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0.1. INTRODUCTION

0.1 Introduction

In relativistic heavy ion collisions, the wavelength associated with the projectile-target sepa-
ration is much smaller than the characteristic length of system. It is, therefore, a reasonable
approximation to treat r as a classical variable r(t), given at each instant by the trajectory
followed by the relative motion. At high energies, is also a good approximation to replace
this trajectory by a straight line. The intrinsic dynamics can then be handled as a quantum
mechanics problem with a time dependent Hamiltonian. This treatment is discussed in full
details by Alder and Winther in Refs. [1, 2, 3].

The intrinsic state |ψ(t) > satisfies the Schrödinger equation

[h + V (r(t))] |ψ(t) >= i~
∂|ψ(t) >

∂t
. (1)

In the equation above, h is the intrinsic Hamiltonian and V is the channel-coupling interac-
tion.

Expanding the wave function in the set {|m >; m = 0, N} of eigenstates of h, where N
is the number of excited states included in the Coupled-Channels problem, we obtain

|ψ(t) >=
N∑
m=0

am(t) |m > exp (−iEmt/~) , (2)

where Em is the energy of the state |m >. Taking scalar product with each of the states
< n|, we get the set of coupled equations

i~ ȧn(t) =
N∑
m=0

< n|V |m > ei(En−Em)t/~ am(t), n = 0 to N . (3)

It should be remarked that the amplitudes depend also on the impact parameter b specifying
the classical trajectory followed by the system. For the sake of keeping the notation simple,
we do not indicate this dependence explicitly. We write, therefore, an(t) instead of an(b, t).
Since the interaction V vanishes as t→ ±∞, the amplitudes have as initial condition an(t→
−∞) = δ(n, 0) and they tend to constant values as t → ∞. Therefore, the excitation
probability of an intrinsic state |n > in a collision with impact parameter b is given as

Pn(b) = |an(∞)|2. (4)

The total cross section for excitation of the state |n > can be approximated by the classical
expression

σn = 2π

∫
Pn(b) bdb. (5)
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0.1. INTRODUCTION

Figure 1: (a) The Coulomb field of a fast moving particle (nucleus) excites another nucleus
as it passes by in a peripheral collision. The process involves the excitation followed by
gamma- or particle-decay of stable and unstable nuclei. (b) A nuclear target is Coulomb
excited by a projectile moving along a modified Rutherford trajectory. The coordinates used
in text are shown.

Since we are interested in the excitation of specific nuclear states, with good angular
momentum and parity quantum numbers, it is appropriate to develop the time-dependent
coupling interaction V (t) into multipoles. In Ref. [3], a multipole expansion of the elec-
tromagnetic excitation amplitudes in relativistic heavy ion collisions was carried out. This
work used first order perturbation theory and the semiclassical approximation. The time-
dependence of the multipole interactions was not explicitly given. This was accomplished in
Ref. [4] (see also [5, 6]), which we describe after Supplement A.

We will discuss the methods used for the description of Coulomb excitation, specially at
intermediate and high energy collisions (Elab & 100 MeV/nucleon). We will also show some
applications of the theory for reactions involving stable nuclei. In particular, most of the
applications will invoke the excitation of giant resonances in Coulomb excitation of stable
nuclei (see Fig. 1).

Supplement A
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0.2. THE ELECTROMAGNETIC INTERACTION

0.2 The electromagnetic interaction

The equation of motion of a charge in an electromagnetic field is given by

d

dt

mv√
1− v2/c2

= q(E +
v

c
×B ). (6)

Since one can write

B = ∇ × A ; E = −∇φ− 1

c

∂A

∂t
, (7)

we get

d

dt

mv√
1− v2/c2

= q

[
−∇φ− 1

c

∂A

∂t
+

v

c
· (∇ × A)

]
= ∇

(
−qφ+ q

v

c
.A
)
− q

c

(
∂

∂t
+ v.∇

)
A

= ∇
(
−qφ+ q

v

c
.A
)
− q

c

dA

dt
(8)

where we have used
dA [r(t), t]

dt
=

(
∂

∂t
+ v.∇

)
A [r(t), t] . (9)

We can rewrite 8 as

d

dt

(
mv√

1− v2/c2
+
q

c
A

)
+∇

(
qφ− q

c
v ·A

)
= 0. (10)

In terms of the Lagrangian equation

d

dt
(∇rL)−∇rL = 0

the suitable Lagrangian for 10 is

L (r,v) =− mc2
√

1− v2/c2 +
q

c
v ·A(r, t)− qφ(r, t). (11)

The canonical momentum is

p = ∇vL =
mv√

1− v2/c2
+
q

c
A(r, t) = P +

q

c
A(r, t) (12)

where
P = mv/

√
1− v2/c2 (13)
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0.3. RELATIVISTIC COULOMB EXCITATION

is the kinetic momentum and qA/c is the momentum carried by the electromagnetic field.
The Hamiltonian is

H = p. v − L =
mc2√

1− v2/c2
+ qφ. (14)

We rewrite 14 as

H(r,p) = c

{[
p− q

c
A(r, t)

]2

+ (mc)2

}1/2

+ qφ(r, t). (15)

For non-relativistic particles,

| P | = | p− q

c
A | << mc (16)

and

H (r,p) = mc2 +
(p− qA/c)2

2m
+ qφ. (17)

The second term has as part of its contribution the quantity

(qA)2 / 2mc2

which is relevant only in processes where two photons are involved and may be ignored. The
remaining terms yield the electromagnetic interaction Hamiltonian

Hint = qφ− q

c
v.A (18)

where the rest + kinetic energy of the particle was subtracted.
For systems involving a charge density ρ (r, t) , H can be generalized to

Hint=

∫ [
ρφ− 1

c
j.A

]
d3r. (19)

0.3 Relativistic Coulomb excitation

0.3.1 Time-dependent electromagnetic interaction

We consider a nucleus 1 which is at rest and a relativistic nucleus 2 which moves along the
z-axis and is excited from the initial state |IiMi >≡ |i > to the state |IfMf >≡ |f > by
the electromagnetic field of nucleus 1. The nuclear states are specified by the spin quantum
numbers Ii, If and by the corresponding magnetic quantum numbers Mi, Mf , respectively.
We assume that the relativistic nucleus 1 moves along a straight-line trajectory with impact
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0.3. RELATIVISTIC COULOMB EXCITATION

parameter b, which is therefore also the distance of the closest approach between the center
of mass of the two nuclei at the time t = 0. We shall consider the situation where b is larger
than the sum of the two nuclear radii, such that the charge distributions of the two nuclei
do not strongly overlap at any time.

The Coulomb field for a particle moving in a straight-line is given by

φ (r, t) =
Ze

| r−R(t) |
=

Ze√
(x− b)2 + y2 + (z − vt)2

(20)

where it is assumed that the trajectory lies in the plane x− z, and R(t) = (b, 0, vt).
If the charge velocity is comparable to c, one has to account for the retardation. As

shown in Ref. [7] the correct potential, called by Liénard-Wiechert potential is given by

φ(r, t) =
γZe√

(x− b)2 + y2 + γ2(z − vt)2
. (21)

The vector potential is given by

A(r, t) =
v

c
φ(r, t). (22)

We know consider the excitation of the target from an initial rate | i > to a final state
| f > . We summarize the results obtained by Bertulani and collaborators [4, 5]. In first
order perturbation theory the transition amplitude is given by

afi =
1

i~

∫ ∞
−∞

dt ei(Ef−Ei)t/~ < f | Hint | i > (23)

where

< f | Hint | i > =

∫ [
ρfiφ(r, t)− 1

c
jfi(r) ·A(r, t)

]
d3r (24)

with

ρfi(r) = ϕi(r)ϕ∗f (r) (25)

jfi(r) =
~

2im
[ϕ∗i (r)∇ϕf (r)− ϕf (r)∇ϕ∗i (r)] . (26)

Thus,

afi =
1

i~

∫ ∞
−∞

dt eiωt
[
ρfi(r)− v

c2
· jfi(r)

]
φ (r, t) d3r. (27)

Assuming that the internal coordinate r is much smaller in magnitude than |R(t)| we
can approximate φ (r, t) in lower orders of |r| / |R(t)| . For example, in dipole approximation
we only take the two lowest terms in the expansion, i.e.,

φ ∼=
γZe

[b2 + γ2v2t2]1/2
+
γZe(xb+ γ2vtz)

[b2 + γ2v2t2]3/2
. (28)
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0.3. RELATIVISTIC COULOMB EXCITATION

Using
∫
d3r ρfi (r) = 0, we get to lowest order

< f | Hint | i >=

∫ {
ρfi(r)

γZe(xb+ γ2vtz)

[b2 + γ2v2t2]3/2
− j

(z)
fi (r)

v

c2

γZe

[b2 + γ2v2t2]1/2

}
d3r (29)

in which terms proportional to
∫
d3r r · jfi(r), or higher, were neglected since they contribute

to quadrupole excitations.
The current interaction of Eq. 24 can be treated in a similar way as for the scalar

interaction. This interaction cannot be neglected, since it yields appreciable corrections
in collisions at intermediate and high energies (i.e., v/c ∼ 0.2, and higher). For practical
purposes, it is also important to write this part of the interaction in terms of a spherical
basis operator.

