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6 – Stellar Structure II 
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6.1 – Non-relativistic Fermi gas 
The number of electron spin states are g = 2 s + 1 = 2, since for electrons s = 
2 (spin-up and spin-down) . 
According to de Broglie, the electron wavelength decreases with increasing  
momentum, and thus with the kinetic energy.  
Since the kinetic energy is proportional to the temperature, T, for small enough 
T, wave functions overlap, and quantum statistics becomes important. 
 
Let us consider T = 0. This is a situation in which the electrons should be 
standing still. But we know from the uncertainty principle that this is never 
possible. There will be always a “zero” motion for the electrons.  
 
According to the Pauli principle, one cannot accommodate more than 1 (2 for g = 
2) electrons in each state. The first electron goes to lowest state,  the second 
must occupy a higher energy state, and so on, until all the electrons are allocated 
in energy states. 
Thus, at T = 0, all the states up to energy E = EF are filled, and at E > EF  they 
are empty, so that the distribution of  electrons in energy states is given by 
 
 
 
 

f E( ) =
1, E ≤ EF
0, E > EF

"
#
$

%$
(6.1)
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6.1.2 – Density of states 
In order to proceed we need to know how many states exist within an energy 
interval between E and E + dE  (density of states). 
 
Let us assume that the region to which the electrons are limited to is the 
interior of a cube. The final results will be independent of this hypothesis. In 
this way, the electron wqavefunction Ψ will have to satisfy the boundary 
conditions Ψ(x, y, z) = 0 for x = 0, y = 0, z = 0 and x = a, y = a, z = a, where a is 
the side of the cube. The solution is given by 
 
 
 
with  
 
where nx, ny and nz are positive integers and A is a normalization constant. 
For each group (nx, ny, nz) we have an energy 
 
 
 
 
 
 
 

E nx ,ny ,nz( ) = 
2k2

2m
=
2π 2

2ma2
nx
2 + ny

2 + nz
2( ) = 

2π 2

2ma2
n2

(6.2)Ψ(x,y,z) = Asin(kxx)sin(kyy)sin(kzz)

kxa = nxπ , kya = nyπ , kza = nzπ (6.3)

(6.4)



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 4	4 

Density of states 

Allowed states in part of 
momentum space contained in the 
plane kx - ky. 
 
Each state is represented by a 
point in the lattice. 
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Density of states 
where  
 
(not to be confused with particle density!). 
 
Equations (6.2 – 6.4) represent the quantization of a particle in a box, where k ≡ 
(kx, ky, kz) is the momentum (divided by ħ) of the particle in the box. Due to the 
Pauli principle, a given momentum can only be occupied by at most two electrons 
with opposite spins. 
 
Consider the space of vectors k: for each cube of side length π/a there exists, 
in this space, only one point that represents a possible solution in the form (6.2). 
The possible number of solutions (see figure in previous slide) n(k) with the 
magnitude of k between k and k  + dk is given by the ratio between the  volume 
of the region shown in the figure and the volume (π/a)3 for each allowed solution 
in the k-space. One obtains, 
 
 
 
 
 
 

(6.5)n2 = nx
2 + ny

2 + nz
2

dn(k) = 1
8
4πk2dk 1

π / a( )
3 (6.6)
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Density of states 
where 4πk2dk is the volume of a spherical shell in the k-space with radius 
between k and k + dk. Only 1/8 of the shell is considered, since only 
positive values of kx, ky and kz are necessary for counting all the states 
with eigenfunctions defined by Eq. (6.2). With the aid of Eq. (6.4) we 
can make the energy appear explicitly in Eq. (6.6): 
 
 
 
 
There is a factor V = a3 in this and the following formulas that I will hide for 
convenience, bring it back to life later. 
The total number of possible states of the system is obtained by integrating the 
product f(E) dn/dE from 0 to the minimum value of the energy needed to include 
all the N electrons. This value, EF , is called the Fermi energy. Thus, we obtain 
 
 
 
 
 

(6.7)dn E( ) = 1
2π 2

2m
2

!

