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3.1  - Matter and Radiation Pressure in the Universe  

introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 2	

dU + dW = dQFor an isolated system, 	 (3.1)

where U stands for the internal energy, W is the work done by the system and 
Q is the heat transfer.  
 
Ignoring any heat transfer, dQ = 0, and writing dW = Fdr = pdV where F is the  
force, r is the distance characterizing the size of the system, p is the pressure 
and V is the volume, then	

dU = −pdV (3.2)

Denoting the energy density by ρ :   U = ρV (3.3)

 dU
dt

=  dρ
dt
V + ρ dV

dt
= −p dV

dt

Since V ∝r3, then (dV/dt)/V =3(dr/dt)/r. 
Thus,  dρ

dt
= −3(ρ + p)1

r
dr
dt

(3.4)

(3.5)
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Matter Dominated Universe  
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Assuming all energy to be in the form of matter, the relation between 
matter, M, density, ρ, and radius, r, means that	

for matter dominated Universe. 

(3.7)

Comparing Eqs. (3.5) and (3.7) we conclude 
that   

p = 0 (3.8)

 dρ
dt

=
dρ
dr

dr
dt
= −3ρ 1

r
dr
dt

That is, if no kinetic energy is taken into account, pressure is zero for a 
system with mass M. This is the same pressure as the ideal gas law for 
zero temperature. 

ρ =
M

4πr3 / 3
(3.6)
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Radiation Dominated Universe  

introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 4	

Let us consider radiation modes in a cavity based on analogy with a string held 
fixed at two points separated by a distance L. The possible wavelengths, λ, of 
a standing wave on the string obey the relation	

This, together with ρ = U/V, 
yields the radiation pressure: 

(3.10)

 where f  is the frequency. Planck’s formula for the energy of a quantum of 
radiation with frequency f  = ω/2π  is U  = ħω  = hf , where ħ = h/2π,  and h  
is Planck’s constant. Thus, 

U =
1
L
nhc
2
~V −1/3

(3.12)

 c = f λ = f 2L
n

 where V  = L3  is the volume of a cube of length L . Using Eq. (3.2) the 
pressure becomes 

L = nλ
2

(3.9)
n = 1, 2, 3, . . .. Radiation travels at the 
velocity of light, so that 

(3.11)

p = − dU
dV

=
1
3
U
V

p = γ
3
ρ

(3.13)
with γ  = 1 (radiation).  
For matter pressure  γ  = 0.	



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 5	

3.2  -  Friedmann Equation 
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Birkoff’s Theorem: the gravitational force on the particle inside a uniform 
shell is the same as if the enclosed mass within radius r is localized entirely at 
the origin, r = 0.	

with k’= −2E/m. The constant k’ can either be negative, zero or positive, 
corresponding to the total energy E being positive, zero or negative. 

Where      = dr/dt, H = (dr/dt)/r is the Hubble constant 
(see Eq. 2.7), G is Newton’s constant, and we used M = 
ρ4πr3/3 in the last passage. 

E = T +V =
1
2
mr2 −G Mm

r
=
1
2
mr2 H 2 −

8πG
3

ρ
"

#
$

%

&
'

(3.15)

Using Eq. (1.3) for the escape velocity, vesc	=	[2GM/r]1/2	=	[(8πG/3)ρr2]1/2,  Eq. 
(3.14) can be written as 

If it is located a distance r from the center of the 
dust, the total energy E of the particle is then given by 

(3.14)

r2 = vesc
2 − k '

!"

!

r
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Friedmann Equation 
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Even though Friedmann equation was derived for matter, it is also true for 
radiation. Exactly the same equation is obtained from the general relativity 
Einstein field equations.  

Since                    and                    . This is the Friedmann equation. It 
specifies the speed of recession of the Universe. 

H 2 =
8πG
3

ρ +
2E
mr2

Equation (3.14) is re-arranged as 

(3.17)

r / r = a / a

 Writing the distance in terms of a scale factor a  and a constant length s  as 
r(t ) = a(t)s , and defining k  = k’/s2  = − 2E/ms2, it follows that 

(3.16)

H 2 =
a
a
!