Since the velocity v in Eq. 27 is along the z-axis, we can write

< f | Hint | i >=

∫
dr φ ρfi −

v

c2

∫
dr φ ∇(z) · jfi . (30)

Using ∇ · (f j) = f(∇ · j) + j · ∇f and the continuity equation ∇ · j = −iωρ, we get

< f | Hint | i >=

∫
dr φ ρfi − i

vω

c2

∫
dr φ z ρfi −

v

c2

∫
dr φ ∇ · (zjfi) , (31)

where ~ω = Ef − Ei is the energy difference between the states |f > and |i >.
In the third integral we can use φ0 ≡ φ(r = 0) , i.e., the first term in 28. Since φ0 does

not depend on r it can be taken out of the integral and it vanishes due to Gauss theorem.
Thus, Eq. 29 becomes

< f | Hint | i >= γZe

∫
ρfi(r)

{
(xb+ γ2vtz)

[b2 + γ2v2t2]3/2
− i (vω/c2) z

[b2 + γ2v2t2]1/2

}
d3r. (32)

Defining

M(E1,−µ) =
i

ω

∫
d3rJ(r) · ∇ (rY1µ) =

∫
d3r ρ(r) r Y1µ(r) (33)

we get for the electric dipole potential

(Hint)
(E1)
fi (t) =

√
2π

3
γ

{
E1(τ)

[
Mfi(E1,−1)−Mfi(E1, 1)

]
+
√

2 γ

[
τE1(τ)− i ωv

γc2
E2(τ)

]
Mfi(E1, 0)

}
, (34)
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0.3. RELATIVISTIC COULOMB EXCITATION

where τ = γv/b, and

E1(τ) =
Z1e

b2 [1 + τ 2]3/2
and E2(τ) =

Z1e

b [1 + τ 2]1/2
. (35)

A similar derivation can be carried out for the M1 and the E2 multipolarities. More
details are found in Ref. [4] (see also [5])

(Hint)
(M1)
fi (t) = i

√
2π

3

v

c
γ E1(τ) [Mfi(M1, 1) +Mfi(M1,−1)] , (36)

where

M(M1, µ) = − i

2c

∫
d3r J(r).L

(
rY1µ

)
. (37)

The current J in Eq. 37 is made up of the usual convective part and a magnetization
part, proportional to the intrinsic (Dirac and anomalous) magnetic moment of the nucleons.

For the E2 multipolarity one finds [4, 5]

(Hint)
(E2)
fi (t) = −

√
π

30
γ

{
3 E3(τ)

[
Mfi(E2, 2) +Mfi(E2,−2)

]
+ γ

[
6 τE3(τ)− i ωv

γc2
E1(τ)

] [
Mfi(E2,−1) +Mfi(E2, 1)

]
+
√

6 γ2
[(

2τ 2 − 1
)
E3(τ)− i ωv

γc2
τ E1(τ)

]
Mfi(E2, 0)

}
(38)

where E3(τ) is the quadrupole electric field of nucleus 1, given by

E3(τ) =
Z1e

b3 [1 + τ 2]5/2
. (39)

The fields Ei(τ) peak around τ = 0, and decrease rapidly within an interval ∆τ ' 1.
This corresponds to a collisional time ∆t ' b/γv. This means that, numerically one needs
to integrate the Coupled-Channels equations (Eq. 3) only in a time interval within a range
n×∆τ around τ = 0, with n equal to a small integer number.

0.3.2 First-order perturbation theory

In most cases, the first-order perturbation theory is a good approximation to calculate the
amplitudes for relativistic Coulomb excitation. It amounts to using ak = δk0 on the right
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0.3. RELATIVISTIC COULOMB EXCITATION

hand side of Eq. 3. Using the integrals (Ki = modified Bessel functions)∫ ∞
−∞

dt eiωt

[b2 + γ2v2t2]1/2
=

2

γv
K0

(
ωb

γv

)
(40)∫ ∞

−∞

dt eiωt

[b2 + γ2v2t2]3/2
=

2

γvb2

(
ωb

γv

)
K1

(
ωb

γv

)
(41)∫ ∞

−∞

dt.t. eiωt

[b2 + γ2v2t2]3/2
=

2i

γ2v2b

(
ωb

γv

)
K0

(
ωb

γv

)
(42)

one gets

a
(E1)
1st = −i

√
8π

3

Z1e

~vb
ξ

{
K1(ξ) [Mfi(E1,−1)−Mfi(E1, 1)]

+ i

√
2

γ
K0(ξ) Mfi(E1, 0)

}
(43)

where K1 (K2) is the modified Bessel function of first (second) degree, and ξ = ωb/γv. For
the E2 and M1 multipolarities, we obtain respectively [4, 5],

a
(E2)
1st = 2i

√
π

30

Z1e

γ~vb2
ξ2

{
K2(ξ)

[
Mfi(E2, 2) +Mfi(E2,−2)

]
+ iγ

(
2− v2

c2

)
K1(ξ)

[
Mfi(E2,−1) +Mfi(E2, 1)

]
−
√

6 K0(ξ) Mfi(E2, 0)

}
, (44)

and

a
(M1)
1st =

√
8π

3

Z1e

~cb
ξ K1(ξ) [Mfi(M1, 1)−Mfi(M1,−1)] . (45)

The formulas above have been derived under the assumption of the long-wavelength
approximation. When this approximation is not valid the matrix elements given by Eqs. 33
and 37 are to be replaced by the full matrix-elements for electromagnetic excitations [1], i.e.,

M(Eλ, µ) =
(2λ+ 1)!!

κλ+1c(λ+ 1)

∫
J(r) · ∇ × L [jλ(κr)Yλµ(r̂)] d3r , (46)

M(Mλ, µ) = −i (2λ+ 1)!!

κλc(λ+ 1)

∫
J(r) · L [jλ(κr)Yλµ(r̂)] d3r , (47)

for electric and magnetic excitations (κ = ω/c), respectively. However, the other factors do
not change (see, e.g., Ref. [3]).
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0.3. RELATIVISTIC COULOMB EXCITATION

0.3.3 Excitation probabilities and virtual photon numbers

The square modulus of Eqs. 43, 44 and 45 gives the probability of exciting the target nucleus
from the initial state | IiMi > to the final state | IfMf > in a collision with impact parameter
b. If the orientation of the initial state is not specified, the probability for exciting the nuclear
state of energy Ef and spin If is

Pi→f =
1

2Ii + 1

∑
Mi,Mf

| afi |2 . (48)

Integration of Eq. 48 over all energy transfers ε = ~ω, and summation over all possible
final states of the projectile nucleus (making use of the Wigner-Eckart theorem and the
orthogonality of the properties of the Clebsch-Gordan coefficients) leads to the Coulomb
excitation probability in a collision with impact parameter b:

PC =
∑
f

∫
Pi→f (b) ρf (ε) dε (49)

where ρf (ε) is the density of final states of the target with energy Ef = Ei + ε.

Inserting Eqs. 43, 44 and 45 into Eq. 49 one finds

PC(b, ε) =
∑
πλ

Pπλ(b, ε) =
∑
πλ

∫
dε

ε
nπλ(b, ε) σ

πλ
γ (ε), (50)

where

σπλγ (ε) =
(2π)3(λ+ 1)

λ [(2λ+ 1)!!]2

∑
f

ρf (ε)κ
2λ−1 B(πλ, Ii → If ) (51)

are the photonuclear absorption cross sections for a given multipolarity πλ. The reduced
transition probability B(πλ, Ii → If ) is given by

B(πλ; Ii −→ If ) =
1

2Ii + 1

∑
MiMf

|< IiMi|M(πλ, µ)|IfMf >|2

=
1

2Ii + 1
|< Ii||M(πλ)||If >|2 . (52)

The total photonuclear cross section is a sum of all these multipolarities,

σγ =
∑
πλ

σπλγ (ε) . (53)
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0.3. RELATIVISTIC COULOMB EXCITATION

The functions nπλ(ε) are called the virtual photon numbers, and are given by

nE1(b, ε) =
Z2

1α

π2

ξ2

b2
(
c

v
)2

{
K2

1 +
1

γ2
K2

0

}
(54)

nE2(b, ε) =
Z2

1α

π2b2
(
c

v
)4

{
4

γ2

[
K2

1 + ξK0K1 + ξ2K2
0

]
+ ξ2(2− v2/c2)2K2

1

}
(55)

nM1(b, ε) =
Z2

1α

π2

ξ2

b2
K2

1 (56)

where all Kµ’s are functions of ξ(b) = ωb/γv.

Since all nuclear excitation dynamics is contained in the photoabsorption cross section,
the virtual photon numbers, Eqs. 54, 55 and 56, do not depend on the nuclear structure.
They are kinematical factors, depending on the orbital motion. They may be interpreted
as the number of equivalent (virtual) photons that hit the target per unit area. These
expressions show that Coulomb excitation probabilities are exactly directly proportional to
the photonuclear cross sections, although the exchanged photons are off-shell. This arises
from the condition that the reaction is peripheral and the nuclear charge distributions of each
nuclei do not overlap during the collision. This result can be proved from first principles,
and has been shown in some textbooks (see, e.g., Ref. [14]).

