

Review - EM Waves

- EM Waves
- Wavelengths of 10^{8} to 10^{-16} meters ($10-10^{24} \mathrm{~Hz}$)
- Traveling wave of both E and B fields
- E field is $\perp B$ field
- Wave moves in direction \perp to both E and B fields
- E and B vary sinusoidally with same frequency

$$
E=E_{m} \sin (k x-\omega t)
$$

$$
B=B_{m} \sin (k x-\omega t)
$$

$v=c=f \lambda=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Review - EM Waves

- Poynting vector, S - rate of energy transported per unit area:

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

- Instantaneous energy flow rate

$$
S=\frac{1}{\mu_{0}} E B=\frac{1}{\mu_{0} c} E^{2}=\frac{1}{\mu_{0} c} E_{m}^{2} \sin ^{2}(k x-\omega t)
$$

- Peak intensity (when $\sin =1$) given by

$$
S_{\text {peak }}=\frac{1}{\mu_{0} c} E_{m}^{2}
$$

EM Waves: Radiation pressure

- Express in terms of radiation pressure $p_{\boldsymbol{r}}$ which is force/area

$$
p_{r}=\frac{F}{A}
$$

- SI unit is $\mathrm{N} / \mathrm{m}^{2}$ called pascal Pa
- Total absorption

$$
p_{r}=\frac{I}{C}
$$

- Total reflection

$$
p_{r}=\frac{2 I}{c}
$$

EM Waves: Polarization

- Source emits EM waves with E field always in same plane wave is polarized

(a)
- Indicate a wave is polarized by drawing double arrow
- Plane containing the E field is called plane of oscillation

(b)

EM Waves: Polarization

- Source emits EM waves with random planes of oscillation (E field changes direction) is unpolarized
- Example, light bulb or Sun
- Resolve E field into components
- Draw unpolarized light as superposition of 2 polarized waves with E fields \perp to each other

EM Waves: Polarization

- Transform unpolarized light Incident light ray into polarized by using a polarizing sheet
- Sheet contains long molecules embedded in plastic which was stretched to align the molecules in rows
- E field component || to polarizing direction of sheet is passed (transmitted), but \perp component is absorbed
- So after the light goes through the polarizing sheet it is polarized in the same direction as the sheet.

EM Waves: Polarization

- What is the intensity, I of the light transmitted by polarizing sheet?
- For initially polarized light, resolve E into components

$$
E_{y}=E_{\|}=E \cos \theta
$$

- Transmitted || component is

$$
I=\frac{1}{c \mu_{0}} E_{\|}^{2}=\frac{1}{c \mu_{0}} E^{2} \cos ^{2} \theta=I_{0} \cos ^{2} \theta
$$

- Cosine-squared rule: Intensity of polarized wave changes as $\cos ^{2} \theta$

$$
I=I_{0} \cos ^{2} \theta
$$

EM Waves: Polarization

- For unpolarized light, average over cos2

$$
I=\frac{1}{2} I_{0}
$$

- Only light || to polarizer is transmitted

- One-half rule: Intensity of unpolarized wave after a polarizer is half of original

EM Waves: Polarization

- Have 2 polarizing sheets
- First one called polarizer
- Second one called analyzer
- Intensity of unpolarized light going through first polarizer is

$$
I_{1}=\frac{1}{2} I_{0}
$$

- Light is now polarized and intensity of light after second analyzer is given by

$$
I_{2}=I_{1} \cos ^{2} \theta=\frac{1}{2} I_{0} \cos ^{2} \theta
$$

An interesting demo

- Effect of P_{1} and P_{3}
- Take $\theta_{1}=0^{\circ}$ and $\theta_{3}=90^{\circ}$
- After $\mathrm{P}_{1} \quad I_{1}=\frac{1}{2} I_{0}$
分
- After P_{3}

$$
I_{3}=I_{1} \cos ^{2}\left(90^{\circ}\right)=0
$$

An interesting demo

- Keep $\theta_{1}=0^{\circ} \quad \theta_{3}=90^{\circ}$
- Now insert P_{2} in between P_{1} and P_{3} with $\theta_{2}=45^{\circ}$
- After $\mathrm{P}_{1} \quad I_{1}=\frac{1}{2} I_{0}$

- After $\mathrm{P}_{2} \quad I_{2}=I_{1} \cos ^{2}\left(45^{\circ}\right)=\frac{1}{4} I_{0}$
- After $\mathrm{P}_{3} \quad I_{3}=I_{2} \cos ^{2}\left(45^{\circ}\right)=\frac{1}{8} I_{0}$

Exercise

- Unpolarized light hits a polarizer and then an analyzer. The polarizing direction of each sheet is indicated by dashed line. Rank pairs according to fraction of initial intensity which is passed, greatest first.

Exercise

- Look at relative orientation of polarization direction between the 2 sheets.
- What is the intensity if the sheets are...
- Polarized || - all light passes
- Polarized \perp to each other - no light passes
- For angles in between - get more light if closer to ||

a,d,b,c

Optical activity

- Certain materials rotate the plane of polarization
- The rotation angle may depends on the frequency (color)
- This is due to molecular asymmetry - e.g. molecules with spiral shapes
- Karo syrup