"
#
$

%
&
2

=
8πG
3

ρ −
k
a2

r / r = a / a

The factor k can be rescaled so that instead of being negative, zero or positive 
it takes on the values −1, 0 or +1. In Newtonian mechanics this corresponds 
to unbound, critical or bound trajectories. From a geometric point of view, this 
corresponds to an open, flat or closed Universe. 
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3.3  - The Cosmological constant 
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Another way to get this equation is to take the time derivative of Eq. (3.17) 
(valid for matter and radiation) 

−G mM
r2

=mr

 The acceleration for the Universe is obtained from Newton’s second 
equation, i.e. 

(3.19)

In terms of the density and the scale a, 

(3.18)

F
mr

=
r
r
=
a
a
= −

4πG
3

ρ

d
dt
a2 = 2 aa = 8πG

3
d
dt

ρa2( )
 Upon using Eq. (3.5) the acceleration equation is obtained as 

a
a
= −

4πG
3

ρ +3p( ) = − 4πG
3

1+γ( )ρ

 which reduces to Eq. (3.19) for the matter equation of state (γ  = 0). 

(3.20)

(3.21)
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The Cosmological constant 

introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 8	

The Universe is unstable to gravitational collapse. Both Newton and Einstein 
believed that the Universe is static. In order to obtain this Einstein introduced 
a repulsive gravitational force, called the cosmological constant. In order to 
obtain a possibly zero acceleration, a positive term (conventionally taken as Λ/3) 
is added to the acceleration Eq. (3.21) as 

a
a
= −

4πG
3

ρ +3p( )+ Λ
3

 which, with the proper choice of Λ, can give the required zero acceleration 
for a static Universe. 

(3.22)

The question now is how this repulsive force enters the Friedmann Equation. 
Identifying the force from 

r
r
=
a
a
=
Fexp
mr

=
Λ
3 and using Fexp =

Λ
3
mr = −

dVexp
dr

gives the potential energy 

Vexp = −
1
2
Λ
3
mr2.

 which is just a simple repulsive harmonic oscillator. 

(3.23)
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The Cosmological constant 
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Replacing this into the conservation of energy equation, 

 Equations (3.22) and (3.25) constitute the fundamental equations of motion 
that are used in all discussions of Friedmann models of the Universe. 

(3.25)

 One often writes the cosmological constant in terms of a vacuum energy density 
as Λ= 8πGρvac  so that the velocity and acceleration equations become 

and 

E = T +V =
1
2
mr2 −G Mm

r
−
1
2
Λ
3
mr2 = 1

2
mr2 H 2 −

8πG
3

ρ −
Λ
3

#

$
%

&

'
(

H 2 =
a
a
!

"
#
$

%
&
2

=
8πG
3

ρ −
k
a2
+
Λ
3

(3.24)

H 2 =
a
a
!

"
#
$

%
&
2

=
8πG
3

ρ + ρvac( )− k
a2

a
a
= −

4πG
3

1+γ( )ρ + 8πG
3

ρvac

(3.26)

(3.27)
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3.4  - Matter, Curvature, and Dark Energy 
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From Eq. (3.25), 

The curvature density is 

(3.29)

Another quantity of interest is the critical density, given by 

in terms of which the mass density can be written as Ωm = ρ/ρcrit. In terms 
of the present value of the Hubble parameter the critical density is, 

1= 8πGρ
3H 2 −

k
H 2a2

+
Λ
3H 2 (3.28)

ρcrit =
3H 2

8πG

ρcrit =1.88×10
−20h2gcm−3

(3.32)

(3.33)

Each of the terms in this equation has special significance. The mass density is 

Ωm =
8πGρ
3H 2

Ωk = −
k

H 2a2
(3.30)

 The vacuum energy density, or dark energy, is ΩΛ =
Λ
3H 2 (3.31)

h = H
100 Mpc−1s−1

≈ 0.7 (3.34)
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Dark Energy 
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 Defining 

 the Friedmann equation can be rewritten as  

Ω =Ωm +ΩΛ (3.35)

Ω−1( )H 2 =
k
a2

 so that k  = 0,  +1, − 1 corresponds to Ω = 1, Ω > 1 and Ω <  1. 
The matter density decreases with the radius of the Universe as  
ρ (t = 0)/ρ(t) = a3

0/a3 . Thus, we can write a mixture of matter and dark 
energy by (here, the index “0” means the present value of the variables.) 

