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7 – Stellar Structure III 

introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 1	



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 2	2 2 

a          radiation density constant       7.55 × 10-16 J m-3 K-4 

c          velocity of light                         3.00 × 108 m s-1 

G        gravitational constant               6.67 × 10-11 N m2 kg-2 

h          Planck’s constant                    6.62 × 10-34 J s 
K          Boltzmann’s constant              1.38 × 10-23 J K-1 

me        mass of electron                      9.11 × 10-31 kg 
mH        mass of hydrogen atom          1.67 × 10-27  kg 
NA       Avogadro’s number                6.02 × 1023  mol-1 

σ          Stefan Boltzmann constant     5.67 × 10-8 W m-2 K-4  (σ = ac/4) 
R          gas constant (k/mH)               8.26 × 103 J K-1 kg-1 

e           charge of electron                   1.60 × 10-19 C 
L¤             luminosity of Sun                                 3.86 × 1026 W 
M¤            mass of Sun                               1.99 × 1030 kg 
Teff¤       effective temperature of sun   5780 K 
R¤         radius of Sun                              6.96 × 108 m 
Parsec  (unit of distance)                         3.09 × 1016 m 
 

Fundamental physical constants 
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7.1 - The equation of radiative transport 

	
	
		

We assume for the moment that the condition for convection is not satisfied, 
and  we will derive an expression relating the change in temperature with 
radius in a star assuming all energy is transported by radiation. Hence we 
ignore the effects of convection and conduction.   
 
The equation of radiative transport with gas conditions is a function of only 
one coordinate, in this case r. 
 
Photons interact with free electrons, cause atomic transitions and ionize 
atoms. 
 
The net radiation flux is given by: 
 
 
 
 
 
Where I is the intensity of radiation and κ is the opacity. 
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Assume                          where                              for a star composed  of  gas- 
 
 
radiation mixture. 
 
Using the Stefan-Boltzmann law,                            , one can show that the 
radiation pressure due to a photon gas is 
 
                         where                  .         Thus, 
 
 
Then 
 
 
 
Now we average over all radiation frequencies ν: 
 
with        being the Rosseland mean opacity     
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Where               is the Planck function for the intensity of blackbody radiation: 
 
 
 
 
We thus can write 
 
 
 
 
or 
 
 
 
 
and this is the equation for radiation transport. 
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7.2 - From atoms to atmospheres	

We could use the number density       = number of nuclei of species i per cm3  
        

in
Disadvantage: tracks not only nuclear processes that create or destroy  nuclei, 
but also density changes, for example due to compression or expansion of the 
material. 

Chemical composition 
 How can we describe the relative abundances of elements (nuclei) of  different 
species and their evolution in a given sample  (say, a star, or the Universe) ? 
Number density 
 

Xi is fraction of total mass of sample that is made up by nucleus of species i 

i

i
i m
Xn ρ

=
ρ : mass density (g/cm3) 
mi  mass of nucleus of species i 

uii mAm ⋅≈with  and  
A12 N/112/ == Cu mm

(CGS only !!!) 

as atomic mass unit 
(AMU) 

Mass fraction  

(7.12)

(7.13) (7.14)
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AN ρ
i

i
i A
Xn =

Mass fraction and abundance 

call this abundance Yi 

Aii NYn ρ=

The abundance Y is proportional to number density but changes only if the 
nuclear species gets destroyed or produced. Changes in density are factored out. 

so  with 

i

i
i A
XY =

note: Abundance has no units 
         only valid in CGS 

note: if the mass is expressed in the 
CGS unit (grams) then 1 [g] = NA . mu  
 
(we neglect the binding energies and the  
mass of the electrons in the atoms) 

of course  ∑ =
i iX 1 but, since Yi = Xi/Ai < Xi ∑ <

i
iY 1

(7.15)

(7.16) (7.17)

(7.18) (7.19)
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Mean molecular weight µi 

= average mass number = ∑∑
∑

∑
∑

===
i ii i

i ii

i i

i ii

YY
YA

n
nA

A 1

∑
=

i i
i Y

1
µ

or  

Electron Abundance Ye 

As matter is electrically neutral, for each nucleus with charge number Z there 
are Z electrons: 

∑=
i

iie YZY and as with nuclei, electron density  ee Yn ANρ=

can also write:  ∑
∑

=
i ii

i ii
e YA

YZ
Y

prop. to number of protons 
prop. to number of nucleons 

So Ye is ratio of protons to nucleons in sample (counting all protons including 
the ones contained in nuclei  - not just free protons as described by the 
“proton abundance”) 

Mass fraction and abundance 

For 100% hydrogen: Ye = 1 
For equal number of protons and 
neutrons (N = Z nuclei): Ye = 0.5 
For pure neutron gas: Ye = 0 

(7.20)

(7.21)

(7.22)
(7.21)

(7.23)



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 9	9 

7.3 - Cross sections 
Bombard target nuclei with projectiles: 

Definition of cross section: 

# of reactions                                  =      σ    x    # of incoming projectiles 
per second and target nucleus                                     per second and cm2 

or in symbols: rate = σ j with j as particle number current density. 
j = n v  with particle number density n) 

Units for cross section: 
1 barn = 10-24 cm2 ( = 100 fm2 or about half the size (cross sectional area) of a  
                                uranium nucleus) 

(7.24)

(7.25)
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Complication (1) Determine σ
The cross section is a measure of how likely a photon gets absorbed when  
an atom is bombarded with a flux of photons. 