The usefulness of Coulomb excitation, even in first order processes, is displayed in Eq.
50. The field of a real photon contains all multipolarities with the same weight and the
photonuclear cross section 53 is a mixture of the contributions from all multipolarities,
although only a few contribute in most processes. In the case of Coulomb excitation the
total cross section is weighted by kinematical factors which are different for each projectile
or bombarding energy. This allows one to disentangle the multipolarities when several ones
are involved in the excitation process, except for the very high bombarding energies γ � 1
for which all virtual photon numbers can be shown to be the same [8].

0.3.4 Second-order perturbation theory

To second-order, the amplitude for a two-step excitation to a state |2 > via intermediate
states |1 > is given by

a2nd
20 =

∑
1

1

(i~)2

∫ ∞
−∞

dt eiω21t V21(t)

∫ t

−∞
dt′ eiω10t′V10(t′) , (57)

where V21(t) is a short notation for the interaction potential inside brackets of the integral
of Eq. 57 for the transition |1 >→ |2 >.
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0.3. RELATIVISTIC COULOMB EXCITATION

Using the integral representation of the step function

Θ(t− t′) = − lim
δ→0+

1

2πi

∫ ∞
−∞

e−iq(t−t
′)

q + iδ
dq =

{
1, if t > t′

0, if t < t′
(58)

one finds [1]

a2nd
20 =

1

2

∑
1

a1st
21 (ω21) a1st

10 (ω10)

+
i

2π

∑
1

P
∫ ∞
−∞

dq

q
a1st

21 (ω21 − q) a1st
10 (ω10 + q) , (59)

where P stands for the principal value of the integral. For numerical evaluation it is more
appropriate to rewrite the principal value integral in Eq. 59 as

P
∫ ∞
−∞

dq

q
a1st

21 (ω21 − q) a1st
10 (ω10 + q) =∫ ∞

0

dq

q

[
a1st

21 (ω21 − q) a1st
10 (ω10 + q)− a1st

21 (ω21 + q) a1st
10 (ω10 − q)

]
.

(60)

To calculate a1st(ω) for negative values of ω, we note that the interaction potential can be

written as a sum of an even and an odd part. This implies that a1st(−ω) = −
[
a1st(ω)

]∗
.

For three-phonon excitation we use the third term of the time-dependent perturbation
expansion, and the same procedure as above (Eqs. 58 - 60).

0.3.5 Cross sections and total virtual photon numbers

The cross section is obtained by the impact parameter integral of the excitation probabilities.
Eq. 50 shows that we only need to integrate the number of virtual photons over impact
parameter. One has to introduce a minimum impact parameter b0 in the integration. Impact
parameters smaller than b0 are dominated by nuclear fragmentation processes. One finds

dσC =
∑
πλ

σπλ =
∑
πλ

∫
dε

ε
Nπλ(ε) σ

πλ
γ (ε) , (61)
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0.4. HARMONIC OSCILLATOR MODEL FOR SURFACE VIBRATIONS

where the total virtual photon numbers Nπλ(ε) = 2π
∫
db b n(b, ε) are given analytically by

NE1(ε) =
2Z2

1α

π
(
c

v
)2

[
ξK0K1 −

v2ξ2

2c2
(K2

1 −K2
0)

]
(62)

NE2(ε) =
2Z2

1α

π
(
c

v
)4

[
2(1− v2

c2
)K2

1 + ξ(1− v2

c2
)2K0K1 +

ξ2v4

2c4
(K2

1 −K2
0)

+ ξ2(2− v2/c2)2K2
1

]
(63)

NM1(ε) =
2Z2

1α

π

ξ2

b2

[
ξK0K1 −

ξ2

2
(K2

1 −K2
0)

]
(64)

where all Kµ’s are now functions of ξ(b) = ωb0/γv.

Supplement B

0.4 Harmonic oscillator model for surface vibrations

The radial vector for a point on the surface of a slightly deformed nucleus is given by

R(θ) = R0

{
1 +

∑
λµ

α∗λµ Yλµ(θ) +O(α2)

}
. (65)

Since R(θ) is real, one gets∑
µ

α∗λµ Yλµ =
∑
µ

αλµ Y
∗
λµ =

∑
µ

(−1)µ αλµ Yλ,−µ. (66)

Thus
α∗λµ = (−1)µ αλ,−µ (67)

A Hamiltonian for small amplitude oscillations of the nuclear surface has to be quadratic in both
αλµ and α̇λµ , scalar and invariant under time reversal. This implies that the Hamiltonian has to
be equal to

H =
1

2

∑
λµ

[
Bλ |α̇λµ|2 + Cλ|αλµ|2

]
. (68)

The classical solution for this Hamiltonian is given by

ωλ =

(
Cλ
Bλ

)1/2

αλµ = ελµ cos(ωλt)

E =
∑
λµ

1

2
|ελµ|2ω2

λBλ. (69)
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0.5. COULOMB EXCITATION AT INTERMEDIATE ENERGIES

We now quantize the Hamiltonian by using the quantization rules

πλµ =
∂H

∂
.
αλµ

= Bλα̇
∗
λµ, [αλµ, πλµ] = i~ (70)

which implies that

πλµ = −i~ ∂

∂αλµ
. (71)

If we now introduce the boson operators

O+
λµ =

(
ωλBλ

2~

)1/2 [
αλµ −

i

ωλBλ

(−1)µ πλ,−µ

]
Oλµ =

(
ωλBλ

2~

)1/2 [
(−1)µαλ,−µ +

i

ωλBλ

πλµ

]
(72)

we get the commutation relation [
Oλµ, O

+
λµ

]
= 1. (73)

The Hamiltonian 68 can be rewritten as

H =
∑
λµ

~ωλ
(
O+
λµOλµ +

1

2

)
. (74)

The operator O+
λµ obeys the equations of motion[

H,O+
λµ

]
= ~ωλ O+

λµ. (75)

The ground-state is defined as

Oλµφ0(α) = 0; all λµ, (76)

and the number operator as Nλµ = O+
λµOλµ . Using these definitions and Eq. 73, the excited states

can be found by means of standard techniques for the harmonic oscillator model [9].

0.5 Coulomb excitation at intermediate energies

0.5.1 Classical trajectory: recoil and retardation corrections

The semiclassical theory of Coulomb excitation in low energy collisions accounts for the
Rutherford bending of the trajectory, but relativistic retardation effects are neglected [2].
On the other hand, in the theory of relativistic Coulomb excitation [3] recoil effects on
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the trajectory are neglected (one assumes straight-line motion) but retardation is handled
correctly. In fact, the onset of retardation brings new important effects such as the steady
increase of the excitation cross sections with bombarding energy. In a heavy ion collision
around 100A MeV the Lorentz factor γ is about 1.1. Since this factor enters the excitation
cross sections in many ways, like in the adiabacity parameter, ξ(R) = ωfiR/γv, one expects
that some sizable modifications in the theory of relativistic Coulomb excitation should occur
[10]. Recoil corrections are not negligible either, and the relativistic calculations based on the
straight-line parametrization should not be completely appropriate to describe the excitation
probabilities and cross sections. The Coulomb recoil in a single collision is of the order of

a0 =
Z1Z2e

2

m0v2
, (77)

which is half-distance of closest approach in a head-on collision, with m0 equal to the reduced
mass of the colliding nuclei. Although this recoil is small for intermediate energy collisions,
the excitation probabilities are quite sensitive to it. This is important for example in the
excitation of giant resonances because the adiabacity parameter is of the order of one. When
ξ(b)� 1, the excitation probabilities depends on b approximately like 1/b2, while when ξ(b)
becomes greater than one they decrease approximately as e−2πξ(b)/b2. Therefore, when ξ ' 1
a slight change of b may vary appreciably the excitation probabilities.

In the semiclassical theory of Coulomb excitation the nuclei are assumed to follow classical
trajectories and the excitation probabilities are calculated in time-dependent perturbation
theory. At low energies one assumes Rutherford trajectories for the relative motion while
at relativistic energies one assumes straight-line motion. In intermediate energy collisions,
where one wants to account for recoil and retardation simultaneously, one should solve the
general classical problem of the motion of two relativistic charged particles. But, even if
radiation is neglected, this problem can only be solved if one particle has infinite mass [11].
This approximation should be sufficient if we take, e.g., the collision 16O + 208Pb as our
system. An improved solution may be obtained by use of the reduced mass, as we show
next, in a formalism developed by Aleixo and Bertulani [10].

In the classical one-body problem, one starts with the relativistic Lagrangian

L = −moc
2

{
1− 1

c2
(ṙ2 + r2φ̇2)

}1/2

− Z1Z2e
2

r
, (78)

where ṙ and φ̇ are the radial and the angular velocity of the particle, respectively (see Fig.
1(b)). Using the Euler-Lagrange equations one finds three kinds of solutions, depending
on the sign of the charges and the angular momentum in the collision. In the case of our
interest, the appropriate solution relating the collisional angle φ and the distance r between
the nuclei is [11]

1

r
= A [ε cos(Wφ)− 1] (79)
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where

W =

[
1− (

Z1Z2e
2

cL0

)2

]1/2

, A =
Z1Z2e

2E

c2L2
0W

2
, (80)

ε =
cL0

Z1Z2e2E

[
E2 −m2

0c
4 + (

m0cZ1Z2e
2

L0

)2

]1/2

. (81)

E is the total bombarding energy in MeV, m0 is the mass of the particle and L0 its angular
momentum. In terms of the Lorentz factor γ and of the impact parameter b, E = γmoc

2

and L0 = γm0vb. The above solution is valid if L0 > Z1Z2e
2/c. In heavy ion collisions at

intermediate energies one has L0 � Z1Z2e
2/c for impact parameters that do not lead to

strong interactions. It is also easy to show that, from the magnitudes of the parameters
involved in heavy ion collisions at intermediate energies, the trajectory 79 can be very well
described by approximating

W = 1 , A =
ao
γb2

, ε =

√
b2γ2

a2
0

+ 1 , (82)

where a0 is half the distance of closest approach in a head on collision (if the nuclei were
pointlike and if non-relativistic kinematics were used), and ε is the eccentricity parameter.
In the approximation 82 ε is related to the deflection angle ϑ by ε = (a0/γ) cotϑ.