"
#

$

%
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3/2

E1/2dE

N = dn
dE
(E)f E( )

0
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∫ dE = dn
dE
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(6.8)
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6.1.3 - Fermi Energy 
Inverting Eq. (6.8) we obtain 
 
where ne = N/a3 is the electron number density. 
 
This value, EF , is called the Fermi energy. 
 
For example, in solids electrons in the conduction band might be assumed free 
and described by wavefuncitons of the kind (6.2). Then we can use eq. (6.9) to 
obtain (using ne = 1029 electrons/m3). 
 
 
 
 
and a “Fermi temperature” given by 
 
 
 
Thus, at room temperature, this Fermi gas is strongly degenerate (EF >> kBT).  
 
 
 
 
 
 
 
 
 
 
 

(6.10)

EF =
2

2m
3π 2ne( )

2/3
=
h2

8m
3
π
ne

!

"
#

$

%
&

2/3

(6.9)
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hEF π

TF ≡ EF / kB ≈  few eV ≈  few 104  K (6.11)
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Fermi energy 

Note that the Fermi energy only depends on the number density of the 
confined electrons. The mean energy of the electrons is given by 
 
 
 
 
Now, according to classical physics, the mean thermal energy of the electrons is 
3kT/2, where T is the electron gas temperature. Thus, if kBT << EF then our 
original assumption that the electrons are cold is valid. Note that, in this case, 
the electron energy is much larger than that predicted by classical physics. 
Electrons in this state are termed degenerate. On the other hand, if kBT >> EF 
then the electrons are hot, and are essentially governed by classical physics. 
Electrons in this state are termed non-degenerate. 
 
The total energy of a degenerate electron gas is 
 
 
 
 
 
 
 
 
 

(6.12)E = 2
N

E dn
dE

E( )
0

εF

∫ dE = 3
5
EF

E = NE = 3
5
NEF (6.13)
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At T = 0, thermodynamics tell us that there is no distinction between the free 
energy F and the internal energy E: Thus, 

The internal energy and pressure of an ideal 
gas goes to 0 as T → 0. This is not the case 
for a degenerate Fermi gas ! 

On the other hand,  and E = 3
10
2N
m

3π 2 N
V

!

"
#

$

%
&

2/3

= AN5/3V−2/3

P = − ∂E
∂V
#

$
%

&

'
(
N

=
2
3
V−5/3 3

10
2N
m

3π 2 N
V

#

$
%

&

'
(

2/3

=
1
5
2ne
m

3π 2ne( )
2/3
=
2
5
ne EF

or PV = 2
3
E

It looks just as for an ideal gas. This 
is a direct consequence of the 
quadratic relation between energy and 
momentum. 

P = 2
5

nEF

≈1029  m-3 ×5×10−19  J = 5×1010  Pa

P = 1
20
h2

m
3
π

!

"
#

$

%
&

2/3

ne
5/3

3/2
2

2

3
2

⎟
⎠

⎞
⎜
⎝

⎛=
V
N
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EF π

!

However, this is a non-zero pressure at  
T = 0, which does not depend on T. Let’s  
estimate this pressure for a typical metal: 

In metals, this enormous pressure is counteracted by the Coulomb attraction of 
the electrons to the positive ions. 

6.1.4 - Pressure of a Fermi gas 
E = 3

5
NEF (6.14)

(6.15)

(6.16)
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6.2 – Relativistic Fermi gas 
In this case, let us first rewrite Eq. (6.6) as 

where we used  4πk2dk = dΩkk2dk = d3k and a3 = d3r.  
The above equation is very important. It tells us that the number of states 
available within a cell in the phase space (p, r) with “volume” d3pd3r is given by 
d3pd3r/h. That is, the Planck constant h is the measure of how many states are 
within d3pd3r. Think about it as a three dimensional representation of Heisenberg 
principle dxdp/h ~ 1. Eq. (6.17) is valid for Fermions (electrons, nucleons, etc.) 
and for Bosons (photons, pions, etc.) 