It depends on: 

Oscillator strength: a quantum mechanical property of the atomic transition 

Needs to be measured in the laboratory - not done with sufficient accuracy 
for a number of elements. 

Line width 
The wider the line in wavelength, the more likely a photon is absorbed  (as in a 
classical oscillator). 

excited state has an energy width ΔE.  
This leads to a range of photon energies 
that can be absorbed and to a line width 

Atom 

E 

photon  
energy 
range 

ΔE 

Heisenbergs uncertainty principle relates  
that  to the lifetime τ of the excited state 

!=⋅Δ τEneed lifetime of final state (7.26)
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The lifetime of an atomic level in the stellar environment depends on: 
The natural lifetime (natural width) 

lifetime that level would have if atom is left undisturbed 

  Frequency of Interactions of atom with other atoms or electrons 

Collisions with other atoms or electrons lead to deexcitation, and therefore to  
a shortening of the lifetime and a broadening of the line 

depends on pressure 
need local gravity, or mass/radius of star 

Varying electric fields from neighboring ions vary level energies through 
Stark Effect 

Doppler broadening through variations in atom velocity 

•  thermal motion 
•  micro turbulence 

depends on temperature 

Need detailed and accurate model of stellar atmosphere ! 

Determine σ



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 12	12 

Complication (2) 
Atomic transitions depend on the state of ionization ! 

The number density n determined through absorption lines is therefore  
the number density of ions in the ionization state that corresponds to the  
respective transition. 
 
To determine the total abundance of an atomic species one needs the fraction 
of atoms in the specific state of ionization. 

Notation:  I = neutral atom, II = one electron removed, III = two electrons 
removed ….. 

Example: a CaII line originates from singly ionized Calcium 

•   ni   is the density of atoms in the i-th state of ionization, that is with i 
electrons removed.  
•   gi   is the degeneracy of states for the i-ions  
•   Ei   is the energy required to remove i electrons from a neutral atom, 
creating an i-level ion.  
•   ne   is the electron density  

Frequently used notation: 
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7.4 - The Saha Equation 

Saha’s equation is a relation, based on Boltzmann’s distribution, for the ratio of 
number densities of two different ionization states of an atomic species. For 
free electrons and large enough temperatures, we will assume a Boltzmann 
distribution. The Saha equation follows as Saha’s equation is a relation, based on 
Boltzmann’s distribution, for the ratio of number densities of two different 
ionization states of an atomic species. For free electrons and large enough 
temperatures, we will assume a Boltzmann distribution. The Saha equation 
follows form 

In Local Thermodynamical Equilibrium (LTE) the distribution of atoms over 
various states of excitation and ionization is described by Boltzmann’s relation 
for the relative populations of the ground atomic level n1 and the nth level nn 
(per unit volume),  
 
 
 
with corresponding energies E1 and En and statistical weights g1 and gn: 
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The Saha Equation 

where ni is the number density of atoms in the ith ionization state, ni+1 is the 
number density in the next ionization state, ne is the number density of free 
electrons, χi is the ionization energy difference between the ith and i+1 states, 
and the factors gi, gi+1, and ge are the corresponding statistical weights 
(degeneracy) of the discrete energy states. For free (unbound) electrons, ge = 
2, owing to two spin states. Generally, one can use gn = 2n2 (n is the principal 
quantum number) for bound energy states. For the more complex atomic 
systems, a quantum treatment is usually necessary to calculate the statistical 
weights. 
 
Let us see what we obtain for the ionization fraction of hydrogen in the solar 
photosphere, where E = 13.6 eV,  Tioniz = E/k  ~ 160,000 K,  Tgas  ~  6,000 K, and 
nH ~ 1017 cm−3. Thus, the actual gas temperature is much smaller than the 
temperature equivalent of the ionization energy. Naively one would expect a 
very low ionization fraction of hydrogen in the solar photosphere. Hydrogen is 
the dominating element, hence the electron density should be related to the 
hydrogen density by 

which, when integrated over the free electron momentum p, yields 

ni+1ne
ni

=
gi+1ge
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2πmekT
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The Saha Equation 

The ratio of level partition sums is approximately 0.5, because the first excited 
level of atomic hydrogen is high compared to the thermal energy. This means 
that, approximately, ni is the number of atoms in the ground state and ni+1 is the 
number of atoms either ionized or in the first excited state. Inserting the 
numbers in Saha’s equation then gives the ionization fraction 

ne =
ni+1

ni + ni+1
nH

ξ =
ni+1

ni + ni+1
→
ni+1ne
ninH

=
ξ 2

1−ξ
~10−7 →ξ ~ 3×10−4

where the intermediate step was obtained from Eq. (7.26) with χi = 13.6 eV. The 
result above seems small indeed, but repeating the calculation for a slightly 
hotter star with photospheric temperature T = 12,000 K and the same gas 
density yields an ionization fraction ξ(T = 12,000 K) ~ 0.3, much higher than 
what the ionization energy would suggest. 