The time dependence for a particle moving along the trajectory, Eq. 79, may be di-
rectly obtained by solving the equation of angular momentum conservation. Introducing the
parametrization

r(χ) =
a0

γ
[ε coshχ+ 1] (83)

we find
t =

a0

γv
[χ+ ε sinhχ] . (84)

Using the scattering plane perpendicular to the Z-axis, one finds that the corresponding
components of r may be written as

x = a [coshχ+ ε] , (85)

y = a
√
ε2 − 1 sinhχ , (86)

z = 0 , (87)

where a = a0/γ. This parametrization is of the same form as commonly used in the non-
relativistic case [2], except that a0 replaced by a0/γ ≡ a.

In the limit of straight-line motion ε ' b/a � 1, and the equations above reduce to the
simple parametrization

y = vt , x = b , and z = 0 . (88)
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As we quoted before, the classical solution for the relative motion of two relativistic
charges interacting electromagnetically can only be solved analytically if one of the particles
has infinite mass. Non-relativistically the two-body problem is solvable by introduction
of center of mass and relative motion coordinates. Then, the result is equivalent to that
of a particle with reduced mass m0 = mPmT/(mP + mT ) under the action of the same
potential. The particle with reduced mass m0 is lighter than those with mass mP and mT ,
and this accounts for the simultaneous recoil of them. An exact relativistic solution should
reproduce this behavior as the relative motion energy is lowered. We shall use the reduced
mass definition of m0 as usual in the parametrization of the classical trajectory of Coulomb
excitation in intermediate energy collisions, as outlined above. For a 16O + 208Pb collision
this is not a bad approximation. For heavier systems like U+U it would be the simplest way
to overcome this difficulty. But, as energy increases, this approximation is again unimportant
since the trajectories will be straight-lines parametrized by an impact parameter b. A more
exact result was obtained numerically by Aguiar, Aleixo and Bertulani [12] using the Darwin
Lagrangian to determine the classical trajectory in collisions at intermediate energies . But,
the parametrization of the classical trajectory as given by Eqs. 85, 86 and 87 with a reduced
mass particle, besides reproducing both the non-relativistic and the relativistic energies,
gives a reasonable solution to the kind of collisions we want to study.

0.5.2 Excitation amplitudes

We first notice that the retarded Green’s function, appropriate for Coulomb excitation, i.e.,
eiκ|r−r′(t)|/ | r− r′(t) | where κ = ω/c, has the same Fourier transform as the Liénard-
Wiechert potential of Eq. 20. Thus

φ(ω, r) = Z1e

∫ ∞
−∞

eiωt
eiκ|r−r′(t)|

| r− r′(t) |
dt (89)

A(ω, r) =
Z1e

c

∫ ∞
−∞

v′(t) eiwt
eiκ|r−r′(t)|

| r− r′(t) |
dt (90)

are the retarded potentials generated by a projectile with charge Z1 following a Coulomb
trajectory. When the magnitude of the excitation amplitudes are small compared to unity,
the use of first order perturbation theory is justified.

We now use the expansion

eiκ|r−r′|

| r− r′ |
= 4π iκ

∑
λµ

jλ(κr<)Y ∗λµ(r̂<)hλ(κr>)Yλµ(r̂>) , (91)

where jλ (hλ) denotes the spherical Bessel (Hankel) functions (of first kind), r> (r<) refers to
whichever of r and r′ has the larger (smaller) magnitude. Assuming that the projectile does
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not penetrate the target, we use r> (r<) for the projectile (target) coordinates. At collision
energies above the Coulomb barrier this assumption only applies for impact parameters larger
than a certain minimum, below which the nuclei penetrate each other.

Using the continuity equation, ∇ · jfi = −iωρfi, for the nuclear transition current, we
can show that the expansion 91 can be expressed in terms of spherical tensors (see, e.g., Ref.
[14], Vol. II) and Eq. 27 becomes

afi =
Z1e

i~
∑
λµ

4π

2λ+ 1
(−1)µ

{
S(Eλ, µ)Mfi(Eλ, −µ) + S(Mλ, µ)Mfi(Mλ, −µ)

}
(92)

where M(πλ, µ) are the matrix elements for electromagnetic transitions, as defined in Eqs.
46 and 47.

The orbital integrals S(πλ, µ) are given by

S(Eλ, µ) = − iκλ+1

λ(2λ− 1)!!

∫ ∞
−∞

∂

∂r′
{r′(t)hλ [κr′(t)]} Yλµ [θ′(t), φ′(t)] eiωt dt

− κλ+2

cλ(2λ− 1)!!

∫ ∞
−∞

v′(t) · r′(t)hλ[κr′(t)]Yλµ[θ′(t), φ′(t)] eiωt dt

(93)

and

S(Mλ, µ) = − i

γm0c

κλ+1

λ(2λ− 1)!!
L0 ·

∫ ∞
−∞
∇′ {hλ[κr′(t)]Yλµ[θ′(t), φ′(t)]} eiωt dt (94)

where L0 is the angular momentum of relative motion, which is constant:

L0 = γam0v cot
ϑ

2
(95)

with ϑ equal to the (center-of-mass) scattering angle.
In non-relativistic collisions

κr′ =
ωr′

c
=
v

c

ωr′

v
<
v

c
� 1 (96)

because when the relative distance r′ obeys the relations ωr′/v ≥ 1 the interaction becomes
adiabatic. Then one uses the limiting form of hλ for small values of its argument [13] to
show that

SNR(Eλ, µ) '
∫ ∞
−∞

r′
−λ−1

(t)Yλµ {θ′(t), φ′(t)} eiωt dt (97)
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and

SNR(Mλ, µ) ' − 1

λmoc
L0 ·

∫ ∞
−∞
∇′
{
r′
−λ−1

(t)Yλµ [θ′(t), φ′(t)]
}
eiωt dt (98)

which are the usual orbital integrals in the non-relativistic Coulomb excitation theory with
hyperbolic trajectories (see Eqs. (II.A.43) of Ref. [2]).

In the intermediate energy case the relation 95 is partially relaxed (of course, for rela-
tivistic energies, v ∼ c, it is not valid) and one has to keep the more complex forms, Eqs.
93 and 94, for the orbital integrals.

For convenience, we define

I(Eλ, µ) =
vaλ

Cλµ
S(Eλ, µ) (99)

where

Cλµ =

{ √
2λ+1

4π

√
(λ−µ)!(λ+µ)!

(λ−µ)!!(λ+µ)!!
(−1)(λ+µ)/2, for λ+ µ = even ,

0, for λ+ µ = odd ,
(100)

and we translate the path of integration by an amount iπ/2 to avoid strong oscillations of
the integral. This yields [10]

I(Eλ, µ) = −i(vη
c

)λ+1 1

λ(2λ− 1)!!
e−πη/2

∫ ∞
−∞

dχ e−ηε coshχ eiηχ

× (ε+ i sinhχ−
√
ε2 − 1 coshχ)µ

(iε sinhχ+ 1)µ−1

×
[
(λ+ 1)hλ − z hλ+1 − (

v

c
)2ε η coshχ · hλ

]
(101)

where all hλ’s are now functions of

z =
v

c
η (iε sinhχ+ 1) , η =

ωa

v
=
ωao
γv

. (102)

In the case of magnetic excitations, defining

I(Mλ, µ) = −λca
λS(Mλ, µ)

Cλ+1,µ cotϑ/2

{
[(2λ+ 1)/(2λ+ 3)] [(λ+ 1)2 − µ2]

}−1/2
(103)

one obtains [10]

I(Mλ, µ) =
i(vη/c)λ+1

(2λ− 1)!!
e−πη/2

∫ ∞
−∞

dχ hλ(z) e−ηε coshχ

× eiηχ
(ε+ i sinhχ−

√
ε2 − 1 coshχ)µ

(iε sinhχ+ 1)µ
. (104)

The orbital integrals 101 and 104 can only be solved numerically.
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0.5.3 Cross sections and equivalent photon numbers

In the high-energy limit the classical trajectory reduces to a straight-line. One can show
that using the approximation ε = b/a � 1 the orbital integrals, Eqs. 101 and 104, can be
expressed in terms of simple analytical functions. However it is instructive and useful to
deduce the excitation amplitudes from the first principles again.