E = p2c2 +m2c4 ~ pc

(6.17)

(6.18)

dn = d
3kd3r

2π( )
3
=
d3pd3r

2π( )
3

For a relativistic electron, its momentum is much larger than its mass. Thus,  

It is now left as an exercise to show that Eq. (6.8) and the following yield E ~ 
ρ4/3  and P ~ ρ4/3 .   
 
In summary: 
 P ~ ρ5/3 for non − relativistic electrons

~ ρ4/3 for relativistic electrons (6.19)
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6.3 – Equation of state           and polytropic models   ( )ρPP =

Polytropic equation of state (EOS):   Γ=κρP
As we saw in previous slides, non-relativistic electron gas (ρ < 106 g/cm3) 
       
        Γ = 5/3;        
 
 
 
Where NA is the Avogadro number and Ye is the fraction number of electrons. 
	

( )
e

eA

m
YN 3/523/23

20
1 !

⎟
⎠

⎞
⎜
⎝

⎛=
π

κ

For a relativistic electron gas (ρ > 106 g/cm3) this relation will change to  
       
        Γ = 4/3;        
	

( )
8

3 3/43/1
eAYNc!⎟

⎠

⎞
⎜
⎝

⎛=
π

κ

We will now derive the Lane-Emden equations: 
 
With help of the hydrostatic equilibrium and mass conservation equations we 
get        
	 ρπ

ρ
G

dr
dPr

dr
d

r
41 2

2 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

(6.20)

(6.21)

(6.22)

(6.23)
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Γ=κρPUsing                       with                  , we get 	
n
11+=Γ

n

d
d

d
d

θ
ξ
θ

ξ
ξξ

−=2
2

1

where                                        and                with  	ρ = ρcθ
n = ρ r = 0( )θ n ξ = ar a =

(n +1)κρc
1
n
−1

4πG

"

#

$
$
$

%

&

'
'
'

−1/2

The boundary conditions are	 0)0(',1)0( == θθ

Analytical solution of Lane-Emden equations: 
 

  n = 0    à  
 

  n = 1     à    
 

  n = 5    à 
	

6/1)( 2ξξθ −=

ξ
ξ

ξθ
sin)( =

( ) 2/12 3/1)( −
−= ξξθ

The solutions have a maximum at ξ, r = 0.  
  
For n < 5,   ξn = aR  is finite.  For n > 5,  ξn is infinite.	

(6.24)

(6.25)

(6.26)

6.3.1 – Lane-Emden Eaqutions 
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6.3.2 - Central density in polytropic models 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=== ∫∫ ξ

θ
ξ

πρξξθ
ξ

πρπρ
ξ

d
drdrdrrrm c

n
c

r 14''4''4)( 3

0

2
3

3

0

2

 
Since                          we get 	

n

Rar
ξξ

== −1

M = 4πρcR
3 −

1
ξ
dθ
dξ

"

#
$

%

&
'
ξ=ξn

We now define the average density                      
and get 	

34
3
R
M
π

ρ =

ρ
ρc
= −

3
ξ
dθ
dξ

"

#
$

%

&
'
ξ=ξn

n	 ξn	 ρc/<ρ>	
0	 2.4494	 1.000	

1	 3.14159	 3.28987	

2	 4.35287	 11.40254	

3	 6.89685	 54.1825	

4	 14.97155	 622.408	

5	 ∞	 ∞	

(6.27)

(6.28)

(6.29)
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Polytropic models 

Numerical	solu)ons	of	the	Lane–Emden	equa)on.	

