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5 – Stellar Structure I 
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5.1 - The Equations of Stellar Structure  

	
	
		

 
•  Stars are held together by gravitation – attraction exerted on each part of 

the star by all other parts 

•  Collapse is resisted by internal thermal pressure.  

•  These two forces play the principal role in determining stellar structure – 
they must be (at least almost) in balance. 

•  Thermal properties of stars – continually radiating into space. If thermal 
properties are constant, continual energy source must exist. 

•  Theory must describe - origin of energy and transport to surface.  

We make two fundamental assumptions : 
 
1)   Neglect the rate of change of properties – assume constant with time 
 
2)   All stars are spherical and symmetric about their centers 

What are the main physical processes which determine the structure of stars ? 
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For our stars – which are isolated, static, and spherically symmetric – there are 
four basic equations to describe structure. All physical quantities depend on  
the distance from the center of the star alone 
 
1)   Equation of hydrostatic equilibrium: at each radius, forces due to 

pressure differences balance gravity 

2)   Conservation of mass 

3)   Conservation of energy : at each radius, the change in the energy flux = 
local rate of energy release 

4)   Equation of energy transport : relation between the energy flux and the 
local gradient of temperature 

These basic equations supplemented with  
•  Equation of state - pressure of a gas as a function of its density and 

temperature 

•  Opacity  - how opaque the gas is to the radiation field 

•  Nuclear energy generation rate 

The Equations of Stellar Structure  
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Balance between gravity and internal pressure is known as hydrostatic equilibrium   
Mass of element  
 
  where ρ(r) = density at r 
 
Consider forces acting in radial direction 
1.  Outward force: pressure exerted by  

stellar  material  on the lower face: 

 
2. Inward force: pressure exerted by stellar  
material on the upper face, and gravitational  
attraction of all stellar material lying within r  
 

4 

5.1.1 - Equation of hydrostatic support 

€ 

δm = ρ(r)δsδr

€ 

P(r)δs

€ 

P(r + δr)δs+
GM(r)
r2

δm

= P(r + δr)δs+
GM(r)
r2

ρ(r)δsδr

(5.1)

(5.2)

(5.3)
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In hydrostatic equilibrium: 

If we consider an infinitesimal element, we write   

€ 

P(r)δs = P(r + δr)δs+
GM(r)
r2

ρ(r)δsδr

⇒ P(r + δr) − P(r) = −
GM(r)
r2

ρ(r)δr

€ 

P(r + δr) − P(r)
δr

=
dP(r)
dr

Hence rearranging above we get 

€ 

dP(r)
dr

= −
GM(r)ρ(r)

r2
the equation of hydrostatic support. 

Equation of hydrostatic support 

(5.4)

(5.5)

(5.6)
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5.1.2 - Equation of mass conservation 

	
	
		

Mass M(r) contained within a star of radius r is determined by the 
density of the gas ρ( r).  
 

In the limit where δr à 0 
 
this the equation of mass conservation. 
 

δV = 4π r2δr
⇒ δM = δVρ(r) = 4π r2δrρ(r)

Consider a thin shell inside the star 
with radius r and outer radius r+δr 
 
 
 
 
 
 
or 

dM(r)
dr

= 4π r2ρ(r)

(5.7)

(5.8)
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We have assumed that the gravity and pressure forces are balanced  - how 
valid is that ? 
 
Consider the case where the outward and inward forces are not equal, there will 
be a resultant force acting on the element which will give rise to an acceleration 
a 

5.1.3 - Accuracy of hydrostatic assumption 

Now the local (at position r) acceleration due to gravity is  g = GM(r)/r2 
 

€ 

P(r + δr)δs+
GM(r)
r2

ρ(r)δsδr − P(r)δs = ρ(r)δsδra

⇒
dP(r)
dr

+
GM(r)
r2

ρ(r) = ρ(r)a

dP(r)
dr

+gρ(r) = ρ(r)a

which is the generalized form of the equation of hydrostatic support. 
 