The square modulus of Eq. 92 gives the probability of exciting the target nucleus from
the initial state | IiMi > to the final state | IfMf > in a collision with c.m. scattering angle
ϑ. If the orientation of the initial state is not specified, the cross section for exciting the
nuclear state of spin If is

dσi→f =
a2ε4

4

1

2Ii + 1

∑
Mi,Mf

| afi |2 dΩ , (105)

where a2ε4dΩ/4 is the elastic (Rutherford) cross section. Using the Wigner-Eckart theorem
and the orthogonality properties of the Clebsch-Gordan coefficients, one can show that

dσi→f
dΩ

=
4π2Z2

1e
2

~2
a2ε4

∑
λµ

B(πλ, Ii → If )

(2λ+ 1)3
| S(πλ, µ) |2 , (106)

where π = E or M stands for the electric or magnetic multipolarity.

Integration of 106 over all energy transfers ε = ~ω, and summation over all possible final
states of the projectile nucleus leads to

dσC
dΩ

=
∑
f

∫
dσi→f
dΩ

ρf (ε) dε , (107)

where ρf (ε) is the density of final states of the target with energy Ef = Ei + ε. Inserting
Eq. 106 into Eq. 107 one finds

dσC
dΩ

=
∑
πλ

dσπλ
dΩ

=
∑
πλ

∫
dε

ε

dnπλ
dΩ

(ε) σπλγ (ε) , (108)

where σπλγ are the photonuclear absorption cross sections for a given multipolarity πλ. The
virtual photon numbers, nπλ(ε), are given by

dnπλ
dΩ

=
Z2

1α

2π

λ [(2λ+ 1)!!]2

(λ+ 1)(2λ+ 1)3

c2a2ε4

κ2(λ−1)

∑
µ

| S(πλ, µ) |2 . (109)
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In terms of the orbital integrals I(Eλ, µ), given by Eq. 102, and using the Eq. 109, we
find for the electric multipolarities

dnEλ
dΩ

=
Z2

1α

8π2
(
c

v
)2λ λ [(2λ+ 1)!!]2

(λ+ 1)(2λ+ 1)2
ε4 η−2λ+2

×
∑

µλ+µ=even

(λ− µ)!(λ+ µ)!

[(λ− µ)!!(λ+ µ)!!]2
| I(Eλ, µ) |2 . (110)

In the case of magnetic excitations we find

dnMλ

dΩ
=

Z2
1α

8π2
(
c

v
)2(λ−1) [(2λ+ 1)!!]2

λ(λ+ 1)(2λ+ 1)2
η−2λ+2 ε4 (ε2 − 1)

×
∑

µλ+µ=odd

[(λ+ 1)2 − µ2] (λ+ 1− µ)!(λ+ 1 + µ)!

[(λ+ 1− µ)!!(λ+ 1 + µ)!!]2
| I(Mλ, µ) |2 .

(111)

Only for the E1 multipolarity the integrals can be performed analytically and we get closed
expression

dnE1

dΩ
=
Z2

1α

4π2

( c
v

)2
ε4 ζ2 e−πζ

{
1

γ2

ε2 − 1

ε2
[
Kiζ(εζ)

]2
+
[
K ′iζ(εζ)

]2}
, (112)

where ε = 1/ sin(θ/2), α = 1/137, ζ = ωa0/γv and a0 = Z1Z2e
2/2ELab. Kiζ is the modified

Bessel function with imaginary index, K ′iζ is the derivative with respect to its argument.
Since the impact parameter is related to the scattering angle by b = a cotϑ/2, we can

also write

nπλ(ε, b) ≡
dnπλ
2πbdb

=
4

a2ε4
dnπλ
dΩ

(113)

which are interpreted as the number of equivalent photons of energy ε = ~ω, incident on the
target per unit area, in a collision with impact parameter b.

Again we stress the usefulness of the concept of virtual photon numbers, especially in
relativistic collisions. In these collisions the momentum and the energy transfer due to the
Coulomb interaction are related by ∆p = ∆E/v ' ∆E/c. This means that the virtual
photons are almost real. One usually explores this fact to extract information about real
photon processes from the reactions induced by relativistic charges, and vice-versa. This is
the basis of the Weizsäcker-Williams method, commonly used to calculate cross sections for
Coulomb excitation, particle production, Bremsstrahlung, etc (see, e.g., Ref. [23]). In the
case of Coulomb excitation, even at low energies, although the equivalent photon numbers
should not be interpreted as (almost) real ones, the cross sections can still be written as a
product of them and the cross sections induced by real photons, as we have shown above.
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Supplement 6.C

0.6 Electromagnetic transition strengths

The nuclear excitations induced by photons (real and virtual) involve matrix elements of the oper-
ator

Mλµ = rλ Y ∗λµ(r̂). (114)

Specifically, the matrix element for an electric multipole transition is given by

M(Eλµ) =

∫
rλ Y ∗λµ(θ)δρcα(r )d3r (115)

where δρCα is the transition density for the nuclear charge. For a collective surface oscillation, as
explained in Supplement B, δρCα will be peaked at the surface. Using Eq. 65 the charge density of
the excited nucleus is not spherically symmetric, but is slightly deformed. The equidensity surfaces
are given by Eq. 65, i.e.,

rθ = r

[
1 +

∑
λµ

α∗λµ Yλµ(θ)

]
(116)

for constant r . In other words,
ρCα (rθ, θ) = ρC0 (r) (117)

where ρC0 (r) is the non-deformed density, or ground state density.
Conversely,

ρCα (r, θ) = ρC0

(
r

1 +
∑

λµα
∗
λµYλµ(θ)

)

∼= ρC0 (r)− rdρ
C
0

dr
(r)
∑
λµ

α∗λµ Yλµ(θ) +O(α2). (118)

Thus, for small oscillations, the transition density in 115 is given by

δρcα(r ) = ρCα (r, θ)− ρC0 (r) = −r dρ
C
0

dr
(r)
∑
λµ

α∗λµYλµ(θ). (119)

The charge density maybe related to the matter density by means of

ρC0 (r) =
Ze

A
ρ0(r). (120)
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Inserting 119 and 120 into 115 one obtains

M(Eλµ) = −Ze
A

∫
rλY ∗λµ(θ)

{
r
dρ0(r)

dr

∑
`m

α∗`m Y`m(θ)

}
d3r

= −Ze
A
α∗λµ

∫
rλ+3 dρ0(r)

dr
dr

= Zeα∗λµ
(λ+ 3)

4π

{
4π

A

∫
rλ+2ρ0(r)dr

}
. (121)

That is,

M(Eλ, µ) =
λ+ 3

4π
Ze〈rλ〉0α∗λµ. (122)

Using the definitions of the creation and annihilation operators given in Eq. 72 we can rewrite Eq.
122 as

M(Eλµ) =
λ+ 3

4π
Ze〈rλ〉0

(
~

2ωλBλ

)1/2 [
Oλµ + (−1)µO+

λ,−µ
]
. (123)

In going from 122 to 123 we have quantized the matrix element M(Eλµ) in form of an
operator. It now connects states through collective vibrations of λµ multipolarity.

A very common quantity which appears in the calculation of cross sections for electromagnetic
processes is the so-called reduced transition probability. The matrix element of the operator 123
for the nuclear transition |i〉 → |f〉 is given by

〈f |M(Eλµ)|i〉 = (JiλJf |Mi µMf ) 〈f ||M(Eλ)||i〉 (124)

where we have used the Wigner-Eckart theorem [9]. (JiMi) and (JfMf ) are the initial and final
nucleus spins and projection quantum numbers, (Ji λ Jf |Mi µMf ) is a Clebsh Gordan coefficient,
µ = Mf −Mi , and 〈f ||M(Eλµ)||i〉 is the reduced matrix element, which does not depend on the
nuclear spin. The matrix element 124 appears in the excitation cross sections. In most cases, the
nucleus is initially unpolarized and its final polarization is unobserved. Thus, in the cross sections
we must average over initial spins and sum over final spins. Therefore, the reduced transition
probability

B(Eλ, Ji → Jf ) =
1

2Ji + 1

∑
MiMf

|〈f |M(Eλµ)|i〉|2 (125)

appears often in the cross section calculations. Using 124 we get

B(Eλ, Ji → Jf ) = |〈f ||M(Eλ)||i〉|2 1

2Ji+1

∑
MiMf

(JI λ Jf |Mi,Mf −MI ,Mf )
2 . (126)
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Using the orthogonality properties of the Clebsh-Gordan coefficients [16] we get

B(Eλ; Ji → Jf ) =
2Jf + 1

2Ji + 1
|〈f ||M(Eλ)||i〉|2 . (127)

The electric multipole operator 123 links states which differ by a unit of phonons. I.e.,

∆nλµ = ±1. (128)

For transitions from the ground state, |0〉 → |λµ〉 , we obtain using 123,

B(Eλ, 0→ λ) = (2λ+ 1) |〈0||M(Eλ)||λ〉|2

= (2λ+ 1)

[
λ+ 3

4π
Ze〈rλ〉0

]2 ~
2ωλBλ

. (129)

For a constant matter distribution with radius R0

〈rλ〉0 =
3Rλ

0

λ+ 3
, (130)

and

B(Eλ, 0→ λ) = (2λ+ 1)

[
3

4π
ZeRλ

0

]2 ~
2ωλBλ

. (131)

We now define the deformation length

δλ =

[
(2λ+ 1)

~
2ωλBλ

]1/2

R0. (132)

It measures the amplitude of the surface oscillations for a given mode λ . In terms of δλ

B(Eλ, 0→ λ) =

[
3

4π
ZeRλ−1

0

]2

δ2
λ. (133)

In this macroscopic model, the magnetic transitions are predicted to be zero since the defor-
mation of a uniformly charged fluid induces no magnetic moment. In fact, M1 transitions are
inhibited by factors of order 1/100 for good vibrational nuclei.

