Electric Field

- How does a charge, q₁, exert a force on another charge, q₂, when the charges don't touch?
- The charge, q₁, sets up an electric field in its surrounding space
- This electric field has both magnitude and direction which determine the magnitude and direction of the force acting on q₂

Electric Field is Dynamic

• What happens to the field if q_1 moves?

 Info about q₁ travels outward from it as an electromagnetic wave at speed of light, c

Electric Field is a Vector

Electric field is a vector field
Consists of a distribution of vectors

• Define electric field at a point near the charged object by using a positive test charge, $q_0 \rightarrow 0$ (very small)

Test Charge

 Test charge - charge which feels forces of other charges but exerts no force on them
Mathematical construct

Electric field exists independently of the test charge

Electric Field

 The magnitude of the electric field, *E*, is the magnitude of the force per unit test charge (see next slide)

SI unit for E field is N/C

 Direction of *E* is the direction of *F* for the positive test charge

Electric Field of a Point Charge

 Electric field, *E*, is the force per unit positive test charge

$$E = \frac{F}{q_0}$$

For a point charge

$$F = k \frac{|q_0||q|}{r^2} \quad \text{so} \quad E = k \frac{|q|}{r^2}$$

Superposition Principle

- Direction of *E* = direction of *F* (for positive charge)
- E points towards a negative point charge and away from a positive point charge

Superposition of electric fields

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \ldots + \vec{E}_n$$

Electric Field Lines

- Use electric field lines to visualize *E* field
- Field lines point away from positive charges and towards negative charges
- At any point, the tangent to the field line is the direction of the *E* field at that point
- Density of field lines is proportional to the magnitude of the *E* field

(a)

Rules for Electric Field Lines

- Close to a point charge are radial in direction
- Do not intersect in a charge-free region
- Do not begin or end in a charge-free region

Electric Field of a Dipole

• Electric field lines:

- Point away from positive and towards negative
- Tangent to the field line is the direction of the *E* field at that point
- density of lines is proportional to magnitude of the charge

Charge in an Electric Field

 If a charge q is placed in an electric field, then there is a force given by:

$$\vec{F} = q \ \vec{E}$$