(5.9)

(5.10)
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Accuracy of hydrostatic assumption 
Now suppose there is a resultant force on the element (LHS ≠ 0). Suppose 
their sum is small fraction of gravitational term (β) 
 
 
 Hence there is an inward acceleration of  
 
Assuming it begins at rest, the spatial displacement d after a time t is 

€ 

βρ(r)g = ρ(r)a

€ 

a = βg

€ 

d =
1
2
at 2 =

1
2
βgt 2

The dynamical timescale 
If we allowed the star to collapse i.e. set d = r and substitute g = GM/r2 
 

Assuming  β ~ 1  

€ 

td =
2r3

GM
" 

# 
$ 

% 

& 
' 

1
2

2
1

321
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

GM
rt

β

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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Stars are rotating gaseous bodies – to what 
extent are they flattened at the poles ? 
If so, departures from spherical symmetry 
must be accounted for 
 
Consider mass δm near the surface of star 
of mass M and radius r 
Element will be acted on by additional 
inwardly acting force to provide circular 
motion.  
 

5.1.4 - Accuracy of spherical symmetry  assumption 

Where ω = angular velocity of star  
 
There will be no departure from spherical symmetry provided that  
 

Centripetal force is given by: δmω 2r

δmω 2r GMδm
r2

<<1    or     ω 2 <<
GM
r3 (5.16)
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Note the RHS of last equation is similar to td 

€ 

td =
2r3

GM
" 

# 
$ 

% 

& 
' 

1
2
   or    GM

r3 =
2
td

2

⇒ω 2 <<
2
td

2

And as ω=2π/T; where T = rotation period, 
if spherical symmetry is to hold then T >> td 
 
For example td (sun) ~ 2000 s and T ~ 1 month 
 
⇒  For the majority of stars, departures from spherical symmetry can be 
ignored.  

Some stars do rotate rapidly and rotational effects must be included in the 
structure equations  -  can change the output of models 

Accuracy of spherical symmetry  assumption 

(5.17)
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5.1.5 - Minimum value for central pressure of star 

11 

We have only  2 of the 4 equations, and no knowledge yet of material 
composition or physical state. But can deduce a minimum central pressure : 

Why, in principle, do you think there needs to be a minimum value ? given 
what we know, what is this likely to depend upon ? 

	
	
		€ 

dP(r)
dr

= −
GM(r)ρ(r)

r2

€ 

dM(r)
dr

= 4πr2ρ(r)

€ 

dP(r)
dr

dM(r)
dr

≡
dP
dM

= −
GM
4πr4

€ 

Pc − Ps =
GM
4πr40

M s∫ dM

€ 

GM
4πr40

M s∫ dM >
GM
4πrs

40

M s∫ dM =
GMS

2

8πrs
4

Divide these two equations:  

We can integrate this to give 

Lower limit to RHS: 

(5.18)

(5.19)
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Hence we have  

We can approximate the pressure at the surface of the star to be zero: 
   

€ 

Pc − Ps >
GMs

2

8πrs
4

€ 

Pc >
GMs

2

8πrs
4

For example for the Sun: 
Pc¤=4.5 × 1013 Nm-2 = 4.5 × 108 atmospheres 
 
This seems rather large for gaseous material – we shall see that this is not an 
ordinary gas.  
 
 

Minimum value for central pressure of star 

(5.20)

(5.21)
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5.2 - The Virial theorem 

13 

	
	
		

Again lets take the two equations of hydrostatic equilibrium and mass 
conservation and divide them  

Now multiply both sides by 4πr2 

And integrate over the whole star € 

dP(r)
dr

dM(r)
dr

≡
dP
dM

= −
GM
4πr4

€ 

4πr3dP = −
GM
r

dM

€ 

3 V
Pc

Ps∫ dP = −
GM
r0

M s∫ dM

Where V = vol contained within radius r  

Use integration by parts to integrate LHS 

€ 

3 PV[ ]c
s
− 3 P

Vc

Vs∫ dV = −
GM
r0

M s∫ dM

At center, Vc = 0 and at surface Ps = 0 

(5.22)

(5.22)

(5.23)

(5.24)
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Hence we have  

3 P
0

Vs∫ dV− GM
r0

Ms∫ dM = 0

Now the right hand term = total gravitational potential energy of the star 
or it is the energy released in forming the star from its components 
dispersed  to infinity. 

Thus we can write the Virial Theorem:   

€ 

3 P
0

Vs∫ dV +Ω = 0

This is of great importance in astrophysics and has many applications. We 
shall see that it relates the gravitational energy of a star to its thermal 
energy.  

The Virial theorem 

(5.25)

(5.26)
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5.2.1 - Minimum mean temperature of a star 

15 

We have seen that pressure, P, is an important term in the equation of 
hydrostatic equilibrium and the Virial theorem. We have derived a minimum 
value for the central pressure (Pc > 4.5 × 108 atmospheres) 
 
What physical processes give rise to this pressure – which are the most 
important ? 

