- Electrons moving in a wire. In this case the wire is a rectangular slab with width, d, and thickness, l.
- The total cross sectional area of the wire is A=I d.
- *B* field points into the screen.

- Electrons moving in a wire (= current) can be deflected by a *B* field called the Hall effect
- Creates a Hall potential difference, V, across the wire
- Can measure the wire's charge density when at equilibrium $F_E = F_B$

- Electrons have drift velocity, v_d in direction opposite the current, i
- *B* field into page causes force, *F_B* to right
- Electrons pile up on right hand side of strip
- Leaves + charges on left and produce an *E* field inside the strip pointing to right

- *E* field on electron produces a F_E to the left
- Quickly have equilibrium where $F_E = F_B$
- *E* field gives a *V* across the strip

$$V = Ed$$

 Left side is at a higher potential

 Can measure the number of charge carriers per unit volume, n, at equilibrium

$$F_E = F_B$$

$$F_E = qE \quad F_B = |q\vec{v} \times \vec{B}|$$

$$eE = ev_d B\sin(90)$$

$$E = v_d B$$

i

i

 Remember from Chpt. 27 that drift speed is

$$v_d = \frac{J}{ne} = \frac{i}{neA}$$

$$E = v_d B = \frac{iB}{neA}$$

$$n = \frac{iB}{EeA}$$

i

i

• If / is the thickness of the strip $l = \frac{A}{d}$

Finally get

$$n = \frac{iB}{Vle}$$

Magnetic Fields: Circular Motion

- *F_B* continually deflects path of charged particles
- If ν and B are \perp , F_B causes charged particles to move in a circular path
- If *B* points towards you
 - + particles move clockwise.
 - particles move counter clockwise.

$$\vec{F}_B = q\vec{v} \times \vec{B}$$

Magnetic Fields: Circular Motion

 Derive radius of circular path for particle of charge, q, and mass, m, moving with velocity, v, which is ⊥ to B field

$$F_B = |q\vec{v} \times \vec{B}| = qvB\sin\phi = qvB$$

Newton's second law for circular motion is

$$F = ma = m\frac{v^2}{r}$$

Setting the forces equal and solving for *r* Faster particles move in larger circles

$$r = \frac{mv}{qB}$$

$$qvB = m\frac{v^2}{r}$$

Exercise

• A proton and an electron travel at same ν (in the plane of the page).

There is a B field into the page.

 A) Which particle follows the smaller circle?

> $r \propto m/q$, $|q_e| = |q_p| = e$, and $m_p > m_{e_p}$ so the electron has the smaller circle

B) What direction does the electron move in?
 Clockwise

 $\bigotimes_{\vec{R}}$

Magnetic Fields: Circular Motion

 Period, *T*, is the time for one full revolution

$$T = \frac{2\pi r}{v} = \frac{2\pi}{v} \frac{mv}{qB} = \frac{2\pi m}{qB}$$

$$f = \frac{1}{T} = \frac{qB}{2\pi m}$$

• Angular frequency, ω , is

$$\omega = 2\pi f = \frac{qB}{m}$$

Only depend on q and m but not v

• Cyclotron

- Particles starts at the center.
- They circulate inside 2 hollow metal D shaped objects
- Alternate the electric sign of the Dees so *V* across gap alternates (the oscillator does this).
- Whole thing immersed in magnetic field *B* (green dots pointing out of page) ⊥ to *v*
- *B* approximately 1-10 T (tesla).

Cyclotron

- Proton starting in center will move toward negatively charged Dee
- Inside Dee *E* field = 0

 (inside conductor) but *B* field causes proton to
 move in circle with radius
 which depends on *v*

$$r = \frac{mv}{qB}$$

Cyclotron

- When proton enters gap between Dees *E* field is flipped so proton is again attracted to negatively charged Dee
- Every time proton enters gap the polarity of the Dees is changed and the proton is given another kick (accelerated)

Cyclotron

Key is that the frequency,
 f, of the proton does not
 depend on *v* and must
 equal the *f_{osc}* of the Dees

$$f = f_{osc}$$

$$f = \frac{1}{T} = \frac{qB}{2\pi m}$$

 $qB = 2\pi m f_{osc}$