θ

ξ
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6.3.4 - Constructing a polytropic model 

1 – Solve Lane-Emden equations 
 
2 – Use M, R to obtain    
 
3 – Use a-1 = r/ξ = R/ξn to adjust ξ scale 
 
4 – Knowing a and ρc allows to determine κ 
     Then 
 
 
 
5 – Get  
 
 
 
 
6 - κ is a free parameter. If κ is fixed, one can only construct 
models for given M or R, and fixed n. 

cρρ ,

P(r) =κρ (n+1)/n =κρc
(n+1)/nθ n+1

m(r) = 4πρcr
3 −

1
ξ
dθ
dξ

"

#
$

%

&
'

(6.30)

(6.31)
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Ex: the Sun 

cmRgM 1033 1096.6;10989.1 ×=×= ΘΘ

– From table ξn=3 = 6.897;                           à  ρc = 76.39 g/cm3,   <ρ> = 1.41 g/cm3 

 
and a-1 = R/ξ3 = 1.01 × 1010  
   
– From this value of a, we get κ = 3.85 × 1014   à    
 
 
 
 
- Using ideal gas law                         à    Tc = 1.2 × 107  K 
 
- A detailed calculation (e.g. The Standard Solar Model of John Bahcall) yields 

    Tc = 1.57 × 107  K    and à  ρc = 156 g/cm3 

18.54=
>< ρ

ρc

217 /1024.1 cmdynP cc ×== Γκρ

P = nkT

(6.32)

(6.33)

(6.35)

(6.36)

(6.34)
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6.3.5 - Polytropic model with fixed n and κ (and ρc)  

For a polytropic model we have 
 
 
 
 
 
 
       à 
 
  
       à 
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(6.37)

(6.38)

 As long as n >  1, the radius becomes 
smaller with increasing ρc. 

 which is useful for 
many estimates. 
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6.3.6 - Application: Chandrasehkhar Mass 
EOS of ultrarelativistic electron gas,                    , is a polytrope with n=3  
 
à  
 
 
 
This is called the Chandrasekhar mass: 
 
 
 
It is the maximum mass for which a star with an ultrarelativistic electron 
EOS is stable. 
 
It applies to White Dwarfs: 
 
-  White dwarfs are composed of carbon, oxygen and neon nuclei. 

-  They have the radius of 1/100 solar radius 

-  They are the fatal fate of the main-sequence stars, with M < 8 MΘ 

-  Mass is dominated by nuclei, while pressure is given by electrons. 
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⎠
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(6.38)

(6.39)
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Suppose N fermions in star with radius R: 
 
à   Number density n = N/V ~ N/R3  
 
     Heisenberg principle:                          Fermi energy:   
 
 
     Gravitational energy per fermion:   
      
 
     Equilibrium:  
 
 
      à      minimum occurs at N = N0 and at finite R = R0 
        
 
      à                                                       à 
 
 
      à  
 

3/1~ np ! R
cNcnEF

3/1
3/1 ~~ !

!

N
Mm

R
MmGE B

B
g =− ;~

E = E(R) = cN
1/3

R
−
GNmB

2

R
=minimum

0

2
0

0

3/1
0

R
mGN

R
cN B=
! 57

2/3

0 102~~ ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

BGm
cN !

ΘMmNM B 5.1~~ 00

6.3.7 - Chandrasehkhar Mass (back of the envelope) 

(6.40)
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Assume equilibrium is related to the onset of relativistic degeneracy of 
particles of mass m (EF > mc2): 
 
 
 
 
 
While pressure can come from electrons (m = me) or neutrons (m = mB), the mass 
is always given by baryons (mB). Then 
 
                                  for (m = me)   or                                    for (m = mB). 
 
 
These are typical radii for white dwarfs (degenerate electrons) or neutron 
stars (degenerate nucleons). 
 
 

2/1

20
0

3/1
0~ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
<⇒

B
F Gm

c
mc
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R
cNE !!!

cm8
0 105~ ×R cm5

0 103~ ×R

Chandrasehkhar Mass (back of the envelope) 
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For non-relativistic electrons, with Γ = 5/3, we can solve Eqs. (5.6) and (5.8) 
together with                           with dP/dρ obtained from the non-relativistic 
EOS, Eq. (6.15).                        
 
The solution obtained numerically as a function of the central  density and is 
given below. It also yields a maximum mass of ~ 1.4 M¤. The agreement with our 
simplified discussions is remarkable. 
 