	
	
		

•  Gas pressure Pg 
•  Radiation pressure Pr 
•  We shall show that Pr is negligible in stellar interiors and pressure is 

dominated by Pg  

To do this we first need to estimate the minimum mean temperature of a  star 

		

Consider the Ω term, which is the gravitational potential energy: 

€ 

−Ω =
GM
r0

M s∫ dM (5.27)
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We can obtain a lower bound on the RHS by noting: at all points inside the star r 
< rs and hence 1/r > 1/rs 

Now pressure is sum of radiation pressure and gas pressure: P = Pg +Pr  
Assume, for now, that stars are composed of ideal gas with negligible Pr  
 
 

⇒
GM
r0

Ms∫ dM >
GM
rs0

Ms∫ dM =
GM2

s

2rs

€ 

−Ω = 3 P
0

Vs∫ dV = 3 P
ρ0

M s∫ dM

Now dM = ρdV and the Virial theorem can be written  

€ 

P = nkT =
kρT
m

where n = number of particles per m3

           m =  average mass of particles
           k =  Boltzmann's constant

The eqn of state of ideal gas 

Minimum mean temperature of a star 

(5.28)

(5.28)

(5.29)
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Hence we have  

And we may use the inequality derived above to  write  

We can think of the LHS as the sum of the temperatures of all the mass 
elements dM  which make up the star  
The mean temperature of the star      is then just the integral divided by the 
total mass of the star Ms 

€ 

−Ω = 3 P
ρ0

M s∫ dM = 3 kT
m0

M s∫ dM

€ 

−Ω = 3 kT
m0

M s∫ dM >
GMs

2

2rs

⇒ T
0

M s∫ dM >
GMs

2m
6krs

T – 

€ 

⇒ MsT = T
0

M s∫ dM

T >
GMsm
6krs

Minimum mean temperature of a star 

(5.30)

(5.31)

(5.32)
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As an example for the sun we have   

€ 

T > 4 ×106 m
mH

 K      where mH =1.67 ×10−27  kg

Now we know that H is the most abundant element in stars and for a fully 
ionised hydrogen star m/mH = 1/2 (as there are two particles, p + e–, for each 
H atom). And for any other element m/mH is greater 
 
    

Minimum mean temperature of a star 

TSun > 2×106  K      

(5.33)

(5.33)
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5.2.2 - Physical state of stellar material 

19 

We can also estimate the mean density of the Sun using: 
 

ρav =
3Msun

4π rsun
3
=1.4×103  kgm-3

Mean density of the sun is only a little higher than water and other ordinary 
liquids. We know such liquids become gaseous at T much lower than 
Also the average K.E. of particles at     is much higher than the ionisation 
potential of H. Thus the gas must be highly ionised, i.e. is a plasma. 
 
It can thus withstand greater compression without deviating from an ideal gas. 
Note that an ideal gas demands that the distances between the particles are 
much greater than their sizes, and nuclear dimension is 10-15 m compared to 
atomic dimension of 10-10 m  
 
 

T¤  
– 

T¤  
– 

Lets revisit the issue of radiation vs gas pressure.  We assumed that the 
radiation pressure was negligible. The pressure exerted by photons on the 
particles in a gas is: 
 
 
 
Where a = radiation density constant 

€ 

Prad =
aT 4

3

(5.34)

(5.35)
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Now compare gas and radiation pressure at a typical point in the Sun   

€ 

Pr
Pg

=
aT 4

3
kTρ
m

=
maT 3

3kρ

€ 

Taking T ~ Tav = 2 ×106  K, ρ ~ ρav =1.4 ×103  kgm−3 and m =
1.67 ×10−27

2
 kg

Gives     Pr
Pg

~ 10−4

Hence radiation pressure appears to be negligible at a typical (average) point 
in the Sun.  
 
In summary, with no knowledge of how energy is generated in stars we have 
been able to derive a value for the Sun’s internal temperature and deduce 
that it is composed of a near ideal gas plasma with negligible radiation 
pressure. 

Physical state of stellar material 

(5.36)
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5.2.3 - Mass dependence of radiation to gas pressure 

21 

 
 
  

However we shall later see that Pr does become significant in higher mass 
stars. To give a basic idea of this dependency: replace ρ in the ratio equation 
above:  

€ 

Pr
Pg

=
maT 3

3k 3Ms

4πrs
3

# 

$ 
% 

& 

' 
( 

=
4πma
9k

rs
3T 3

Ms

€ 

And from the Virial theorem:  T ~ Ms

rs

⇒
Pr
Pg
∝Ms

2

i.e. Pr becomes more significant in higher mass stars.  

