Hall Effect

- Electrons moving in a wire. In this case the wire is a rectangular slab with width, d, and thickness, l.
- The total cross sectional area of the wire is $A=/ d$.
- B field points into the screen.

Hall Effect

- Electrons moving in a wire (= current) can be deflected by a B field called the Hall effect
- Creates a Hall potential difference, V, across the wire
- Can measure the wire's charge density when at equilibrium $F_{E}=F_{B}$

Hall Effect

- Electrons have drift velocity, v_{d} in direction opposite the current, i
- B field into page causes force, F_{B} to right
- Electrons pile up on right hand side of strip
- Leaves + charges on left and produce an E field inside the strip pointing to right

Hall Effect

- E field on electron produces a F_{E} to the left
- Quickly have equilibrium where $F_{E}=F_{B}$
- E field gives a V across the strip

$$
V=E d
$$

- Left side is at a higher potential

Hall Effect

- Can measure the number of charge carriers per unit volume, n, at equilibrium

$$
F_{E}=F_{B}
$$

$$
F_{E}=q E \quad F_{B}=|q \vec{v} \times \vec{B}|
$$

$$
e E=e v_{d} B \sin (90)
$$

$$
E=v_{d} B
$$

i

$j i$

Hall Effect

- Remember from Chpt. 27 that drift speed is

$$
\begin{gathered}
v_{d}=\frac{J}{n e}=\frac{i}{n e A} \\
E=v_{d} B=\frac{i B}{n e A} \\
n=\frac{i B}{E e A}
\end{gathered}
$$

Hall Effect

- Replacing E by

$$
V=E d
$$

$$
n=\frac{i B}{E e A}=\frac{i B d}{V e A}
$$

$1 i$

Hall Effect

- If / is the thickness of the strip

$$
l=\frac{A}{d}
$$

Finally get

$$
n=\frac{i B}{V l e}
$$

Magnetic Fields: Circular Motion

- F_{B} continually deflects path of charged particles

$$
\vec{F}_{B}=q \vec{v} \times \vec{B}
$$

- If v and B are $\perp, F_{\boldsymbol{B}}$ causes charged particles to move in a circular path
- If B points towards you
- + particles move clockwise.
- - particles move counter clockwise.

Magnetic Fields: Circular Motion

- Derive radius of circular path for particle of charge, q_{1} and mass, m, moving with velocity, v, which is \perp to B field

$$
F_{B}=|q \vec{v} \times \vec{B}|=q v B \sin \phi=q v B
$$

- Newton's second law for circular motion is
- Setting the forces equal and solving for r
- Faster particles move in larger circles

$$
F=m a=m \frac{v^{2}}{r}
$$

$$
q v B=m \frac{v^{2}}{r}
$$

Exercise

- A proton and an electron travel at same v (in the plane of the page).
- There is a B field into the page.
- A) Which particle follows the smaller circle?

$$
\begin{aligned}
& r \propto m / q,\left|q_{e} e\right|=\left|q_{-} p\right|=e, \text { and } m_{p}>m_{e}, \\
& \text { so the electron has the smaller circle }
\end{aligned}
$$

-B) What direction does the electron move in?
Clockwise

Magnetic Fields: Circular Motion

- Period, T, is the time for one full revolution

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi}{v} \frac{m v}{q B}=\frac{2 \pi m}{q B}
$$

- Frequency, f, is the number revolutions per unit time

$$
f=\frac{1}{T}=\frac{q B}{2 \pi m}
$$

- Angular frequency, ω, is

$$
\omega=2 \pi f=\frac{q B}{m}
$$

- Only depend on q and m but not v

Cyclotron

- Cyclotron
- Particles starts at the center.
- They circulate inside 2 hollow metal D shaped objects
- Alternate the electric sign of the Dees so V across gap alternates (the oscillator does this).
- Whole thing immersed in magnetic field B (green dots pointing out of page) \perp to v
- B approximately 1-10 T (tesla).

Cyclotron

- Cyclotron
- Proton starting in center will move toward negatively charged Dee
- Inside Dee E field $=0$ (inside conductor) but B field causes proton to move in circle with radius which depends on v

$$
\frac{m v}{q B}
$$

Cyclotron

- Cyclotron
- When proton enters gap between Dees E field is flipped so proton is again attracted to negatively charged Dee
- Every time proton enters gap the polarity of the Dees is changed and the
 proton is given another kick (accelerated)

Cyclotron

- Cyclotron
- Key is that the frequency, f, of the proton does not depend on v and must equal the $f_{o s c}$ of the Dees

$$
\begin{gathered}
f=f_{\text {osc }} \\
f=\frac{1}{T}=\frac{q B}{2 \pi m}
\end{gathered}
$$

$$
q B=2 \pi m f_{\text {osc }}
$$

