

Review - EM Waves

EM Waves

- Wavelengths of 10⁸ to 10⁻¹⁶ meters (10-10²⁴ Hz)
- Traveling wave of both *E* and *B* fields
- *E* field is $\perp B$ field
- Wave moves in direction ⊥ to both *E* and *B* fields
- *E* and *B* vary sinusoidally with same frequency

$$v = c = f\lambda = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \,\mathrm{m/s}$$

Review - EM Waves

 Poynting vector, S – rate of energy transported per unit area:

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

Instantaneous energy flow rate

$$S = \frac{1}{\mu_0} EB = \frac{1}{\mu_0 c} E^2 = \frac{1}{\mu_0 c} E_m^{-2} \sin^2(kx - \omega t)$$

• Peak intensity (when sin=1) given by

$$S_{peak} = \frac{1}{\mu_0 c} E_m^2$$

EM Waves: Radiation pressure

 Express in terms of radiation pressure p_r which is force/area

SI unit is N/m² called pascal Pa

Total absorption

$$p_r = \frac{I}{c}$$

Total reflection

$$p_r = \frac{2I}{c}$$

- Source emits EM waves with
 E field always in same
 plane wave is polarized
- Indicate a wave is polarized by drawing double arrow
- Plane containing the *E* field is called plane of oscillation

- Source emits EM waves with random planes of oscillation (*E* field changes direction) is unpolarized
 - Example, light bulb or Sun
- Resolve *E* field into components
- Draw unpolarized light as superposition of 2 polarized waves with *E* fields ⊥ to each other

- Transform unpolarized light into polarized by using a polarizing sheet
- Sheet contains long molecules embedded in plastic which was stretched to align the molecules in rows

- E field component || to polarizing direction of sheet is passed (transmitted), but ⊥ component is absorbed
- So after the light goes through the polarizing sheet it is polarized in the same direction as the sheet.

- What is the intensity, / of the light transmitted by polarizing sheet?
- For initially polarized light, resolve *E* into components

$$E_{y} = E_{||} = E\cos\theta$$

Transmitted || component is

$$I = \frac{1}{c\mu_0} E_{||}^2 = \frac{1}{c\mu_0} E^2 \cos^2 \theta = I_0 \cos^2 \theta$$

 Cosine-squared rule: Intensity of polarized wave changes as cos²θ

$$I = I_0 \cos^2 \theta$$

 For unpolarized light, average over cos²

$$I = \frac{1}{2}I_0$$

 Only light || to polarizer is transmitted

 One-half rule: Intensity of unpolarized wave after a polarizer is half of original

- Have 2 polarizing sheets
 - First one called polarizer
 - Second one called analyzer
- Intensity of unpolarized light going through first polarizer

is
$$I_1 = \frac{1}{2}I_0$$

 Light is now polarized and intensity of light after second analyzer is given by

$$I_2 = I_1 \cos^2 \theta = \frac{1}{2} I_0 \cos^2 \theta$$

An interesting demo

- Effect of P₁ and P₃
- Take $\theta_1 = 0^\circ$ and $\theta_3 = 90^\circ$

• After P₁
$$I_1 = \frac{1}{2}I_0$$

After P₃

$$I_3 = I_1 \cos^2(90^\circ) = 0$$

 I_0

An interesting demo • Keep $\theta_1 = 0^\circ$ $\theta_3 = 90^\circ$ I_0 Now insert P₂ in between 45°- P_1 and P_3 with $\theta_2 = 45^{\circ}$ I_9 • After P₁ $I_1 = \frac{1}{2} I_0$ (a)• After P₂ $I_2 = I_1 \cos^2(45^\circ) = \frac{1}{4}I_0$ • After P₃ $I_3 = I_2 \cos^2(45^\circ) = \frac{1}{8}I_0$

Exercise

 Unpolarized light hits a polarizer and then an analyzer. The polarizing direction of each sheet is indicated by dashed line. Rank pairs according to fraction of initial intensity which is passed, greatest first.

Exercise

- Look at relative orientation of polarization direction between the 2 sheets.
- What is the intensity if the sheets are...
 - Polarized || all light passes
 - Polarized \perp to each other no light passes
 - For angles in between get more light if closer to ||

a,d,b,c

Optical activity

- Certain materials rotate the plane of polarization
- The rotation angle may depends on the frequency (color)
- This is due to molecular asymmetry e.g. molecules with spiral shapes
- Karo syrup