(7.27)

(7.28)



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 16	16 

•    Electron scattering (Thompson): 
     where re is the classical electron radius. 
 
•  Free-free transitions: 

•  Bound-free transitions  
 
•  Bound-bound transitions: contribute significantly for T < 106 K (e.g., the Sun)  

•  + other atomic processes  

H

e

m
r 2

3
8π

κ =

32/12 −−≅ νρκν TZ

3νκν ≅

7.5 – Contributions to opacity 
(7.29)

(7.30)

(7.31)

Opacities are very complicated to 
calculate. The figure shows 
numerical calculations of opacities 
(in cm2/g) as a function of the 
temperature (in Kelvins) for 
several densities (in g/cm3). 
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7.6 - Solving the equations of stellar structure 
Hence we now have four differential equations,  which govern the structure of 
stars (note – in the absence of convection).  

)(
)(16
)()(3)(
32 rL

rTr
rr

dr
rdT

σπ
κρ

−=
€ 

dP(r)
dr

= −
GM(r)ρ(r)

r2

€ 

dM(r)
dr

= 4πr2ρ(r)

€ 

dL(r)
dr

= 4πr2ρ(r)ε(r)

Information needs to be complemented with: 
P   = P (ρ, T, chemical composition)      The equation of state 
κ   = κ (ρ, T, chemical composition)  
ε    = ε  (ρ, T, chemical composition)  
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Boundary conditions  

	
	
		

Two of the boundary conditions are fairly obvious, at the center of the star 
M = 0, L = 0 at r = 0 
 
At the surface of the star its not so clear, but we use approximations to allow 
solution.  
 
There is no sharp edge to the star, but for the the Sun  ρ(surface) ~ 10-4 kg 
m-3. This is much smaller than mean density ρ(mean) ~ 1.4 x 103 kg m-3 (which 
we derived).  
 
We know the surface temperature (Teff  = 5780K) is much smaller than its 
minimum mean temperature (2 × 106 K). 
 
 Thus we make two approximations for the surface boundary conditions: 
ρ  = T = 0  at r = rs 
i.e. that the star does have a sharp boundary with the surrounding vacuum. 
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Use of mass as the independent variable 

	
	
		

The above formulae would (in principle) allow theoretical models of stars with 
a given radius. However from a theoretical point of view it is the mass of the 
star which is chosen, the stellar structure equations solved, then the radius 
(and other parameters) are determined. We observe stellar radii to change by 
orders of magnitude during stellar evolution, whereas mass appears to remain 
constant. Hence it is much more useful to rewrite the equations in terms of M 
rather than r.  
If we divide the other three equations by the equation of mass conservation, 
and invert the latter, we get 

€ 

dr
dM

=
1

4πr2ρ

€ 

dP
dM

= −
GM
4πr4

€ 

dL
dM

= ε

€ 

dT
dM

= −
3κRL

64π 2r4acT 3

With boundary conditions: 
r = 0, L = 0 at M = 0 
ρ = 0, T = 0 at M = Ms 
	

We specify Ms  and the chemical composition and now have a well defined set of 
relations to solve. It is possible to do this analytically if simplifying assumptions 
are made, but in general these need to be solved numerically on a computer.   

(7.32)
(7.33)

(7.34) (7.35)
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Role of nuclear abundances 
If there are no bulk motions in the interior of the star, then any changes of 
chemical composition are localised in the element of material in which the 
nuclear reactions occurred. So star would have a chemical composition which is a 
function of mass M.  
 
 

	
	
		

Such a model evolves as 

In the case of no bulk motions – the set of equations we derived must be 
supplemented by equations describing the rate of change of abundances of 
the different chemical elements. Let CX,Y,Z be the chemical composition of 
stellar material in terms of mass fractions of hydrogen (X), helium, (Y) and 
metals (Z) [e.g. for solar system X = 0.7, Y = 0.28, Z = 0.02] 

€ 

∂(CX ,Y ,Z )M
∂t

= f (ρ,T,CX ,Y ,Z )

€ 

(CX ,Y ,Z )M ,t0 +δt = (CX ,Y ,Z )M ,t0
+
∂(CX ,Y ,Z )M

∂t

(7.36)

(7.37)

In solving the equations of stellar structure the eqns appropriate to a convective 
region must be switched on whenever the temperature gradient reaches the 
adiabatic value, and switched off when all energy can be transported by radiation. 
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Ex: -  Solar model  
 

T(eV)       ne  (cm-3)     r/R¤ 

1360          6x1025

 293          4x1023

 182          9x1022

 54           1x1022

 radiation  convection 

•  boundary position 
depends on transport
•  measured with 
helioseismology

Solar model : J.N. Bahcall et al, 
Rev. Mod. Phys. 54, 767 (1982)

Transport depends on opacity, composition, ne, T 

0.55

0.90

0.7133

0
Figure:	
Jim	Bailey,	
Sandia		


