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8 – Nuclei  
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8.1 - The nucleus 
The atomic nucleus consists of protons and neutrons. 

Protons and neutrons are called nucleons. 

A nucleus is characterized by: 
•  A: Mass Number = number of nucleons 
•  Z: Charge Number = number of protons 
•  N: Neutron Number 

Of course A=Z+N 

Determines the element 
Determines the isotope 

Usual notation:  

12C 

Element symbol – defined by charge number 
C is Carbon and Z = 6 

Mass number A 

So this nucleus is made of 6 protons and 6 neutrons 
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8.1.1 - Nuclear physics 
a. Nucleons 

Mass Spin Charge 

Proton 938.272 MeV/c2 1/2 +e 

Neutron 939.565 MeV/c2 1/2 0 

size: ~1 fm 

b. Nuclei 

a bunch of nucleons bound together create  a potential for an additional : 
nucleons attract each other via the  strong force ( range ~ 1 fm) 

neutron proton 
(or any other charged particle) 
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Discrete energy levels  
in nucleus 
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neutrons 

protons 

Mass known 
Half-life known 
nothing known 

H(1) 

Fe (26) 

Sn (50) 

Pb (82) 

neutron dripline 

proton dripline 

note odd-even effect in drip line ! 
(p-drip: even Z more bound - can take away more n’s) 
(n-drip: even N more bound - can take away more p’s) 

The Nuclear Chart 
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8.1.2 - Nuclear Masses and Binding Energies 
Energy that is released when a nucleus is assembled from neutrons and protons 

mp = proton mass, mn = neutron mass, m(Z,N) = mass of nucleus with Z,N 

•  B > 0  
•  With B the mass of the nucleus is determined. 
•  B is roughly  ~ A 

m(Z,N) = Zmp +Nmn−B / c
2

Most tables give atomic mass excess Δ in MeV: 

Masses are usually tabulated as atomic masses 

2/ cAmm u Δ+=(definition: for 12C: Δ	= 0) 

Nuclear Mass 
~ 1 GeV/A 

Electron Mass 
511 keV/Z 

Electron Binding Energy 
13.6 eV (H) 
to 116 keV (K-shell U) / Z 

m =  mnuc  +   Z me +   Be 

(8.2)

(8.3)

(8.4)



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 6	

Nuclear Masses and Binding Energies 
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The Liquid Drop Model 

B(Z,N,A) = aVA− aSurfA
2 3 − asym

Z−N( )
2

A
+ aCoulZ(Z−1)A

−1 3

Bethe-Weizsäcker formula 

MeV 71.0MeV, 21.23MeV, 34.18MeV, 85.15 ==== CoulSymmSurfV aaaa
(8.5)

(8.6)
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     Assumes incompressible fluid (volume ~ A) and sharp surface) 

AaAZB V=),(
3/2Aas−

3/1

2

A
ZaC−

A
AZaA

2)2/( −
−

2/1−+ Aap
× 1      ee 
× 0      oe, eo 
× (-1)  oo 

Volume Term 

Surface Term   ~ surface area (Surface nucleons less bound) 

Coulomb term. Coulomb repulsion leads to reduction 
    uniformly charged sphere has  

Asymmetry term: Pauli principle to protons: symmetric filling 
    of p,n potential boxes has lowest energy (ignore Coulomb) 

protons neutrons neutrons protons 

lower total 
energy = 
more bound 

Pairing term: even number of like nucleons favored 

(e=even, o=odd referring to Z, N respectively) 

Understanding the Liquid Drop Model 
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(8.9)

(8.10)

(8.11)
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neglect asymmetry term (assume reasonable asymmetry) 
neglect pairing and shell corrections (see later) - want to understand average  
behavior 

then 
3/4

2

3/1

1/
A
Za

A
aaAB CSV −−=

~surface/volume ratio 
favors large nuclei 

Coulomb repulsion has long range 
- the more protons the more repulsion 
favors small (low Z) nuclei 

const 
as strong force 
has short range 

Maximum around ~ Fe 
 
à  Fusion of light elements 
   release nuclear energy 
 
à  Fission of very heavy elements 
    also release nuclear energy 

Understanding the Liquid Drop Model 

(8.12)
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in MeV/c2 

aV aS aC aA aP 

15.85 18.34 0.71 92.86 11.46 

Fitting the Liquid Drop Model to Experimental Data 

something is missing ! 