ρ = ρm + ρΛ = ρm0
a0
a

"

#
$

%

&
'
3

+ ρΔ

(3.36)

(3.37)

a
a
!

"
#
$

%
&
2

−H 2Ωm0
a0
a

!

"
#

$

%
&
2

−H 2ΩΛ0 = −
k
a2

 and the Friedmann equation becomes (3.38)

 Using k  =0 (flat Universe), Ωm0  = 1 −  ΩΛ0  and, for simplicity a0  = 1 (in 
appropriate units), we get 

a
a

!

"
#
$

%
&

2

= H0
2 (1−Ω

Α0 )
1
a3
+Ω

Λ0

+

,
-

.

/
0
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Dark Energy 
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Integrating the last equationover time, with t0 denoting the age of the Universe,  
we get 

(3.39)H0t0 = da a
1−ΩΛ0 +ΩΛ0a

2
=

2
3 ΩΛ0

ln 1+ ΩΛ0

1−ΩΛ0

$

%
&&

'

(
))∫

where H0 is the present value of the Hubble constant. We thus see that, 
as ΩΛ0 → 1, then t0 → ∞.  It is thus necessary to have some matter to keep 
the age of the Universe finite. 

We can turn this argument around. Assuming 
the age of the Universe to be  t0 =13.7 Gy we 
get ΩΛ0 = 0.72, or Ωm0 = 0.28, i.e. only 28% of 
the Universe is matter and 72% is dark 
energy. Observations also indicates that only 
4% of the Universe is baryonic (normal) matter, 
and that the remaining 24% is in some other 
still unknown form, a dark matter.  
 
Dark matter and dark energy thus compose 
about 95% of the Universe. 



Reading material 3.5  - Geometry of the Universe 
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2-dimensional analogy: Surface of a sphere. 

The surface is finite, but has no edge. 

For a creature living on the sphere, having no 
sense of the third dimension, there is no 
center (on the sphere). All points are equal. 

Any point on the surface can be defined as the 
center of a coordinate system. 

Closed	surface	

Flat	surface	

Open	surface	(posi)ve	curvature,	k	=	1)	

(zero	curvature,	k	=	0)	

(nega)ve	curvature,	k	=	-1)	

But, how can a 2-D creature investigate the 
geometry of the sphere? 

Answer: Measure curvature of its space. 



Reading material Geometry of the Universe 
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These are the three possible 
geometries of the Universe: 
 
closed, open and flat, corresponding 
to a density parameter Ωm = ρ/ρcrit  
which is greater than, less than or 
equal to 1.   
 
The relation to the curvature 
parameter is given by Eq. (3.36) 
(with Λ = 0). 
 
The closed universe is of finite size. 
Traveling far enough in one direction 
will lead back to one's starting point. 
 
The open and flat universes are 
infinite and traveling in a constant 
direction will never lead to the same 
point 
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3.6  - Static Universe 
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The static Universe requires a = a0 = constant and thus d2a/dt2 = da/dt = 0. From 
Eq. (3.22), d2a/dt2  = 0 requires that 

4πG ρ +3p( ) = 4πG 1+γ( )ρ.
If there is no cosmological constant (Λ = 0) then either ρ = 0 which is an 
empty Universe, or p = −ρ/3 which requires negative pressure. Both of these 
alternatives were unacceptable to Einstein and therefore he concluded that a 
cosmological constant was present, i.e. Λ ≠ 0. From Equation (3.40) this implies 

ρ =
Λ

4πG 1+γ( )

(3.40)

(3.41)

Λ =
3 1+γ( )
3+γ

a
a0

"

#
$

%

&
'

2

+
k
a0
2

(

)
*
*

+

,
-
-

Now imposing da/dt = 0 and assuming a matter equation of state (γ = 0) implies  
Λ = k/a2

0 . However the requirement that Λ be positive forces k = +1, giving 

Λ = 4πG ρ +3p( ) = 4πG 1+γ( )ρ

 and because ρ  is positive this requires a positive 
Λ. Inserting Eq. (3.41) into Eq. (3.25), it follows that 

(3.42)

Λ =
1
a0
2 = constant (3.43)
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Static Universe 
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Thus the cosmological constant for the static Universe is not any value but 
rather simply the inverse of the scale factor squared, where the scale factor has 
a fixed value in this static model. 
Using Eq. (3.40), we obtain that the static Universe is closed with the scale 
factor (which in this case gives the radius of curvature) given by (Einstein 
radius) 

a0 =
1

4πGρ0

Using ρ0 = ρcrit  the numerical value of Einstein radius is of order of 1010 

light years. 

