Review

- Characterized ideal LC circuit
- Charge, current and voltage vary sinusoidally
- Added resistance to LC circuit
- Oscillations become damped
- Charge, current and voltage still vary sinusoidally but decay exponentially
- Added ac generator to circuits with just a
- Resistor
- Capacitor
- Inductor

Review

Element Reactance/ Phase of Phase Amplitude Resistance Current angle ϕ Relation

Resistor	R	In phase	0°	$V_{R}=I_{R} R$
Capacitor	$\mathrm{X}_{\mathrm{C}}=1 / \omega_{d} \mathrm{C}$	Leads V_{C}	-90°	$\mathrm{V}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}} X_{C}$
Inductor	$\mathrm{X}_{\mathrm{L}}=\omega_{\mathrm{d}} \mathrm{L}$	Lags V_{L}	$+90^{\circ}$	$\mathrm{V}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}} \mathrm{X}_{\mathrm{L}}$

EM Oscillations

- RLC circuit - resistor, capacitor and inductor in series
- Apply alternating emf

$$
E=E_{m} \sin \omega_{d} t
$$

- Elements are in series so same current is driven through each

$$
i=I \sin \left(\omega_{d} t-\phi\right)
$$

- From the loop rule, at any time t, the sum of the voltages across the elements must equal the applied emf

$$
E=v_{R}+v_{C}+v_{L}
$$

EM Oscillations

- Want to find amplitude I and the phase constant ϕ
- Using phasors, represent the current at time t
- Length is amplitude I
- Projection on vertical axis is current i at time t
- Angle of rotation is the phase at time t

$$
\omega_{d} t-\phi
$$

EM Oscillations

- Draw phasors for voltages of R, C and L at same time t
- Orient $V_{R} V_{L} \& V_{C}$ phasors relative to current phasor
- Resistor - V_{R} and I are in phase
- Inductor - V_{L} is ahead of I by 90°
- Capacitor $-I$ is ahead of V_{C} by 90°
- $v_{R} v_{C} \& v_{L}$ are projections

EM Oscillations

- Draw phasor for applied emf

$$
\mathcal{E}=E_{m} \sin \omega_{d} t
$$

- Length is amplitude E_{m}
- Projection is \mathcal{E} at time t

- Angle is phase of emf $\omega_{d} t$
- From loop rule the projection $\mathcal{E}=$ the algebraic sum of projections $v_{\boldsymbol{R} \boldsymbol{\prime}} \quad v_{L} \& v_{C}$

$$
E=v_{R}+v_{C}+v_{L}
$$

EM Oscillations

$$
E=v_{R}+v_{C}+v_{L}
$$

- Phasors rotate together so equality always holds
- Phasor $\mathcal{E}_{\boldsymbol{m}}=$ vector sum of voltage phasors

$$
\overrightarrow{\mathcal{E}}_{m}=\vec{V}_{R}+\vec{V}_{C}+\vec{V}_{L}
$$

- Combine $V_{L} \& V_{C}$ to form single phasor

$$
V_{L}-V_{C}
$$

EM Oscillations

- Using Pythagorean theorem

$$
\mathcal{E}_{m}^{2}=V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}
$$

- From amplitude relations replace voltages with

$$
\begin{aligned}
& V_{R}=I R \quad V_{L}=I X_{L} \quad V_{C}=I X_{C} \\
& E_{m}^{2}=(I R)^{2}+\left(I X_{L}-I X_{C}\right)^{2}
\end{aligned}
$$

- Rearrange to find amplitude I

$$
I=\frac{\mathcal{E}_{m}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}
$$

EM Oscillations

$$
I=\frac{\mathcal{E}_{m}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}
$$

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

- Using reactances rewrite current as

$$
X_{L}=\omega_{d} L
$$

$$
X_{C}=\frac{1}{\omega_{d} C}
$$

$$
I=\frac{\mathcal{E}_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}}
$$

$$
I=\frac{E_{m}}{Z}
$$

EM Oscillations

- Using trig find the phase constant ϕ

$$
\tan \phi=\frac{V_{L}-V_{C}}{V_{R}}
$$

- Using amplitude relations

$$
\begin{aligned}
& \tan \phi=\frac{I X_{L}-I X_{C}}{I R} \\
& \tan \phi=\frac{X_{L}-X_{C}}{R}
\end{aligned}
$$

- Examine 3 cases:
- $X_{L}>X_{C}$
- $X_{L}<X_{C}$
- $X_{L}=X_{C}$
EM Oscillations

$$
\tan \phi=\frac{X_{L}-X_{C}}{R}
$$

- If $X_{L}>X_{C}$ the circuit is more inductive than capacitive
- ϕ is positive
- Emf is before current
- If $X_{L}<X_{C}$ the circuit is more capacitive than inductive
- ϕ is negative
- Current is before emf

EM Oscillations

$$
\tan \phi=\frac{X_{L}-X_{C}}{R}
$$

- If $X_{L}=X_{C}$ the circuit is in resonance - emf and current are in phase
- Current amplitude I is max when impedance, Z is min

$$
Z=R
$$

$$
X_{L}-X_{C}=0
$$

$$
I=\frac{\mathcal{E}_{m}}{Z}=\frac{\mathcal{E}_{m}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}=\frac{\mathcal{E}_{m}}{R}
$$