(5.37)
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5.2.4 - Energy generation in stars 

22 

So far we have only considered the dynamical properties of the star, and the 
state of the stellar material. We need to consider the source of the stellar 
energy.  
 
Let’s consider the origin of the energy i.e. the conversion of energy from some 
form in which it is not immediately available into some form that it can radiate.  
 
How much energy does the sun need to generate in order to shine with it’s 
measured flux ? 

L0 = 4×1026  W = 4×1026  Js-1

Sun has not changed flux in 109 yr (3x1016s)

⇒  Sun has radiated 1.2 x1043  J

E = mc2

⇒ mlost =1026  kg =10−4 Msun
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Source of energy generation  

23 

	
	
		

What is the source of this energy ? Four possibilities :  
•  Cooling or contraction 
•  Chemical Reactions 
•  Nuclear Reactions 
 
Cooling and contraction  
 
These are closely related, so we consider them together. Cooling 
is simplest idea of all. Suppose the radiative energy of Sun is due 
to the Sun being much hotter when it was formed, and has since 
been cooling down. We can test how plausible this is. 
 
Or is sun slowly contracting with consequent release of 
gravitational potential energy, which is converted to radiation ? 
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In an ideal gas, the thermal energy of a particle (where nf = number of 
degrees of freedom = 3) 

Total thermal energy per unit volume  
n = number of particles per unit volume 

Assume that stellar material is ideal gas (negligible Pr) 

€ 

=
kT
2
n f

=
3kT
2

€ 

=
3knT
2

€ 

Now, Virial theorem:

3 P
0

Vs∫ dV +Ω = 0

€ 

⇒ P = nkT

3 nkTdV
0

Vs∫ +Ω = 0

Source of energy generation  

(5.38)

(5.39)

(5.40)
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Now lets define U = integral over volume of the thermal energy per unit volume 
                           

The negative gravitational energy of a star is equal to twice its thermal energy. 
This means that the time for which the present thermal energy of the Sun can 
supply its radiation and the time for which the past release of gravitational 
potential energy could have supplied its present rate of radiation differ by only 
a factor two. We can estimate the later:                           

Negative gravitational potential energy of a star is related by the inequality                           € 

⇒ 2U +Ω = 0
€ 

thermal energy per unit volume =
3knT

2

€ 

−Ω >
GMs

2

2rs
    as an approximation assume     -Ω ~ GMs

2

2rs
   

Source of energy generation  

(5.41)

(5.42)
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Total release of gravitational potential energy would have been sufficient to 
provide radiant energy at a rate given by the luminosity of the star Ls , for a 
time 

€ 

tth ~ GMs
2

Lsrs
   

Putting in values for the Sun: t¤th = 3 × 107 years.  
 
Hence if Sun where powered by either contraction or cooling, it would have 
changed substantially in the last 10 million years. A factor of ~100 too short to 
account for the constraints on age of the Sun imposed by fossil and geological 
records.  
Definition: tth  is defined as the thermal timescale  (or Kelvin-Helmholtz 
timescale) 
 
Chemical Reactions 
Can quickly rule these out as possible energy sources for the Sun. We 
calculated above that we need to find a process that can produce at least  10-4 
of the rest mass energy of the Sun. Chemical reactions such as the combustion 
of fossil fuels release ~ 5 x 10-10 of the rest mass energy of the fuel.  

Source of energy generation  

(5.43)
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Nuclear Reactions 
Hence the only known way of producing sufficiently large amounts 
of energy is through nuclear reactions. Two types of nuclear 
reactions are important for energy generation: fission and fusion. 
Fission reactions, such as those that occur in nuclear reactors, or 
atomic weapons can release ~ 5 × 10-4 of rest mass energy through 
fission of heavy nuclei (uranium or plutonium).  

Hence we can see that both fusion and fission could in principle 
power the Sun. 
 
Which is the more likely ? 
As light elements are much more abundant in the solar system that 
heavy ones, we would expect nuclear fusion to be the dominant 
source.  
 
Given the limits on P(r) and T(r) that we have just obtained  - are 
the central conditions suitable for fusion ? We will return to this 
later.   

Source of energy generation  