(3.44)

It is worth noting that even though the model is static, it is unstable: 
 
if perturbed away from the equilibrium radius, the Universe will either expand 
to infinity or collapse. If we increase a from a0, then the Λ term will dominate 
the equations, causing a runaway expansion, whereas if we decrease a from a0, 
the dust (matter) term will dominate, causing collapse. Therefore, this model 
is also physically unsound, and this is a far worse problem than the (to 
Einstein) unattractive presence of Λ. 
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3.7  - Matter and Radiation Universes 
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Equation (3.5) can be rewritten as 

From Eq. (3.13), p = γρ/3, from which follows that 

ρ +3 p+ ρ( )
a
a
= 0

or 

(3.45)

Integrating this we obtain 

d
dt

ρa3( )+ p da
3

dt
= 0 (3.46)

d
dt

ρa3+γ( ) = 0 (3.47)

ρ =
c
a3+γ

(3.48)

 where c  is a constant. This shows that the density falls as a−3  for matter 
dominated and a−4  for radiation-dominated Universes. 
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Matter and Radiation Universes 
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We consider here a flat, k = 0, Universe. Currently the Universe is in a matter 
dominated phase whereby the dominant contribution to the energy density is due 
to matter. However the early Universe was radiation dominated and the very 
early Universe was vacuum dominated. With k = 0, there will only be one term on 
the right hand side of Eq. (3.27) depending on what is dominating the Universe. 
 
For a matter (γ = 0) or radiation (γ = 1) dominated Universe the right hand side 
of Eq. (3.27) will be of the form 1/a3+γ (ignoring the vacuum energy), whereas for 
a vacuum dominated Universe the right hand side will be a constant. The solution 
to the Friedmann equation for a radiation dominated Universe will thus be  
(from ada ∝ dt) 

while for the matter dominated case it will be (from a1/2da ∝ dt) 

(3.49)a ≈ t1/2

(3.50)

One can see from d2a/dt2 that these results give negative acceleration, 
corresponding to a decelerating expanding Universe. 

a ≈ t2/3



Summary: Solutions of Friedmann Equation 

Friedmann  equation for k = 0  a
a
!

"
#
$

%
&
2

= H 2 t( ) = 8πG
3

ρ

To solve one needs ρ(a). There are two important cases: 

•   ρ ∼ 1/a4  (radiation-dominated Universe). Then 

• 		 ρ ∼ 1/a3  (matter-dominated Universe). Then	

a t( )
a0

=
t
t0

!

"
##

$

%
&&

1/2

; ρ(t) =
ρ0
a4

=
ρ0t0

2

t2

a t( )
a0

=
t
t0

!

"
##

$

%
&&

2/3

; ρ(t) =
ρ0
a3
=
ρ0t0

2

t2

Here the index ’0’ refers to the values today. As usual, we have set a(t0) = 1.  

(3.51)

(3.52)

(3.53)
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Decceleration parameter 
Deceleration parameter of the Universe (definition):	
	

q = − a(t)
H 2a(t)

−k = a2H 2 (1− 2q)
Since both da/dt = 0 and H = 0, for flat Universe (k = 0) we get q =1/2. When 
combined with Eq. (3.55), this yields the critical density, Eq. (3.32), the density 
needed to yield the flat Universe. We also get q > 1/2 if k = 1 and q < 1/2 if 
k = −1.  
The quantity q provides the relationship between the density of the Universe 
and the critical density, 

q = ρ
2ρcrit

If the Universe is matter dominated, i.e., p  = 0, then Eq. (3.27)  (with ρvac  = 0) 
yields 

ρ =
3H 2

4πG
q

 Plugging this result into the Friedmann Equation (3.17), one gets 

(3.54)

(3.55)

(3.56)

(3.57)
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