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Appendix Lecture 1    
 
 

Special Relativity 
& 

General Relativity  
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Newton’s laws of motion must be implemented relative to some reference 
frame. 

x z 

y 
A reference frame is called an inertial frame if 
Newton’s laws are valid in that frame. 
 
Such a frame is established when a body, not 
subjected to net external forces, moves in 
rectilinear motion at constant velocity. 

A.1 – Galileo’s relativity 

If Newton’s laws are valid in one reference frame, then they are also valid in 
another reference frame moving at a uniform velocity relative to the first 
system. 
 
This is referred to as the Galilean invariance. 
 
Galilean transformation: for a point P 

In one frame K: P = (x, y, z, t) 
In another frame K: P = (x’, y’, z’, t’) 

x z 

y K P	=	(x,	y,	z,	t)	

P	=	(x’,	y’,	z’,	t’)	
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K’ has a constant relative velocity (here in the x-direction) with respect to K. 

Time (t) for all observers is a fundamental invariant, i.e., it is the same for all 
inertial observers. 

vx x t
y y
z z
t t

ʹ = −

ʹ =

ʹ =

ʹ =

Galilean transformation 

vx x t
y y
z z
t t

ʹ ʹ= +

ʹ=

ʹ=

ʹ=

The inverse relations: 
 
- replace -v with +v. 
 
- Replace “primed” quantities with “unprimed” and 
“unprimed” with “primed.” 
 
 

(A.1)
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Newton's laws of mechanics are in agreement with Galileo transformations 
1.  A body, not acted upon by any force, stays at rest or remains in uniform 

motion. 
2.  To change its velocity, we need a force  

F =ma ≡m Δv
Δt

   Force = mass x acceleration 
    (acceleration = change in velocity) 

Newton’s laws of mechanics 

ux ≡
Δx
Δt

=
Δ(x '+ vt)

Δt
=
Δx '
Δt

+
Δ(vt)
Δt

≡ ux '+ v

uy = uy '; uz = uz '

velocity of an object in K  is 
equal to its velocity in K’, plus 
the velocity of  K’  with 
respect to K 

'
')'(

y
yyy

y a
t
v

t
u

t
vu

t
u

a ≡
Δ

Δ
+

Δ

Δ
=

Δ

+Δ
=

Δ

Δ
≡

= 0 as v = const 
Accelerations are the same  in 
both K and K’ frames!  
 
Newtonian forces will be  the 
same in both frames 

   Velocity and acceleration under Galielo transformations: 

(A.3)
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Einstein’s relativity is based on two postulates: 
•  All laws of nature are the same in all inertial frames 

–  This is the same as Galileo's relativity 
•  The speed of light is independent of the motion of its source 

–  This simple statement requires a truly radical re-thinking about the 
nature of space and time! 

A.2 – Einstein’s relativity 

time 

space 

world line 

event 

Time and space are inseparable. We need to 
describe a physics event in a space-time diagram. 

In Newtonian physics, we assumed that 
t’ = t. 
With synchronized clocks, events in K 
and K’ can be considered simultaneous. 
 
Einstein realized that each system 
must have its own observers with their 
own synchronized clocks and meter 
sticks. 
 
Events considered simultaneous in K 
may not be in K’. 
 
Also, time may pass more slowly in 
some systems than in others. 
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Time dilation formula is a consequence of Einstein’s fundamental postulates.  Let 
us consider a light clock.  Ticks occur every time a light pulse is reflected back to 
the lower mirror 

Δt ' = 2 D
c
=
2 L2 + vΔt '/ 2( )2

c
=

4L2 + (vΔt ')2

c
= Δt( )2 + v

c
Δt '

"

#
$

%

&
'
2

Δt ' = Δt ⋅ 1
1− v2 / c2

Time dilatation 

Observer	at	rest	sees	)me	2L/c.	 Observer	moving	parallel	rela)ve	to	setup,	sees	
longer	path,	)me	>	2L/c,	same	speed	c.	