EM Oscillations

- When $X_{L}=X_{C}$ the driving frequency is

$$
\omega_{d} L=\frac{1}{\omega_{d} C} \quad \omega_{d}=\frac{1}{\sqrt{L C}}
$$

- This is the same as the natural frequency, ω

$$
\omega_{d}=\omega=\frac{1}{\sqrt{L C}}
$$

- For RLC circuit, resonance and the max current I occurs when $\omega_{\boldsymbol{d}}=\omega$

EM Oscillations

- For small driving frequency, $\omega_{d}<\omega$

$$
I=\frac{E_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}}
$$

- X_{L} is small but X_{C} is large
- Circuit capacitive
- For large driving frequency, $\omega_{d}>\omega$
- X_{C} is small but X_{L} is large - Circuit inductive
- For $\omega_{d}=\omega_{\text {, }}$ circuit is in resonance

EM Oscillations

- Instantaneous rate which energy is dissipated in resistor is

$$
P=i^{2} R
$$

- But

$$
i=I \sin \left(\omega_{d} t-\phi\right)
$$

$$
P=I^{2} R \sin ^{2}\left(\omega_{d} t-\phi\right)
$$

- Want average rate, $P_{\text {avg }}$

- Average over complete cycle T

$$
\sin ^{2} \theta=1 / 2
$$

EM Oscillations

- For alternating current circuits define root-mean-square or rms values for i, V and emf

$$
I_{r m s}=\frac{I}{\sqrt{2}} \quad V_{r m s}=\frac{V}{\sqrt{2}} \quad E_{r m s}=\frac{E}{\sqrt{2}}
$$

- Ammeters, voltmeters - give rms values
- Write average power dissipated by resistor in an ac circuit is

$$
P_{a v g}=\frac{I^{2} R}{2}=\left(\frac{I}{\sqrt{2}}\right)^{2} R \quad P_{a v g}=I_{r m s}^{2} R
$$

EM Oscillations

- Write average power in another form using

$$
I_{r m s}=\frac{\mathcal{E}_{r m s}}{Z} \quad P_{a v g}=I_{r m s}^{2} R=\frac{\mathcal{E}_{r m s}}{Z} I_{r m s} R=\mathcal{E}_{r m s} I_{r m s} \frac{R}{Z}
$$

- Using phasor and amplitude relations

$$
\cos \phi=\frac{V_{R}}{E_{m}}=\frac{I R}{I Z}=\frac{R}{Z}
$$

- Rewrite average power as

EM Oscillations

- If ac circuit has only resistive load $R / Z=1$

$$
P_{a v g}=E_{r m s} I_{r m s}=I_{r m s} V_{r m s}
$$

- Trade-off between current and voltage
- For general use want low voltage
- Means high current but

$$
P_{a v g}=I_{r m s}^{2} R
$$

- General energy transmission rule: Transmit at the highest possible voltage and the lowest possible current

EM Oscillations

- Transformer - device used to raise (for transmission) and lower (for use) the ac voltage in a circuit, keeping iV constant
- Has 2 coils (primary and secondary) wound on same iron core with different \#s of turns

EM Oscillations

- Alternating primary current induces alternating magnetic flux in iron core
- Same core in both coils so induced flux also goes through the secondary coil
- Using Faraday's law

$$
\begin{gathered}
V_{P}=-N_{P} \frac{d \Phi B}{d t} \quad V_{S}=-N_{S} \frac{d \Phi B}{d t} \\
\frac{V_{P}}{N_{P}}=\frac{V_{S}}{N_{S}}
\end{gathered}
$$

EM Oscillations

- Transformation of voltage is
- If $N_{\boldsymbol{s}}>N_{\boldsymbol{P}}$ called a step-up

$$
V_{S}=V_{P} \frac{N_{S}}{N_{P}}
$$ transformer

- If $N_{S}<N_{P}$ called a step-down transformer
- Conservation of energy

$$
\begin{gathered}
I_{P} V_{P}=I_{S} V_{S} \\
I_{S}=I_{P} \frac{V_{P}}{V_{S}}=I_{P} \frac{N_{P}}{N_{S}}
\end{gathered}
$$

EM Oscillations

- The current $I_{\boldsymbol{P}}$ appears in primary circuit due to R in secondary circuit.

$$
\begin{gathered}
I_{P} V_{P}=I_{S} V_{S} \quad I_{S}=V_{S} / R \\
I_{P}=\frac{V_{S}}{R} \frac{V_{S}}{V_{P}}=\frac{1}{R} \frac{V_{S}^{2}}{V_{P}^{2}} V_{P}=\frac{1}{R}\left(\frac{N_{S}}{N_{P}}\right)^{2} V_{P}
\end{gathered}
$$

- Has for of IP $=$ VP/Req where

$$
R_{e q}=\left(\frac{N_{P}}{N_{s}}\right)^{2} R
$$