 

dP
dr

=
dρ
dr
dP
dρ

Polytrope with Γ = 5/3 
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6.4 - Equation of energy production 

22 

The third equation of stellar structure: 
relation between energy release and 
the rate of energy transport 
 
Consider a spherically symmetric star in 
which energy transport is radial and in 
which time variations are unimportant. 
  
L(r) = rate of energy flow across 
sphere of radius r 
 
L(r + δ r) = rate of energy flow across 
sphere of radius r + δ r 
 
Because shell is thin: 
	

€ 

δV (r) = 4πr2δr
and   δm(r) = 4πr2ρ(r)δr (6.41)
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23 

	
	
		

We define ε = energy release per unit mass per unit volume (W kg-1) 
Hence energy release in shell is written: 

Conservation of energy leads us to 

L(r +δr) = L(r)+ 4π r2ρ(r)δrε
⇒

L(r +δr)−L(r)
δr

= 4π r2ρ(r)δrε

4π r2ρ(r)δrε

This is the equation of energy production. 
 
We now have three of the equations of stellar structure. However we have five 
unknowns P(r), M(r), L(r), ρ(r) ,ε(r) . In order to make further progress we 
need to consider energy transport in stars.  

(6.42)
dL(r)
dr

= 4π r2ρ(r)ε  and for δr à 0, 

Energy production 
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6.5 - Energy transport 

24 

	
	
		

There are three ways energy can be transported in stars 
•  Convection – energy transport by mass motions of the gas 
•  Conduction – by exchange of energy during collisions of gas particles (usually e-) 
•  Radiation – energy transport by the emission and absorption of photons 
 
Conduction and radiation are similar processes – they both involve transfer of 
energy by direct interaction, either between particles or between photons and 
particles.  
 
Which is the more dominant in stars ? 
Energy carried by a typical particle ~ 3kT/2   is comparable to energy carried by 
typical photon  ~ hc/λ  
 
But number density of particles is much greater than that of photons. This 
would imply conduction is more important than radiation. BUT, 

Mean free path of photon ~ 10-2 m  
 
Mean free path of particle ~ 10-10 m 
 
Photons can move across temperature gradients more easily, hence larger transport of 
energy. Conduction is negligible, radiation transport in dominant.  
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6.5.1 - Convection 

25 

	
	
		

Convection is the mass motion 
of gas elements – only occurs 
when temperature gradient 
exceeds some critical value.  
We can derive an expression 
for this.   
 
Consider a convective element 
at distance r from center of 
star. Element is in equilibrium 
with surroundings 
 

Convective element of stellar material  

But these may not be the same as the same as the new surrounding  gas conditions. 
Define those as P- Δ P and ρ - Δ ρ 
 
If gas element is denser than surroundings at r + δ r then will sink (i.e. stable) 
If  it is less dense then it will keep on rising – convectively unstable 
	

!"

!" !"

!"#"!!"" !"#""!""

#"#"!#"" #"#""#""

#"""#"""
#"

#"$"!#"

Now let’s suppose it rises to r + δr.  It expands, P(r) and ρ(r) are reduced to P- 
δP and ρ - δρ 



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 26	

26 

	
	
		

The condition for instability is therefore 

Whether or not this condition is satisfied depends on two things: 
•  The rate at which the element expands due to decreasing pressure 
•  The rate at which the density of the surroundings decreases with height 

Let’s make two assumptions  
1.  The element rises adiabatically 
2.  The element rises at a speed much less than the sound speed. During 

motion, sound waves have time to smooth out the pressure differences 
between the element and the surroundings. Hence δP =ΔP at all times 

The first assumption means that the element must obey the adiabatic 
relation between pressure and volume   

€ 

ρ −δρ < ρ −Δρ

€ 

PV γ = constant
Where γ = cp/cv is the specific heat (i.e. the energy in J to raise temperature 
of 1kg of material by 1K) at constant pressure, divided by specific heat at 
constant volume.  