Figures from Wikipedia	

Solving	for	Δt’,	one	gets	
Since	v/c	<	1	(always),	then	Δt’	>	Δt.	That	is,	observer	in	
mo)on	sees	the	“event”	()ck:	light	leaves	lower	part	+	
“tack”	light	arrives	back)	taking	a	longer	)me	than	
observer	at	rest.	This	is	the	!me	dilata!on	effect.	

(A.4)
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Time in a moving system slows down compared to a stationary system! 
•  E.g., charged pions have a lifetime of t = 2.56 x 10-8 s, so most of them would 

decay after traveling ct = 8 m. 
•  But we have no trouble seeing them produced at one point and detecting 

them arriving hundreds of meters away. 

No time dilation 

8 m 

π+

300 m 
With time dilation 

π+Time dilatation 

Space contraction 
Consider the time for a pulse parallel to the system velocity to do a round trip:  

t = L
c− v

+
L
c+ v

t0 = 2
L0
c

L = L0 ⋅ 1− v
2 / c2

L	
Lo	

An observer moving along an object will find it 
shorter than it would be if the observer was 
standing still. 

(A.5)
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Transformation between systems 
The constancy of the speed of light is not compatible with Galilean 
transformations. Consider a wave front starting at the origin of two frames 
whose origin coincide at t = 0. In terms of the coordinates of the two frames 

!x = x − vt
!y = y, !z = z, !t = t

x 2 + y 2 + z 2 = c 2t 2

x '2+ y '2+ z '2 = c 2t '2
According to the Galilean transformation  

	

!x 2 + !y 2 + !z 2 = (x2 - 2xvt + v2t2 )+ y2 + z2 ≠ c2t2

There are a couple of extra 
terms (-2xvt + v2t2) in the 
primed frame. 

Therefore the Galilean transformation 
is not compatible with the constancy of 
the speed of light 

(A.6)
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Let us try a possible solution:  x’ = γ (x – vt)  and x =  γ’ (x’ + vt’), where γ 
could be anything. 
 
 
By Einstein’s first postulate:    γ’ =  γ
The wave-front along the x’- and x-axes must satisfy:   x’ = ct’  and  x = ct 
Thus  ct’ =  γ (ct – vt)  or  t’ =  γ t (1– v/c) 

Thus  ct’ =  γ (ct – vt)  or  t’ =  γ t (1– v/c) and  ct =  γ’ (ct’ + vt’)  or  t =  
γ’t’(1 + v/c) 

2 v v1 1t t
c c

γ ⎛ ⎞⎛ ⎞ʹ ʹ= − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Combining the two solutions for t and t’ we get 	

2( v / )t t x cγʹ = −

or	 γ =
1

1− v
2

c 2γ  is also know as Lorentz factor.  

We also get a relation for the time and position  x, t and x’, t’  in K and K’	

(A.7)

(A.8)!x = γ x − vt( ) (A.9)

Transformation between systems 
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A.3 – Lorentz transformations 

!x =
x − vt

1− v2 / c 2

2

2 2

v /
1 v /
t x ct

c
−

ʹ =
−

y yʹ =

z zʹ =

What we have accomplished in the previous slides it to show how position and 
time relate under a transformation between systems moving with a velocity v 
relative to each other. Such transformations are called by Lorentz 
transfomations. They obey Einstein’s condition that the speed of light is the 
same in all systems. Summarizing, the Lorentz transformations are: 

(A.10)

v / cβ =

2 2

1
1 v / c

γ =
−

!x = γ x −βct( )
y yʹ =

z zʹ =

!t = γ t −βx / c( )

(A.11)
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Addition of velocities 

2

( v )

[ (v / ) ]

dx dx dt
dy dy
dz dz
dt dt c dx

γ

γ

ʹ ʹ= +

ʹ=

ʹ=

ʹ ʹ= +

Taking differentials of the Lorentz transformation [here between the rest 
frame (K) and the moving frame (K’)], we can compute the shuttle velocity in 
the rest frame (ux = dx/dt): 

Defining velocities as: ux = dx/dt, uy = dy/dt,  u’x = dx’/dt’, etc., we find: 

v( v )
[ (v/ ) ] 1+ v/

x
x 2 2

x

udx dx dtu
dt dt c dx u c

γ
γ

ʹʹ ʹ ++
= = =

ʹ ʹ ʹ+

with similar relations for uy and uz: 

[ (v/ ) ] (1+ v/ )
y

y 2 2
x

udy dyu
dt dt c dx u cγ γ

ʹʹ
= = =

ʹ ʹ ʹ+

[ (v/ ) ] (1+ v/ )
z

z 2 2
x

udz dzu
dt dt c dx u cγ γ

ʹʹ
= = =

ʹ ʹ ʹ+Note the γ’s in uy and uz. 

