Exercise: Rank magnitude of net E

(a)

(c)

(b)

(d)

Exercise: Rank magnitude of net E

a) $E_{x}=k \frac{2 q}{d^{2}}+k \frac{3 q}{d^{2}}=k \frac{5 q}{d^{2}} \hat{i} \quad E_{y}=k \frac{5 q}{d^{2}} \hat{j}$

$$
E=\sqrt{E_{x}^{2}+E_{y}^{2}}=k \frac{\sqrt{50} q}{d^{2}}
$$

Do this for the rest and find

All Equal

Charge distributions

- Calculate E field from a continuous line or region of charge - Use calculus and a charge density
- Linear charge density

$$
\lambda=Q / \text { Length }
$$

Surface charge density

$$
\sigma=Q / \text { Area }
$$

- Volume charge density

$$
\rho=Q / \text { Volume }
$$

Electric Field of a Charged Ring

Differential $d E$ at P is

$$
d E=k \frac{d q}{r^{2}}=k \frac{\lambda d s}{r^{2}}
$$

From trig

$$
r^{2}=z^{2}+R^{2}
$$

- Look for symmetry
- All \perp cancel and || point upward

Electric Field of a Charged Ring

Parallel component $d E$ is

$$
d E \cos \theta=k \frac{\lambda d s}{\left(z^{2}+R^{2}\right)} \cos \theta
$$

Use trig to rewrite $\cos \theta$

$$
\cos \theta=\frac{z}{r}=\frac{z}{\left(z^{2}+R^{2}\right)^{1 / 2}}
$$

Electric Field of a Charged Ring

Substituting

$$
d E \cos \theta=k \frac{z \lambda}{\left(z^{2}+R^{2}\right)^{3 / 2}} d s
$$

Integrate around the ring

$$
E=\int d E \cos \theta=\frac{k z \lambda}{\left(z^{2}+R^{2}\right)^{3 / 2}} \int_{0}^{2 \pi r} d s
$$

Electric Field of a Charged Ring

Finally get

$$
E=\frac{k z \lambda(2 \pi R)}{\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

Replace λ with

$$
\lambda=q /(2 \pi r)
$$

Charge ring has E of

$$
E=\frac{k q z}{\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

Electric Field of a Charged Ring

Charge ring has E of

$$
E=\frac{k q z}{\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

Check $z \gg R$ then

$$
E=\frac{k q}{z^{2}}
$$

- From far away ring looks like point charge

Electric Field of a Charged Disk

 Also do this for charged disk- But now surface charge

$$
d q=\sigma A=\sigma(2 \pi r d r)
$$

Use ring field, with $q \rightarrow$ dq. Then integrate

$$
E=k z \pi \sigma \int_{0}^{R} \frac{2 r d r}{\left(z^{2}+r^{2}\right)^{3 / 2}}
$$

Electric Field of a Charged Disk

- Integrating and using

$$
k=1 /\left(4 \pi \varepsilon_{0}\right) \quad \uparrow d \vec{E}
$$

$E=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{Z}{\sqrt{z^{2}+R^{2}}}\right)$

- Let $\mathrm{z} \rightarrow \infty$ and use
$\left(z^{2}+R^{2}\right)^{-1 / 2}=\frac{1}{z}\left(1-\frac{1}{2} \frac{R^{2}}{z^{2}}\right)$
to get $E=2 \pi k \sigma\left(\frac{1}{2} \frac{R^{2}}{z^{2}}\right)=k \frac{q}{z^{2}}$
- From far away disk looks like point charge

Electric Field of a Charged Disk

Charge disk of radius R

$$
E=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{\mathrm{z}^{2}+R^{2}}}\right)
$$

- Let $\mathrm{R} \rightarrow \infty$ then get

$$
E=\frac{\sigma}{2 \varepsilon_{0}}
$$

- Acts as infinite sheet of a nonconductor with uniform charge

Kinetic Energy Gain in an E-Field

$v_{f}=a t=\frac{q E}{m} t$
$x_{f}=\frac{1}{2} a t^{2}=\frac{q E}{2 m} t^{2}$
$v_{f}^{2}=2 a x_{f}=\left(\frac{2 q E}{m}\right) x_{f}$
$K=\frac{1}{2} m v_{f}^{2}=\frac{1}{2} m\left(\frac{2 q E}{m}\right) \Delta x=q E \Delta x$
Positive plate

Negative plate

Or using work-Kinetic energy theorem:

$$
\begin{aligned}
& W=F_{e} \Delta x=q E \Delta x \\
& W=K
\end{aligned}
$$

2-D motion in an E-Field

$$
\begin{aligned}
& v_{x}=v_{i}=\text { constant } \\
& v_{y}=a_{y} t=\frac{Q E}{m_{e}} t \\
& x_{f}=v_{i} t \\
& y_{f}=\frac{1}{2} a_{y} t^{2}=\frac{1}{2} \frac{Q E}{m} t^{2} \\
& \\
& =\frac{1}{2} \frac{Q E}{m v_{i}} x_{f}^{2}
\end{aligned}
$$

Trajectory is a parabola