In lowest order in αλµ the transition density conserves particle number. This can be seen from
Eq. 118. An integration over volume implies that∫

ρcα(r, θ)d3r =

∫
ρC0 (r)d3r. (134)
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RELATIVISTIC ENERGIES

This relationship fails if λ = 0 . The λ = 0 modes are interesting and correspond to monopole
excitations often called by “breathing” modes. To conserve particle number we have to add a
correction to 118 for the λ = 0 case. It is easy to check that a transition density given by

δρCα(λ=0)(r ) = −α∗0
[
3ρC0 (r) + r

dρC0
dr

]
Y00(r̂) (135)

conserves particle number, since ∫
δρCα(λ=0)(r)d

3r = 0.

For electromagnetic monopole transitions

M(E0) =
Ze

A

∫
r2δρα(λ=0)(r)Y00(r̂)d3r (136)

is the matrix element of interest.
Repeating the same procedure as before, we get in terms of α0,

M(E0) =
α∗0
2π
Ze〈r2〉

and

B(E0) =

[
Ze〈r2〉

2π

]2 ~
2ω0B0

or, else

B(E0) =

[
3ZeR2

0

10π

]2

α2
0. (137)

In Supplement D we will show how the sum rules can be used to obtain the values of δλ
and of α0.

0.7 Comparison of Coulomb excitation at low energies

and at relativistic energies

Inserting the non-relativistic orbital integrals into Eq. 109, we get the following relation for
the non-relativistic equivalent photon numbers (NR)

dn
(NR)
πλ

dΩ
= Z2

1α
λ[(2λ+ 1)!!]2

(2π)3(λ+ 1)
ζ−2λ+2 (

c

v
)2(λ+δ) dfπλ

dΩ
(ϑ, ζ) , (138)
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Figure 2: Electric dipole (E1) and quadrupole (E2) number of equivalent photons per unit
area d2b ≡ 2πb db, with energy of 10 MeV, incident on 208Pb in a collision with 16O at impact
parameter b = 15 fm, and as a function of the bombarding energy in MeV per nucleon. The
dotted line and the dashed line correspond to calculations performed with the non-relativistic
and with the relativistic approaches, respectively. The solid line represents a more correct
calculation, as described in the text.

where δ = 0 for electric, and δ = −1 for magnetic multipolarities, and ζ = ωa0/v. The
non-relativistic Coulomb excitation functions fπλ(ϑ, ζ) are very well known and, e.g., are
tabulated in Ref. [2], or maybe calculated numerically.

Using the Eqs. 110, 111 and 112, we make an analysis of Coulomb excitation extending
from low to high energy collisions. As an example, we study the excitations induced by 208Pb
in 16O + 208Pb collisions. Since the expression 109 is quite general, valid for all energies,
under the assumption that the nuclei do not overlap, the equivalent photon numbers contain
all information about the differences among the low and the high energy scattering. In Figs.
2 and 3(a) we show dnπλ,ε, for the E1 , E2 and M1 multipolarities, and for the collision
16O + 208Pb with an impact parameter b = 15 fm. They are the equivalent photon numbers
with frequency ω = 10 MeV/~ incident on 208Pb. The dotted lines are obtained by using the
non-relativistic Eq. (138), while the dashed lines correspond to the relativistic expressions
54, 55 and 56. One observes that the relativistic expressions overestimate the equivalent
photon numbers at low energies, while the non-relativistic expressions underestimate them
at high energies. The most correct values are given by the solid lines, calculated according
to Eqs. 110 and 111. They reproduce the low and the high energy limits, giving an improved
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Figure 3: (a) Same as Fig. 2, but for the M1 multipolarity. (b) Equivalent photon numbers
per unit area incident on 208Pb, in a collision with 16O at 100A MeV and with impact
parameter b = 15 fm, as a function of the photon energy ~ω. The curves for the E1, E2 and
M1 multipolarities are shown.

interpolation between these limits at intermediate energies. These discrepancies are more
apparent for the E1 and the E2 multipolarities. In the energy interval around 100A MeV
neither the low energy theory nor the high energy one can reproduce well the correct values.
This energy interval is indeed very sensitive to the effects of retardation and of Coulomb
recoil.

At these bombarding energies, the differences between the magnitude of the non-relativis-
tic and the correct relativistic virtual photon numbers are kept at a constant value, of
about 20%, for excitation energies ε = ~ω < 10 MeV. However, they increase sharply
when one reaches the excitation energy of ε = ~ω > 10 MeV. The reason is that, for such
excitation energies, the adiabacity factor becomes greater than unity (ξ > 1). This means
that excitation energies of order of 10 MeV (like in the case of giant resonance excitation) are
in the transition region from a constant behavior of the equivalent photon numbers to that
of an exponential (∼ e−πξ) decay. This is more transparent in Fig. 3(b) where we plot the
equivalent photon numbers for Elab =100A MeV, b = 15 fm, and as a function of ~ω. One
also observes from this figure that the E2 multipolarity component of the electromagnetic
field dominates at low frequencies. Nonetheless, over the range of ~ω up to some tens of
MeV, the E2 matrix elements of excitation are much smaller than the E1 elements for most
nuclei, and the E2 effects become unimportant. However, such effects are relevant for the
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excitation of the isoscalar E2 giant resonance (GQRis) which have large matrix elements.
We will discuss the differential cross sections as a function of the scattering angle later,

when we introduce the effects of strong absorption. To obtain the total cross sections, one
has to integrate the equivalent photon numbers in Eqs. 110 and 111 from 0◦ to a maximum
scattering angle θmax, where the nuclear absorption sets in, or equivalently, one can integrate
over the impact parameter, from a minimum value bmim up to infinity.

Only for the E1 multipolarity the angular integration can be performed analytically. One
obtains1

NE1 =
2

π
Z2

1α e
−πζ (c/v)2

{
−ξKiζK

′
iζ −

1

2
(c/v)2ξ2 (139)

×

[
(ζ/ξ)2K2

iζ +K ′2iζ −K2
iζ −

i

ε0

(
Kiζ

(
∂K ′µ
∂µ

)
µ=iζ

−K ′iζ
(
∂Kµ

∂µ

)
µ=iζ

)}
,

where

ε0 =

{
1, for 2a > bmim ,
R/a− 1, for 2a < bmim ,

(140)

and ξ = ε0ζ = ωbmim/γv.
It is easy to see that this equation reduces to Eq. 62 in the relativistic limit, when

ζ −→ 0, ε0 −→∞.
The cross sections increase very rapidly to large values, which are already attained at

intermediate energies. A salient feature is that the cross section for the excitation of giant
quadrupole modes is very large at low and intermediate energies, decreasing in importance
(about 10% of the E1 cross section) as the energy increases above 1A GeV. This occurs
because the equivalent photon number for the E2 multipolarity is much larger than that
for the E1 multipolarity at low collision energies. That is, nE2 � nE1, for v � c. This
has a simple explanation. Pictorially, as seen from an observer at rest, when a charged
particle moves at low energies the lines of force of its corresponding electric field are isotropic,
diverging from its center in all directions. This means that the field carries a large amount of
tidal (E2) components. On the other hand, when the particle moves very fast its lines of force
appear contracted in the direction perpendicular to its motion due to Lorentz contraction.
For the observer this field looks like a pulse of plane waves of light. But plane waves contain
all multipolarities with the same weight, and the equivalent photon numbers become all
approximately equal, i.e., nE1 ' nE2 ' nM1, and increase logarithmically with the energy
for γ � 1. The difference in the cross sections when γ � 1 are then approximately equal
to the difference in the relative strength of the two giant resonances σE2

γ /σE1
γ < 0.1. The

excitation of giant magnetic monopole resonances is of less importance, since for low energies

1We observe that the original formula for the dipole case appearing in [23] has a misprinted sign in one
of its terms.
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nM1 � nE1 (nM1 ' (v/c)2nE1), whereas for high energies, where nM1 ' nE1, it will be also
much smaller than the excitation of electric dipole resonances since their relative strength
σM1
γ /σE1

γ is much smaller than unity.
At very large energies the cross sections for the Coulomb excitation of giant resonances

overcome the nuclear geometrical cross sections. Since these resonances decay mostly through
particle emission or fission, this indicates that Coulomb excitation of giant resonances is a
very important process to be considered in relativistic heavy ion collisions and fragmentation
processes, especially in heavy ion colliders. At intermediate energies the cross sections are
also large and this offers good possibilities to establish and study the properties of giant
resonances.

Supplement D

0.8 Sum rules and Eλ moments

Sum rules are very useful to calculate the cross sections when the reduced matrix elements B(Eλ)
are not known.