(A.13)

(A.14)

(A.15) (A.16)
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Addition of velocities 

The figure highlights the difference between Galilean velocity addition, v2 = v1 
+ v, of velocities v1 and v2 measured in two different frames moving relative to 
each other with velocity v, and the relativistic velocity addition,  
v2 = (v1 + v)/(1 + v1v/c2). 
 
One notices that the addition of velocities can never be larger than the speed 
of light. 
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A ball (1) of mass m is thrown down in the minus y-direction in frame K. In 
the moving system K’ another ball (2) is thrown upwards. 

A.4 – Relativistic momentum and energy 

The momentum of the ball 1 thrown in K is entirely 
in the y direction 
  p1y = −  mu

If the two balls collide elastically, the 
change of y-momentum as observed in K 
for the ball thrown down is 

        
 

Δp2y = 2mu

v K’ 

xz

y

xz

y

v 
K’ 

K 

u 

u 

In frame K’ one measures the initial velocity of the thrown up 
ball to be:      u‘2x = 0  and  u’2y = u. 
In order to determine the velocity of ball 2, as measured in K, we use the 
relativistic velocity transformation equations: 

Ball 2 

v
1+ v/

x
x 2

x

uu
u c
ʹ +

=
ʹ (1+ v/ )

y
y 2

x

u
u

u cγ

ʹ
=

ʹ

Ball 1 
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Relativistic momentum 

u2x = v u2 y =
u
γ
= u 1− v2 / c 2

Thus, the velocity of ball 2, as measured in K, is 	

The change in y-momentum of  ball 2 according to frame K is 

Before the collision, the momentum of  ball 2, as measured in K, is 

p2y = mu 1− v2 / c 2p2x = mv

For a perfectly elastic collision, the momentum after the collision is	

Δp2y = −2mu 1− v
2 / c 2

Δp2y = −2mu 1− v
2 / c 2

whose magnitude is different from that of  ball 1:  p1y = - mu
Conservation of linear momentum  requires the total change in momentum  of the 
collision, Δp1 + Δp2, to be zero.  The addition of these y-momenta  is clearly not 
zero.  
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Relativistic momentum 
Linear momentum is not conserved if we use the conventions for momentum 
from classical physics — even if we use the velocity transformation equations 
from special relativity.  

There is no problem with the x direction, but there is a problem with along the 
direction the ball is thrown in each system, the y direction. 

Rather than abandon the conservation of linear momentum, we can make a 
modification of the definition of linear momentum that preserves both 
momentum conservation and Newton’s second law. 

To do so requires re-examining momentum to conclude that 

p = γmu γ =
1

1− u2 / c 2

Using this definition, one can show that momentum conservation is hold. I 
will leave that as an exercise. 

(A.17) (A.18)
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Relativistic momentum 

The figure highlights the difference between the classical momentum p = mu 
and the relativistic momentum p = γmu.  
 
One notices that the relativistic momentum increases very fast as the speed 
of mass m approaches the speed of light. 

u
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Relativistic Energy 
Let us modify Newton’s second law to include the new definition of linear 
momentum. The force becomes (just consider motion in one dimension) 

F = dp
dt

= d
dt

γmu( ) = d
dt

mu

1− u2 /c2

"

#
$$

%

&
''

The differential work done to move a mass by a distance x is 

dW = Fdx = dp
dt

dx

Dividing by dt, we get 

dW
dt

=
dp
dt
dx
dt
=
dp
dt
u

or, in terms of velocity 
 derivatives 

dW
du
du
dt
=
dp
du
du
dt
u

dW
du

=
dp
du
u dW =

dp
du
u duor,  
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Relativistic Kinetic Energy 
The kinetic energy will be equal to the work done starting with zero energy and 
ending with W0, or from zero velocity to u 

or,  

K = dW
0

W0∫ =
dp
du '
u ' d

0

u

∫ u '
Integrating by parts 

( )2 1K mc γ= − This is the kinetic energy in 
special relativity.  