Convection 

(6.43)

(6.44)



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 27	

27 

	
	
		

Given that V is inversely proportional to ρ , we can write  

Hence equating the term at r and r +δr:  

If δρ is small we can expand (ρ - δρ)γ using the binomial theorem as follows 

Now we need to evaluate the change in density of the surroundings, Δρ 
Let’s consider an infinitesimal rise of δr 

€ 

P
ργ

= constant

€ 

P −δP
(ρ −δρ)γ

=
P
ργ

        

€ 

(ρ -δρ)γ ~ ργ - γργ -1 δρ     and combining last two expressions

δρ =
ρ
γP
δP

€ 

Δρ =
dρ
dr
δr        

Convection 

(6.45)

(6.46)

(6.47)
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and substituting these expressions for δρ and Δρ into the condition for 
convective instability derived above: 

This can be rewritten by recalling our 2nd assumption that element will remain 
at the same pressure as it surroundings, so that in the limit  
	

€ 

ρ
γP
δP <

dρ
dr
δr        

€ 

δr→ 0,  δP
δr

=
dP
dr

€ 

ρ
γP

dP
dr

<
dρ
dr

        

The LHS is the density gradient that would exist in the surroundings if they 
had an adiabatic relation between density and pressure. RHS is the actual 
density in the surroundings. We can convert this to a more useful expression, 
by first dividing  both sides by dP/dr. Note that dP/dr is negative, hence the 
inequality sign must change.  

(6.48)

Convection 

(6.49)

(6.50)
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And for an ideal gas in which radiation pressure is negligible (where m is the 
mean mass of particles in the stellar material) 
	

And can differentiate to give 

ρ
γP

<
dρ
dr

 dP
dr

  

⇒  ρ
γP

>  dρ
dP

  

€ 

P =
ρkT
m

lnP = lnρ + lnT + constant

€ 

dP
P

=
dρ
ρ

+
dT
T

And combining this with the equation above gives …. 

P
ρ

!

"
#

$

%
&  dρ

dP
<

1
γ

    or 
	

Convection 

(6.51)

(6.52)

(6.53)
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€ 

P
T
dT
dP

>
γ −1
γ

Which is the condition for the occurrence of convection (in terms of the 
temperature gradient). A gas is convectively unstable if the actual temperature 
gradient is steeper than the adiabatic gradient. 
 
If the condition is satisfied, then large scale rising and falling motions 
transport energy upwards.  
 
The criterion can be satisfied in two ways. The ratio of specific heats γ is close 
to unity or the temperature gradient is very steep.  
 
For example if a large amount of energy is released at the center of a star, it 
may require a large temperature gradient to carry the energy away. Hence 
where nuclear energy is being released, convection may occur.  
 

(6.54)
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Alternatively in the cool outer layers of a star, gas may only be partially 
ionised, hence much of the heat used to raise the temperature of the gas goes 
into ionization and hence the specific heat of the gas at constant V is nearly 
the same as the specific heat at constant P , and γ ~ 1.  
 
In such a case, a star can have a  cool outer convective layer.  
 
 
 
Convection is an extremely complicated subject and it is true to say that the 
lack of a good theory of convection is one of the worst defects in our 
present studies of stellar structure and evolution. We know the conditions 
under which convection is likely to occur but don’t know how much energy is 
carried by convection.  
 
Fortunately we will see that we can often find occasions where we can manage 
without this knowledge.  
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6.6 - The characteristic timescales 

There are 3 characteristic timescales that aid concepts in stellar evolution 
The dynamical timescale 
For the Sun td ~ 2000 s  
 
 
The thermal timescale  
Time for a star to emit its entire reserve of thermal energy upon contraction 
provided it maintains constant luminosity (Kelvin-Helmholtz timescale) 
For the Sun tth ~ 30 Myrs 
 
 
The nuclear timescale  
Time for star to consume all its available nuclear energy (ε = typical nucleon 
binding energy/nucleon rest mass energy 
For Sun tnuc is larger than age of Universe 

€ 

td =
2r3

GM
" 

# 
$ 

% 

& 
' 

1
2

€ 

tth ~ GM 2

Lr
   

€ 

tnuc ~ εMc 2

L
   

€ 

⇒ td <<   tth   << tnuc

(6.55)

(6.56)

(6.57)

(6.58)


