Review

- Characterized ideal LC circuit
 - Charge, current and voltage vary sinusoidally
- Added resistance to LC circuit
 - Oscillations become damped
 - Charge, current and voltage still vary sinusoidally but decay exponentially
- Added ac generator to circuits with just a
 - Resistor
 - Capacitor
 - Inductor

Review

Element	Reactance/	Phase of	Phase	Amplitude
	Resistance	Current	angle ϕ	Relation
Resistor	R	In phase	0°	$V_R = I_R R$
Capacitor	$X_{C} = 1/\omega_{d}C$	Leads v_{C}	-90°	$V_C = I_C X_C$
Inductor	$X_L = \omega_d L$	Lags v _L	+90°	$V_L = I_L X_L$

- RLC circuit resistor, capacitor and inductor in series
- Apply alternating emf

$$\mathsf{E} = \mathsf{E}_m \sin \omega_d t$$

- Elements are in series so same current is driven through each
- From the loop rule, at any time *t*, the sum of the voltages across the elements must equal the applied emf

$$i = I\sin(\omega_d t - \phi)$$

$$\mathbf{E} = v_R + v_C + v_L$$

- Want to find amplitude I and the phase constant ϕ
- Using phasors, represent the current at time t
 - Length is amplitude I
 - Projection on vertical axis is current *i* at time *t*
 - Angle of rotation is the phase at time $t \qquad \omega_d t \phi$

- Draw phasors for voltages
 of *R*, *C* and *L* at same time *t*
- Orient V_R, V_L, & V_C phasors relative to current phasor
- Resistor V_R and I are in phase
- Inductor V_L is ahead of I by 90°
- Capacitor I is ahead of V_c by 90°
- *v_R*, *v_c*, & *v_L* are projections

 $\mathsf{E} = \mathsf{E}_m \sin \omega_d t$

- Length is amplitude E_m
- Projection is E at time t
- Angle is phase of emf $\omega_d t$
- From loop rule the projection
 E = the algebraic sum of
 projections v_R, v_L & v_c

$$\mathsf{E} = V_R + V_C + V_L$$

EM Oscillations
$$E = V_R + V_C + V_L$$

- Phasors rotate together so equality always holds
- Phasor \mathcal{E}_m = vector sum of voltage phasors

$$\vec{\mathsf{E}}_{m} = \vec{V}_{R} + \vec{V}_{C} + \vec{V}_{L}$$

• Combine $V_L \& V_C$ to form single phasor $V_L - V_C$

Using Pythagorean theorem

$$\mathsf{E}_{m}^{2} = V_{R}^{2} + (V_{L} - V_{C})^{2}$$

 From amplitude relations replace voltages with

$$V_R = IR$$
 $V_L = IX_L$ $V_C = IX_C$

$$\mathsf{E}_{m}^{2} = (IR)^{2} + (IX_{L} - IX_{C})^{2}$$

 Rearrange to find amplitude *I*

$$I = \frac{\mathsf{E}_{m}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}}$$

$$I = \frac{\mathsf{E}_{m}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}}$$

• Define impedance, Z to be

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

 Using reactances rewrite current as

$$X_L = \omega_d L$$

$$I = \frac{\mathsf{E}_{m}}{\sqrt{R^{2} + (\omega_{d}L - 1/\omega_{d}C)^{2}}}$$

• Using trig find the phase constant ϕ V - V

$$\tan\phi = \frac{V_L - V_C}{V_R}$$

$$\mathcal{E}_{m}$$

$$\phi \quad V_{R}$$

$$\psi_{L} - V_{C}$$

$$\mathcal{W}_{L} - \psi_{C}$$

ı

Using amplitude relations

$$\tan\phi = \frac{IX_L - IX_C}{IR}$$

$$\tan \phi = \frac{X_L - X_C}{R}$$

• Examine 3 cases:

•
$$X_L > X_C$$

• $X_L < X_C$
• $X_L = X_C$

EM Oscillation

$$\tan \phi = \frac{X_L - X_C}{R}$$

$$\sum_{i=1}^{\mathcal{E}_{m}} \sum_{i=1}^{\mathcal{E}_{m}} \sum_{i=1}^{$$

- If X_L > X_C the circuit is more inductive than capacitive
 - ϕ is positive
 - Emf is before current
- If X_L < X_C the circuit is more capacitive than inductive
 - ϕ is negative
 - Current is before emf

$$\tan \phi = \frac{X_L - X_C}{R}$$

- If X_L = X_C the circuit is in resonance – emf and current are in phase
- Current amplitude *I* is max when impedance, *Z* is min

$$X_L - X_C = 0$$

$$Z = R$$

• When $X_{L} = X_{C}$ the driving frequency is

This is the same as the natural frequency, ω

$$\omega_d = \omega = \frac{1}{\sqrt{LC}}$$

• For RLC circuit, resonance and the max current *I* occurs when $\omega_d = \omega$

For small driving frequency, ω_d < ω

- X_L is small but X_C is large
 Circuit capacitive
- For large driving frequency, *O_d > O*
 - X_c is small but X_L is large
 - Circuit inductive
- For $\omega_d = \omega_r$, circuit is in resonance