(A.19)

K =
dp
du '
u ' du

0

u
∫ ' = pu '

0

u
− p du

0

u
∫ '

= pu −m u '

1− u '2 / c2
du '

0

u
∫ = pu +mc2 1− u '2 / c2

0

u

= m u

1− u2 / c2
#

$
%%

&

'
((u +mc

2 1− u2 / c2 −1( )
=mc2 u2 / c2

1− u2 / c2
+
1− u2 / c2

1− u2 / c2
−1

#

$
%%

&

'
((
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Relativistic Kinetic Energy 
If velocity u is very small comparing to c, then the Lorentz factor becomes 

γ = (1- u2 / c2 )-1/2 = 1+ 1
2
u2

c2
+ ...

!

"
#

$

%
&

K ≈ mc2 1+ 1
2 u

2 / c2( )−1#
$

%
&=

1
2 mu

2

Thus, at lower velocities  (u << c)  the kinetic energy becomes 

This is exactly as we expected from Newtonian mechanics. 

The figure highlights the 
difference between the 
classical kinetic energy K = 
mu2/2 and the relativistic 
kinetic energy K = mc2(γ-1).  
 
Even an infinite amount of 
energy is not enough to 
achieve c. 

(A.20)
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Relativistic Total Energy 
The term mc2 is called the Rest Energy : E0 = mc2

The sum of the kinetic and rest energies is the total energy of the particle E 
and is given by 

E = K+E0 = γmc2

(A.21)

(A.22)

Since 
γ 2 −1= u2 / c2

1−u2 / c2
= γ 2u2 / c2 we get from Eq. (A.17) 

m2c4 γ 2 −1( ) = γ 2m2u2c2 or E 2 = p2c2 +m2c4 (A.23)

This equation relates the total energy of a particle with its momentum. The 
quantities (E2 – p2c2) and m are invariant quantities, i.e. the same in K and K’.  

When a particle’s velocity is zero  (no momentum), Eq. (A.23) gives 

E(u = 0) = E0 = mc2 That is, relativity predicts that mass also contains 
energy. If energy is conserved, mass can be 
transformed into other forms of energy. 

(A.24)
Eq. (A.24) is the world most famous equation. 
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General Relativity 
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F =G m1m2

r2
Newton's law of gravitation 

r 
m1 m2 

F F 

A.5 – General Relativity 

We know there are 4 forces of nature: 
•  Gravity, Electromagnetism, Weak & Strong Nuclear forces 
•  Gravity is by far the weakest force, but it is also the most obvious: it's 

universal, acting the same on all forms of matter 
 
 Einstein realized there that is an equivalence 

between gravity and acceleration: you are weightless 
in a plummeting elevator. This is the equivalence 
principle. 

Another form of Einstein’s equivalence principle: an 
observer inside an enclosed box cannot tell the 
difference between being at rest on Earth's 
surface (a)  or being accelerated in outer space (b). 

(A.25)
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General Relativity 
In 1916 Einstein published the final form of the General Theory of Relativity. 
We can think of gravity as a feature  of the background in which we live.  This 
background is space and time: spacetime  
What we experience as gravity is actually the curvature of spacetime 
In general relativity (GR), matter  warps 
space-time, so that the straightest and 
shortest path (geodesic) looks like a curve 
to us. 
 
Mass tells space how to curve. 
 
Space tells matter how to move. 
 
The figure shows an analogy: weight on a 
tight rubber sheet depresses it (a) , so a 
ball is deflected around it (b). That is how 
GR describes the motion of a planet 
around the Sun, and not by means of a 
f o r c e , a s i m p l i e d b y N e w t o n ’ s 
gravitational force, Eq. (A.25). However, 
Einstein showed us that Newton’s law is a  
limit of GR for small masses.  
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General Relativity 
We know how to describe motion of objects exactly (remember rocket science) 
using Newton’s gravitational law. There must be a way describe exactly the 
motion without forces, according to GR. 