Deviation (in MeV) to experimental masses: 
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8.1.2 - Shell Structure 

Atomic physics 

Nuclear physics 
 
Nmagic = 2, 8, 20, 28,  
              50, 82, 126 

Bexp - BLDM 
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Shell Model 

Mayer, Jensen, Nobel Prize, 1963 

Shell Structure Model 

(8.13)
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Shell model: 
(single nucleon  
energy levels) 

Magic numbers 

are not evenly spaced shell gaps 

more bound 
than average 

less bound 
than average 

need to add 
shell correction term 
S(Z,N) 
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Liquid Drop Formula corrected with shell model 
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a) Energy generation 

nuclear reaction:     A + B           C 

if mA+mB > mC then energy Q = (mA + mB - mC)c2 is generated by reaction 

b) Stability 

if there is a reaction      A           B + C with  Q > 0 ( or mA > mB + mC)   
then decay of nucleus A is energetically possible. 
nucleus A might then not exist (at least not for a very long time) 

 “Q-value” Q = Energy generated (>0) or consumed (<0) by reaction 

8.2 -  Nuclear decay  

(7.14)
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4 c) Decay energetics and decay law  

Decay of A in B and C is possible if reaction A         B + C has positive Q-value 

BUT: there might be a barrier that prolongs the lifetime 

Decay is described by quantum mechanics and is a pure random process,  
with a constant probability for the decay to happen in a given time interval.  

N : Number of nuclei A (parent) 
λ  : decay rate (decays per second and parent nucleus) 

NdtdN λ−= therefore  ttNtN λ−== e)0()(

lifetime τ = 1/λ

half-life T1/2 = τ ln2 = ln2/λ   is time for half of the nuclei present to decay 

Nuclear decay  

(8.15) (8.16)
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Decay modes 
for anything other than a neutron (or a neutrino) emitted from the nucleus 
there is a Coulomb barrier 
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particle 

Example: for 197Au à  58Fe + 139I   has Q ~ 100 MeV ! 
                 yet, gold is stable.  

If that barrier delays the decay beyond the lifetime of the universe (~ 14 Gyr) 
we consider the nucleus as being stable. 

not all decays that are energetically  
possible happen  most common:  

•  β decay 
•  n decay 
•  p decay 
•  α decay 
•  fission 
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8.2.1 - β decay 
p n conversion within a nucleus via weak interaction 

Modes (for a proton/neutron in a nucleus): 

Electron capture (or EC) of atomic electrons or, in astrophysics, of electrons in  the 
surrounding plasma 

Q-values  for decay of nucleus (Z,N) 

Qβ+ / c2 = mnuc(Z,N) - mnuc(Z-1,N+1) - me = m(Z,N) - m(Z-1,N+1) - 2me 

QEC / c2 = mnuc(Z,N) - mnuc(Z-1,N+1) + me = m(Z,N) - m(Z-1,N+1) 

Qβ- / c2 = mnuc(Z,N) - mnuc(Z+1,N-1) - me = m(Z,N) - m(Z+1,N-1) 

with nuclear masses with atomic masses 

Note: QEC > Qβ+  by 1.022 MeV 

β+ decay 

electron capture 

β- decay 

p            n  + e+  +  νe 

e- + p            n  +  νe 

n            p  + e-  +  νe 

(8.17)

(8.18)
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Q-values for reactions that conserve the number of nucleons can also be  
calculated directly using the tabulated Δ values instead of the masses 

Q-values with Δ values 

Q-values with binding energies B 

Q-values for reactions that conserve proton number and neutron number  can 
be calculated using -B instead of the masses 

Example: 14C à 14N + e + νe 

Q / c2 =m14C −m14N

=14mu +Δ14C −14mu −Δ14N
= Δ14C −Δ14N (for atomic Δ’s) 

(8.19)

(8.20)

(8.21)
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β decay basically no barrier  à if energetically possible it usually happens 
(except if another decay mode dominates) 

therefore: any nucleus with a given mass number A will be converted into the most  
                 stable proton/neutron combination with mass number A by b decays 

valley of stability 

β decay 
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Typical part of the chart of nuclides 

Z 

N 

blue: neutron excess 
undergo β- decay 

red: proton excess 
undergo β+ decay 

even A 
isobaric  
chain 

odd A 
isobaric  
chain 
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Typical β-decay half-lives 
•  very near “stability” : occasionally Millions of years or longer 
•  more common within a few nuclei of stability: minutes - days 
•  most exotic nuclei that can be formed:      ~ milliseconds 


