 100m$

a) $W=F \Delta x = (ma) \Delta x$... used Newton's second law b) $v=v_0+at$ so $t=(v-v_0)/a$ c) $x=x_0+v_0t+0.5at^2$ so $x-x_0=\Delta x=v_0t+0.5at^2$ Combine b) & c) Rocket: d) $a \Delta x = (v^2 - v_0^2)/2$ $W = \frac{1}{2}5(100^2 - 0^2)$ Combine a) & d) =25000 J!! $W = \frac{1}{2}m(v^2 - v_0^2)$ That was missing! Kinetic energy: $KE = \frac{1}{2}mv^2$ When work is done on an object and the only change is its speed: The work done is equal to the change in KE: W=KE_{final}-KE_{initial}

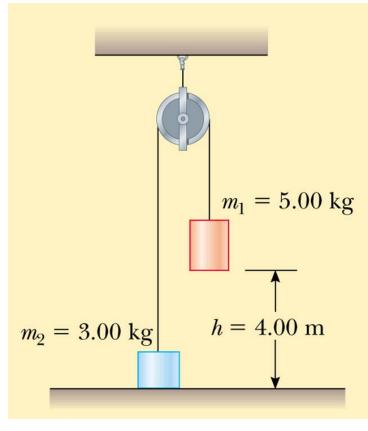
Conservation of mechanical energy

Mechanical energy = potential energy + kinetic energy In a closed system, mechanical energy is conserved^{*} V=100 ME=mgh+ $\frac{1}{2}$ mv²=constant 5 kg What about the accelerating rocket? At launch: ME=5*9.81*0+35*02=0 At 100 m height: ME=5*9.81*100+ $\frac{1}{2}$ 5*100²=29905 h=100m We did not consider a closed system! (Fuel burning) * There is an additional condition, see slides 12,13,14

Example of closed system

A snowball is launched horizontally from the top of a building at v=12.7 m/s. The building is 35 m high. The mass is 0.2 kg. Is mechanical energy conserved? $V_0=12.7 \text{ m/s}$ At launch: $ME=mgh+\frac{1}{2}mv^2$ =0.2*9.81*35+¹/₂*0.2*12.7²=84.7 J At ground: $a\Delta h=(v^2-v_{0,ver}^2)/2$ so v=26.2 m/s v= $\sqrt{(v_{hor}^2+v_{ver}^2)}=\sqrt{(12.7^2+26.2^2)}=29.1$ h=35m $ME=mgh+\frac{1}{2}mv^2$ =0.2*9.81*0+¹/₂*0.2*29.1²=84.7 J ME is conserved!! d=34n

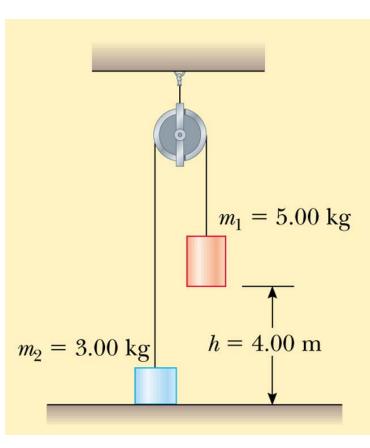
Conservation of mechanical energy



A) what is the speed of m_1 and m_2 when they pass each other?

 $(PE_1+PE_2+KE_1+KE_2)=constant$ At time of release: $PE_1 = m_1gh_1 = 5.00 \times 9.81 \times 4.00$ =196. J $PE_2 = m_2 gh_2 = 3.00 \times 9.81 \times 0.00$ =0.00 J $KE_1 = 0.5^{m_1} v^2 = 0.5^{5}.00^{m_1} (0.)^2$ =0.00 J $KE_2 = 0.5^{m_1} v^2 = 0.5^{3} \cdot 3.00^{(0)^2}$ =0.00 J Total =196. J At time of passing: $PE_1=m_1gh_1=5.00*9.81*2.00$ =98.0 J $PE_2 = m_2 qh_2 = 3.00 \times 9.81 \times 2.00$ =58.8 J $KE_1 = 0.5^*m_1^*v^2 = 0.5^*5.00^*(v)^2$ $=2.5v^2 J$ $KE_2 = 0.5 \text{m}_2 \text{v}^2 = 0.5 \text{m}_3 \cdot 00 \text{v}^2$ $=1.5v^2 J$ Total 196=156.8+4.0v² so v=3.13 m/s =156.8+4.0v²

6



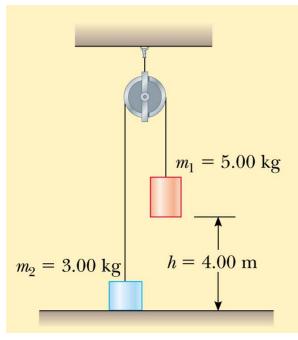
work

How much work is done by the gravitational force when the masses pass each other?

 $W=F\Delta x=m_1g2.00+m_2g(-2.00)=39.2 J$

 ΣPe_{start} - $\Sigma Pe_{passing}$ =(196.-98.-58.8)= 39.2 J The work done by F_g is the same as the change in potential energy

Friction (non-conservative)

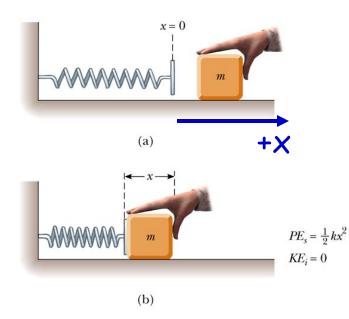


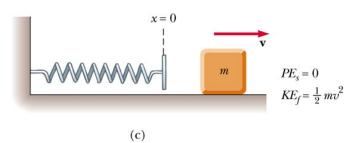
The pulley is not completely frictionless. The friction force equals 5 N. What is the speed of the objects when they pass?

 $(\Sigma PE + \Sigma KE)_{start} - (\Sigma PE + \Sigma KE)_{passing} = W_{nc}$ $W_{nc} = F_{friction} \Delta x = 5.00 \times 2.00 = 10.0 J$

(196.)-(156.8+ Σ KE)=10 J Σ KE=29.2 J=0.5*(m₁+m₂)v²=4v² v=2.7 m/s

A spring





 $F_s = -kx$ k: spring constant (N/m)

 $F_s(x=0)=0 N$ $F_s(x=-a)=ka$ $F_s=(0+ka)/2=ka/2$

 $W_s = \overline{F}_s \Delta x = (ka/2)^*(a) = ka^2/2$ The energy stored in a spring depends on the location of the endpoint: elastic potential energy.

PINBALL

The ball-launcher spring has a constant k=120 N/m. A player pulls the handle 0.05 m. The mass of the ball is 0.1 kg. What is the launching speed?

 $(PE_{gravity} + PE_{spring} + KE_{ball})_{pull} = (PE_{gravity} + PE_{spring} + KE_{ball})_{launch} \\ mgh_{pull} + \frac{1}{2}kx_{pull}^{2} + \frac{1}{2}mv_{pull}^{2} = mgh_{launch} + \frac{1}{2}kx_{launch}^{2} + \frac{1}{2}mv_{launch}^{2} \\ 0.1*9.81*0 + \frac{1}{2}120(0.05)^{2} + \frac{1}{2}0.1(0)^{2} = 0.1*9.81*(0.05*sin(10^{\circ})) + \frac{1}{2}120*(0)^{2} + \frac{1}{2}0.1v_{launch}^{2} \\ 0.15 = 8.5E - 03 + 0.05v^{2} \\ v = 1.7 m/s$