Well, it is complicated. 
 
I will give a very short tour of GR next. 

The space-time interval, Δs defined as  

Δs2  =  Δx2 + Δy2 + Δz2 – c2Δt2 

is Lorentz invariant. That is, if we use the Lorentz transformations with Eq. (A.
13), with Δx = dx,  Δt  = dt, etc., we get Δs’2 = Δs2. 
This interval can be written in terms of the space-time metric 

[ ]2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

c t
x

s c t x y z
y
z

− Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥Δ = Δ Δ Δ Δ
⎢ ⎥ ⎢ ⎥Δ
⎢ ⎥ ⎢ ⎥

Δ⎣ ⎦ ⎣ ⎦

(A.26)

(A.27)
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The space-time metric 
We can rewrite the expression for the space-time interval 

where 

2

0,...,3 0,...,3
s x xµ ν

µν
µ ν

η
= =

Δ = Δ Δ∑ ∑

0 1

2 3

x ct x x
x y x z
= =

= =
and 

ηµν =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

"

#

$
$
$
$

%

&

'
'
'
'

0 1 2 3

0	

1	

2	

3	

It is economical to use the Summation Notation: the summed indices occur once 
as subscripts and again as superscripts: 

2

0,...,3 0,...,3
s x x

µ ν

η
= =

Δ = Δ Δ∑ ∑ µ ν
µν 2s x xηΔ = Δ Δµ ν

µν

Use	of	Greek	le\ers	
means	ν	=	0,	1,	2,	3	

When the same index appears as a superscript and a subscript, summation is 
assumed, and we can omit the summation symbols.   

(A.28)

(A.29)
(A.30)

(A.31) (A.32)



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 26	

Tensors 
In General Relativity, space is curved, and the space-time metric can be more 
complex. The more general metric coefficients of general relativity (which may 
not be -1’s, 0’s, and 1’s) are denoted by gµν : 

Example:  An expanding (flat) universe 

Values of q range from 1/2 (in a radiation-dominated universe) to 2/3 (in a 
matter-dominated universe). (See Lecture 4). 

2s g x xµ ν
µνΔ = Δ Δ

Δs2  =  a(t)2 [Δx2 + Δy2 + Δz2] – c2Δt2 

where		a(t)  ~  t q 

gµν is an tensor. A tensor is a function of one or more vectors that yields a real 
number. gµν  takes two input vectors and yields a number: the interval Δs2. 

 Because gµν operates on two vectors, we say it’s a tensor of rank 2. 

Example: a vector can undergo dot products with other vectors to yield a 
number, so it’s a tensor of rank 1. Scalars have rank zero. 

The rank is also the number of indices on the tensor and the dimension of the 
matrix necessary to write it down. 

(A.33)

(A.34)



introduc)on	to	Astrophysics,	C.	Bertulani,	Texas	A&M-Commerce	 27	

Geodesics 
GR distinguishes between vectors and tensors that are covariant (with lower 
indices) and contravariant (with upper indices).  To raise or lower an index, 
simply multiply by the metric: 

Ordinarily, we don’t usually have to worry about this because our metric is simple, 
and covariant and contravariant tensors are essentially the same. 

In Newtonian space, geodesics are straight lines, and one way of saying this is 
that acceleration is zero 

where τ is proper time (i.e., the time measured in the frame of reference of the 
particle) , and xa is the  position vs. τ of the particle. 

x g xνµ µν= gα αν
µκ µν κΓ = Γ

To raise the indices of the metric gµν itself, just take its inverse 

[ ] 1g gµν
µν

−
=

2

2 0d x
d

α

τ
=

(A.35) (A.36)

(A.37)

(A.38)
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Curved Spaces 
In curved space, this expression generalizes to 

where               is called a Christoffel symbol, given by  

The curvature of space-time is complicated because there are 
several dimensions, and the curvature at each point can be 
different in each dimension (including time). Think of a saddle 
in two dimensions for which the curvature depends on the 
direction. 