For a system governed by a Hamiltonian H , we can define the sum

S(F ) =
∑
a

(Ea − E0) |〈a|F |0〉|2 (141)

for the excitation |0〉 → |a〉 induced by the operator F . If F is Hermitian

S(F ) =
∑
a

〈a|F |0〉 (Ea − E0) 〈0|F |a〉

=
1

2

∑
a

〈0|F |a〉 {〈a|[H,F ]|0〉 − 〈0|[H,F ]|a〉 } 〈a|F |0〉

=
1

2
〈0 |[F, [H,F ]]| 0〉 . (142)

For a microscopic operator (interaction) acting on each nucleon k , we can write

F =
∑
k

F (rk ) (143)

and

H =
∑
k

[
−~2∇2

k

2mk

+ V (rk)

]
. (144)
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Then, Eq. 142 becomes

S(F ) =
1

2

〈
0

∣∣∣∣∣∑
k

~2

2mk

[
F (rk ),

[
∇2
k, F (rk)

]]∣∣∣∣∣ 0
〉
. (145)

Since the expectation value of HF 2 and F 2H are the same, 〈0|F 2∇2|0〉 = 〈0|(∇2F )F |0〉 ,
and 〈

0
∣∣[F, [∇2, F

]]∣∣ 0〉 =
〈
0
∣∣F ∇2F − 2(∇2F )F + F∇2F

∣∣ 0〉
=

〈
0
∣∣2F∇2F − 2(∇2F )F

∣∣ 0〉 .
But

∇ · (F∇F ) = (∇F )2 + F∇2F

and 〈
0
∣∣[F, [∇2, F ]]

∣∣ 0〉 = 2
〈
0
∣∣(∇F )2

∣∣ 0〉 . (146)

Thus

S(F ) =

〈
0|
∑
k

~2

2mk

[∇kF (rk )]2 |0

〉
. (147)

For nuclear and Coulomb excitation one often encounters operators of the form

F ≡ Fλµ = f(r)Yλµ(r̂). (148)

Then, one can show that (see Ref. [17], p. 400-401)∑
µ

∇
[
f(r)Y ∗λµ(r̂)

]
· ∇ [f(r)Yλµ(r̂)]

=
2λ+ 1

4π

[(
df

dr

)2

+ λ(λ+ 1)

(
f

r

)2
]

(149)

and

S(Fλ) ≡
∑
αµ

(Eα − E0) |〈α|Fλµ|0〉|2

=

〈
0

∣∣∣∣∣ ~2

2m

∑
µ,k

|∇k Fλµ(rk )|2
∣∣∣∣∣ 0
〉

=
2λ+ 1

4π

~2

2m
A

〈
0

∣∣∣∣∣
(
df

dr

)2

+ λ(λ+ 1)

(
f

r

)2
∣∣∣∣∣ 0
〉
. (150)
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The electric multipole matrix elements are given by

M(Eλ;µ) = e
∑

k=protons

[
rλ Yλµ

]
k

≡ e
∑
k

[(
1

2
− τZ

)
rλYλµ

]
k

(151)

where

τz ψproton = −1

2
ψproton, τz ψneutron =

1

2
ψneutron. (152)

It is important to include recoil corrections for E1-transitions. The matrix elements in 151
include not only internal displacement of the protons but also contain a spurious displacement of
the center of mass.

For λ = 1 , Eq. 151 maybe written as

M(E1, µ) =

(
A∑
i=1

ei ri

)
µ

( ei = e for protons, 0 for neutron). Subtracting the coordinates ri from the center of mass

R =
1

A

A∑
i=1

ri , one gets (we drop the index µ for the moment)

M(E1) =
A∑
i=1

ei (ri −R) = e
Z∑
i=1

ri −
eZ

A

A∑
i=1

ri

= e
Z∑
i=1

(
1− Z

A

)
ri −

eZ

A

A∑
i=Z+1

ri =
eN

A

Z∑
i=1

ri −
eZ

A

A∑
i=Z+1

ri.

This expression shows that the inclusion of the center of mass recoil correction can be accom-
plished from the beginning by assuming that neutron have an effective charge eN/A and protons
an effective charge (−eZ/A) . It can be shown that in the general case (any λ ) (see [14])

eeff
p = e

1

Aλ
[
(A− 1)λ + (−1)λ(Z − 1)

]
(153)

and

eeff
n = eZ

(
− 1

A

)λ
. (154)

For multipoles higher E1 the effective charges involve corrections of order of λ/A or smaller.
Therefore, they are small for heavy nuclei.
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Including recoil correction the E1-matrix element is given by

M(E1, µ) = e
∑
k

[(
N − Z

2A
− τz

)
r Yλµ

]
k

(155)

Using Eq. 150

S(E1) =
3

4π

~2

2m
· 3e2

{(
N − Z

2A
− 1

2

)2

N +

(
N − Z
A

+
1

2

)2

Z

}

=
9

4π

~2

2m

NZ

A
e2 = 14.8

NZ

A
e2 fm2 MeV. (156)

For λ ≥ 2 and isoscalar excitations, using 150,

S(Eλ) =
λ(2λ+ 1)2

4π

~2

2m
Z e2〈r2λ−2〉prot. (157)

where 〈r2λ−2〉prot is defined in terms of the one-particle |ψp|2 as

〈r2λ−2〉prot =
∑
p

∫
|ψp|2 r2λ−2 d3r

=
Z

A

∫
ρ(r)r2λ−2 d3r =

Z

A
〈r2λ−2〉 (158)

where ρ(r) is the total particle density. Thus,

S(Eλ) =
λ(2λ+ 1)2

4π

~2

2m

Z2e2

A
〈r2λ−2〉. (159)

For a uniform charge distribution we use 130:

〈r2λ−2〉 =
3

(2λ+ 1)
R2λ−2 (160)

and

S(Eλ) = λ(2λ+ 1)
~2

2m

3Z2

4πA
R2λ−2 e2. (161)

For (E0) monopole transitions

M(E0) = e
∑
k

[(
1

2
− τZ

)
r2

]
k

Y00 (162)

32 Physics of Radioactive Beams - C.A. Bertulani



0.9. QUANTUM DESCRIPTION OF COULOMB EXCITATION AT HIGH ENERGIES

and

S(E0) =
~2

2πm
Z e2〈r2〉prot =

~2

2πm

Z2

A
e2〈r2〉. (163)

For a uniform charge distribution

S(E0) =
3~2

10πm

Z2

A
R2e2 (164)

Using the sum rules, Eqs. 159, 161 and 164, and the relation between the transition matrix
elements and the deformation parameters, Eqs. 133 and 137, we get

δ2
λ≥2 =

4π

3
λ(2λ+ 1)

~2

2m

1

AEx
(165)

and

α2
0 =

10π

3

~2

m

1

AR2Ex
(166)

where Ex is the energy of a state assuming to exhaust the full sum rule, i.e.,

S(Eλ) ≡
∑
i

EiB(Eλ, 0→ λ) ∼= ExB(Eλ, 0→ λ). (167)

This approximation is good for giant resonance states, which exhaust most part of the sum
rule.

For the E1 case, recoil corrections amount in the replacement of Z by NZ/A in Eq. 133.
That is,

B(E1, 0→ 1) =

[
3

4π

NZ

A
e

]2

δ2
1. (168)

Using Eq. 156 one gets

δ2
1 = 4π

~2

2m

A

NZ

1

Ex
. (169)

0.9 Quantum description of Coulomb excitation at high

energies

Inelastic scattering of heavy ions at intermediate energy collisions is an important tool to
investigate the structure of stable and unstable nuclei. The angular distribution of the
inelastically scattered fragments are particularly useful to identify unambiguously the mul-
tipolarity of the interaction, and consequently the spin and parities of the excited states.
In previous Sections we have shown that recoil and retardation effects, are important at
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this energy regime. However, as shown by Bertulani and Nathan [33], in order to describe
correctly the angular distribution, absorption and diffraction effects have to be included
properly. Next we show how quantum mechanical effects show up in the differential cross
sections.

0.9.1 Inelastic amplitudes and virtual photon numbers

Defining r as the separation between the centers of mass of the two nuclei and r′ to be the
intrinsic coordinate of the target nucleus to first-order the inelastic scattering amplitude is
given by

f(θ) =
ik

2π~v

∫
d3r d3r′ < Φ

(−)
k′ (r) φf (r

′) | Vint(r, r′) | Φ
(+)
k (r) φi(r

′) > , (170)

where Φ
(−)
k′ (r) and Φ

(+)
k (r) are the incoming and outgoing distorted waves, respectively,

for the scattering of the center of mass of the nuclei, and φ(r′) is the intrinsic nuclear
wavefunction of the target nucleus.

At intermediate energies, ∆E/Elab � 1, and forward angles, θ � 1, we can use eikonal
wavefunctions for the distorted waves; i.e.,

Φ
(−)∗
k′ (r) Φ

(+)
k (r) = exp

{
−iq.r + iχ(b)

}
, (171)

where

χ(b) =
i

~v

∫ ∞
−∞

U opt
N (z′, b) dz′ + iψC(b) (172)

is the eikonal-phase, q = k′ − k, U opt
N is the nuclear optical potential, and ψC(b) is the

Coulomb eikonal phase. We have defined the impact parameter b by b = |r× ẑ|.
For high energy collisions, the optical potential U(r) can be constructed by using the

t-ρρ approximation [32].
In Eq. 170 the interaction potential, assumed to be purely Coulomb, is given by

Vint(r, r′) =
vµ

c2
jµ(r′)

eiκ|r−r′|

|r− r′|
, (173)

where vµ = (c, v), with v equal to the projectile velocity, κ = ω/c, and jµ(r′) is the charge
four-current for the intrinsic excitation of nucleus 1 by an energy of ~ω. Inserting Eqs. 172
and 173 in Eq. 170 one finds [33]

f(θ) = i
Z1ek

γ~v
∑
πλm

im
(
ω

c

)λ√
2λ+ 1 e−imφ

× Ωm(q) Gπλm

(
c

v

)
< If Mf | M(πλ, −m) |Ii Mi > (174)
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where πλm denotes the multipolarity, Gπλm are the Winther-Alder relativistic functions [3],
and < If Mf |M(πλ,−m)|Ii Mi > is the matrix element for the electromagnetic transition
of multipolarity πλm from |Ii Mi > to |If Mf >, with Ef − Ei = ~ω. The function Ωm(q)
is given by [33]

Ωm(q) =

∫ ∞
0

db b Jm(qb) Km

(
ωb

γv

)
exp
{
iχ(b)

}
, (175)

where q = 2k sin(θ/2) is the momentum transfer, θ and φ are the polar and azimuthal
scattering angles, respectively.

