Capacitance

- Parallel-plate capacitor charged to potential *V* by battery
- Disconnect battery to have an isolated system
- If the distance, d, between the plates is decreased what happens to C?

LARGER

• What happens to V ?

Isolated system *q* stays same so *V* decreases if *C* increases

Capacitance

 Observe what happens if I put material between the plates?

V decreases

$$C = \frac{q}{V}$$

• so *C* must increase – why?

- Why does C increase if add material?
- Material made up of molecules which are dipoles
- Molecules align with *E* field from capacitor

- Dipoles set up field E' which opposes capacitors field E_o
- Total field *E* is smaller than original *E_o*

$$V = Ed$$

E field is weaker so *V* decreases

$$C = \frac{q}{V}$$

• *q* is constant so *C* INCREASES

q = a constant

- Place a dielectric in capacitor its capacitance increases by numerical factor.
- Called dielectric constant, *k*

$$C_{dielectric} = \kappa C_{air}$$

Material	Dielectric Constant κ	Dielectric Strength (kV/mm)
Air (1 atm)	1.00054	3
Polystyrene	2.6	24
Paper	3.5	16
Transformer oil	4.5	
Pyrex	4.7	14
Ruby mica	5.4	
Porcelain	6.5	
Silicon	12	
Germanium	16	
Ethanol	25	
Water (20°C)	80.4	
Water (25°C)	78.5	
Titania ceramic	130	
Strontium titanate	310	8

Some Properties of Dielectrics^a

For a vacuum, $\kappa =$ unity.

^aMeasured at room temperature, except for the water.

- If system is connected to a battery, *V* is a constant
- C increases with dielectric so q must increase

$$q = CV$$

V= a constant