The curvature of space-time is given by the Ricci Tensor 

2

2

d x dx dx
d d d

α β γ
α
βγτ τ τ

= −Γ

α
βγΓ

1
2

dg dg dg
g

dx dx dx
αβ αγ βγδ

αδ βγ γ β α

⎛ ⎞
Γ = + −⎜ ⎟

⎝ ⎠

d d
R

dx dx

γ γ
αβ αγ γ δ γ δ

αβ αβ γδ αδ βγγ β

Γ Γ
= − + Γ Γ − Γ Γ

(A.39)

(A.40)

(A.41)
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Einstein Tensor 
The Einstein tensor can be written in terms of the Ricci tensor as 

where R is the trace (i.e., the sum Rµµ) of the Ricci tensor 

Matter’s effect on space-time  
occurs through the stress-
energy tensor, T.  

T00 = Ttt is the mass-energy 
density 

T10 = Txt , T20 = Tyt and T30 = 
Tzt are how fast the matter is 
moving — its momentum 

T11 = Txx , T22 = Tyy and T33 = Tzz are the pressures in each of the three 
directions T12 = Txy , T13 = Txz and T23 = Tyz are the stresses in the matter. 

1
2G R R gµν µν µν= − (A.42)

(A.43)
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Einstein Field Equations 
The following set of coupled nonlinear partial differential equations (one for 
each element) relates the curvature of space, Gµν, to the energy-momentum 
tensor, Tµν : 

4

8G GT
cµν µν

π
= Only six component equations are 

independent. 

where G is the usual gravitational constant.  

The goal is to solve for gµν, for all values of µ and ν. In free space, where  
Tµν = 0, this reduces to 

One can show that Einstein’s Field Equations reduce to Newton's law of 
gravity in the weak-field and slow-motion limit.  

0Rµν =

Gµν + gµνΛ =
8π
c 4
G Tµν

As mentioned in Lecture 3, Einstein introduced the Cosmological constant by 
modifying his equation to 

(A.44)

(A.45)

(A.46)
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Ex: The Schwarzschild Solution 
Using spherical coordinates, ρ, θ, φ, and spherical symmetry, we can solve 
Einstein’s Field Equations (with Λ = 0) for the metric to find 

1
2 2 2 2 2

2 2

2 21 1GM GMs r r t
rc rc

−
⎛ ⎞ ⎛ ⎞Δ = − Δ + ΔΩ − − Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

The other elements of gµν are zero, and 

Note that, when Rs = 2GM/c2 (called the Schwarzschild radius), this becomes 

2 2 2 2sinθ θ φΔΩ = Δ + Δ

2 2 2 2 20s r r tΔ = ∞ Δ + ΔΩ − Δ

When a star’s thermonuclear fuel is depleted, no heat is left to counteract 
the force of gravity, which becomes dominant. The star’s mass collapses into 
an incredibly dense ball that could warp space-time enough to not allow light to 
escape. The point at the center is called a singularity. 

A collapsing star greater than 3 solar masses will 
distort space-time in this way to create a black hole. 

Schwarzschild determined the radius of a black hole, 
known as the event horizon. The Schwarzschild radius 
is given by Eq. (4.24) in Lecture 4. 

(A.47)

(A.48)
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Gravitational Waves 
When a charge accelerates, the electric 
field surrounding the charge redistributes 
itself. This change in the electric field 
produces an electromagnetic wave, which is 
easily detected. Similarly, an accelerated 
mass should also produce gravitational 
waves. 
 
Gravitational waves carry energy and 
momentum, travel at the speed of light, and 
are characterized by frequency and 
wavelength. 

As gravitational waves pass through space-time, they cause small ripples. The 
stretching and shrinking is on the order of 1 part in 1021 even due to a strong 
gravitational wave source. 

Due to their small magnitude, gravitational waves are difficult to detect. Large 
astronomical events could create measurable space-time waves such as the 
collapse of a neutron star, a black hole or the Big Bang.  
 


