Current and Resistance

• Current
$$i = \frac{dq}{dt}$$

SI unit for current is ampere

$$1A = 1C/s$$

• Current is a scalar

• q is conserved so

 Use arrows to indicate positive charge flow along conductor (electrons actually move in the opposite direction)

$$i_0 = i_1 + i_2$$

Current Density

 Total current through a surface can be defined in terms of the Current density, *J* – flow of charge through a cross section

$$i = \int \vec{J} \bullet d\vec{A}$$

• If J is uniform and parallel to dA $i = \int J dA = JA$

• SI unit for J is A/m²

Resistance

- Different types of materials, i.e. glass and copper, give very different *i* for the same *V*
- Define this characteristic as resistance

• SI unit is ohm,
$$\Omega = \frac{1\Omega = 1V}{A}$$

- A resistor is a device used to provide a specified resistance in a circuit.
- Given V, greater R means smaller i

$$i = \frac{V}{R}$$

$$R = \frac{V}{i}$$

Resistivity and Conductivity

 Resistivity, *ρ*, of a material is defined as the *E* field at a point in the material over the current density:

- SI unit is Ω·m
- Conversely speak of a material's conductivity, σ

 $\sigma = \frac{1}{\rho}$

SI unit is (Ω·m)⁻¹

Resistance and Resistivity

 Know *ρ* of material can calculate *R* for a length of wire of that material

$$\rho = \frac{E}{J}$$
 BUT $E = \frac{\Delta V}{\Delta s} = \frac{V}{L}$ $J = \frac{i}{A}$

$$\rho = \frac{V/L}{i/A} = \frac{VA}{iL} \quad \text{BUT} \quad R = \frac{V}{i} \quad \text{SO} \quad R = \rho \frac{L}{A}$$

Exercise

 Three copper conductors with same applied *V*. Rank *i* through them, greatest first.

$$R = \rho \frac{L}{A}$$

$$\begin{array}{c}
L \\
A \\
angle
\\
(a)
\end{array}
\begin{array}{c}
1.5 L \\
\underline{A} \\
2 \\
(b)
\end{array}
\begin{array}{c}
L/2 \\
\underline{A} \\
\underline{2} \\
(c)
\end{array}$$

- For b and c only the length differs so $R_b = 3R_c$.
- For c both A and L are divided by 2 so $R_a = R_c$.

a and c tie with largest *i*, then $i_b = i_a/3$

Current and Resistance

- Macroscopic quantities V, i and R work well for electrical measurements
- Use microscopic quantities *E*, *J*, and *ρ* when talk about electrical properties of materials

Resistivity of Materials

 Resistivities for some common materials (at room temperature)

 Metal (Copper) 	Material	Resistivity, p
 Semi-conductor (Silicon) (n-type means doped with phosphorus impurities) 	Copper	1.69 × 10 ⁻⁸
	Silicon	2.5 × 10 ³
 Insulator (Glass) 	Silicon,	8.7 × 10 ⁻⁴
Glass will conduct at high temperatures	n-type	
	Glass	10 ¹⁰ - 10 ¹⁴

Temperature & Resistivity

- Resistivity, *ρ*, varies with temperature due to thermal vibrations
- For metals, relation is fairly linear e.g. copper \rightarrow
- *T_o* and *ρ_o* are reference points measured at room temperature
- α is temperature coefficient of resistivity

$$\rho - \rho_0 = \rho_0 \,\alpha \left(T - T_0\right)$$