For the E1, E2 and M1 multipolarity, the functions Gπλm(c/v) are given by [3]

GE11(x) = −GE1−1(x) = (1/3)x
√

8π; GE10(x) = −i (4/3)
√
π(x2 − 1);

GM11(x) = GM1−1(x) = −i (1/3)
√

8π; GM10(x) = 0;

GE22(x) = GE2−2(x) = − (2/5)x
√
π(x2 − 1)/6;

GE21(x) = −GE2−1(x) = i (2/5)
√
π/6(2x2 − 1);

GE20(x) = (2/5)x
√
π(x2 − 1) . (176)

Using the Wigner-Eckart theorem, one can calculate the inelastic differential cross section
from 174, using techniques similar to those discussed in previous Sections. One obtains

d2σC
dΩ dEγ

(
Eγ
)
=

1

Eγ

∑
πλ

dnπλ
dΩ

σπλγ
(
Eγ
)

(177)

where σπλγ
(
Eγ
)

is the photonuclear cross section for the absorption of a real photon with
energy Eγ by nucleus 2, and dnπλ/dΩ is the virtual photon number, which is given by [33]

dnπλ
dΩ

= Z2
1α

(
ωk

γv

)2λ
[
(2λ+ 1)!!

]2
(2π)3 (λ+ 1)

∑
m

|Gπλm|2 |Ωm(q)|2 , (178)

where α = e2/~c.
The total cross section for Coulomb excitation can be obtained from Eqs. 177 and 178,

using the approximation dΩ ' 2πqdq/k2, valid for small scattering angles and small energy
losses. Using the closure relation for the Bessel functions, one obtains

dσC
dEγ

(
Eγ
)
=

1

Eγ

∑
πλ

nπλ
(
Eγ
)
σπλγ

(
Eγ
)
, (179)

where

nπλ(ω) = Z2
1α

λ
[
(2λ+ 1)!!

]2
(2π)3 (λ+ 1)

∑
m

|Gπλm|2 gm(ω) , (180)

Physics of Radioactive Beams - C.A. Bertulani 35



0.9. QUANTUM DESCRIPTION OF COULOMB EXCITATION AT HIGH ENERGIES

and

gm(ω) = 2π

(
ω

γv

)2 ∫
db b K2

m

(
ωb

γv

)
exp
{
−2 χI(b)

}
, (181)

where χI(b) is the imaginary part of χ(b), which is obtained from Eq. 172 and the imaginary
part of the optical potential.

We point out that for very light heavy ion partners, the distortion of the scattering wave-
functions caused by the nuclear field is not important. This distortion is manifested in the
diffraction peaks of the angular distributions, characteristic of strong absorption processes.
If Z1Z2α� 1, one can neglect the diffraction peaks in the inelastic scattering cross sections
and a purely Coulomb excitation process emerges. One can gain insight into the excitation
mechanism by looking at how the semiclassical limit of the excitation amplitudes emerges
from the general result 178. We do this next.

0.9.2 Semiclassical limit of the excitation amplitudes

If we assume that Coulomb scattering is dominant and neglect the nuclear phase in Eq. 172,
we get

Ωm(q) '
∫ ∞

0

db b Jm(qb) Km

(
ωb

γv

)
exp
{
iψC(b)

}
. (182)

This integral can be done analytically by rewriting it as

Ωm(q) =

∫ ∞
0

db b1+i2η Jm(qb) Km

(
ωb

γv

)
, (183)

where we used the simple form ψC(b) = 2η ln(kb), with η = Z1Z2e
2/~v. Using standard

techniques found in Ref. [34], we find

Ωm(q) = 22iη 1

m!
Γ(1 +m+ iη)Γ(1 + iη)

× Λm

(
γv

ω

)2+2iη

F

(
1 +m+ iη; 1 + iη; 1 +m;−Λ2

)
, (184)

where
Λ =

qγv

ω
, (185)

and F is the hypergeometric function [34].
The connection with the semiclassical results may be obtained by using the low momen-

tum transfer limit

Jm(qb) '
√

2

πqb
cos

(
qb− πm

2
− π

4

)
=

1√
2πqb

{
eiqb e−iπ(m+1/2)/2 + e−iqb eiπ(m+1/2)/2

}
, (186)
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and using the stationary phase method, i.e.,

∫
G(x) eiφ(x) dx '

(
2πi

φ′′(x0)

)1/2

G(x0) eiφ(x0) , (187)

where
dφ

dx
(x0) = 0 and φ′′(x0) =

d2φ

dx2
(x0) . (188)

This result is valid for a slowly varying function G(x).
Only the second term in brackets of Eq. (186) will have a positive (b = b0 > 0) stationary

point, and

Ωm(q) ' 1√
2πq

(
2πi

φ′′(b0)

)1/2 √
b0 Km

(
ωb0

γv

)
exp

{
iφ(b0) + i

π(m+ 1/2)

2

}
, (189)

where

φ(b) = −qb+ 2η ln(kb) . (190)

The condition φ′(b0) = 0 implies

b0 =
2η

q
=

a0

sin(θ/2)
, (191)

where a0 = Z1Z2e
2/µv2 is half the distance of closest approach in a classical head-on collision.

We observe that the relation 191 is the same [with cot(θ/2) ∼ sin−1(θ/2)] as that be-
tween impact parameter and deflection angle of a particle following a classical Rutherford
trajectory. Also,

φ′′(b0) = −2η

b2
0

= − q
2

2η
, (192)

which implies that in the semiclassical limit

|Ωm(q)|2s.c. =
4η2

q4
K2
m

(
2ωη

γvq

)
=

1

k2

(
dσ

dΩ

)
Ruth

K2
m

(
ωa0

γv sin(θ/2)

)
. (193)

Using the above results, Eq. 178 becomes

dnπλ
dΩ

=

(
dσ

dΩ

)
Ruth

Z2
1α

(
ω

γv

)2λ
[
(2λ+ 1)!!

]2
(2π)3 (λ+ 1)

∑
m

|Gπλm|2 K2
m

(
ωa0

γv sin(θ/2)

)
. (194)
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If strong absorption is not relevant, the above formula can be used to calculate the
equivalent photon numbers. The stationary value given by Eq. 191 means that the important
values of b which contribute to Ωm(q) are those close to the classical impact parameter.
Dropping the index 0 from Eq. 191, we can also rewrite Eq. 194 as

dnπλ
2πb db

= Z2
1α

(
ω

γv

)2λ
[
(2λ+ 1)!!

]2
(2π)3 (λ+ 1)

∑
m

|Gπλm|2 K2
m

(
ωb

γv

)
, (195)

which is equal to the semi-classical expression given in Ref. [10], Eq. (A.2).
For very forward scattering angles, such that Λ << 1, a further approximation can be

made by setting the hypergeometric function in Eq. 184 equal to unity [34], and we obtain

Ωm(q) = 22iη 1

m!
Γ(1 +m+ iη) Γ(1 + iη) Λm

(
γv

ω

)2+2iη

. (196)

The main value of m in this case will be m = 0, for which one gets

Ω0(q) ' 22iη Γ(1 + iη) Γ(1 + iη)

(
γv

ω

)2+2iη

= −η2 22iη Γ(iη) Γ(iη)

(
γv

ω

)2+2iη

, (197)

and

|Ω0(q)|2 = η4

(
γv

ω

)4
π2

η2 sinh2(πη)
, (198)

which, for η � 1, results in

|Ω0(q)|2 = 4π2 η2

(
γv

ω

)4

e−2πη . (199)

This result shows that in the absence of strong absorption and for η � 1, Coulomb
excitation is strongly suppressed at θ = 0. This also follows from semiclassical arguments,
since θ → 0 means large impact parameters, b � 1, for which the action of the Coulomb
field is weak.
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Figure 4: Different kinds of collective vibrations in atomic nuclei.

Supplement E

0.10 Giant resonances

Light, viz. the photon, has played and still does play an important role in the exploration of the
microcosmos. In particular the virtual photons exchanged in collisions of electrons with protons
probed the by now most elementary building blocks of nature, the partons. As early as 1937 Bothe
and Gentner [18] reported an resonance like enhancement of radioactivity irradiating different
materials with 17.6 MeV x-rays from the 7Li(p,γ) reaction. They noticed that the cross section for
63Cu was surprisingly high and they suggested that this might be due to a resonance phenomenon.
These observations were later confirmed by Baldwin and Klaiber (1947) with photons from a
betatron. In 1948 Goldhaber and Teller [19] interpreted these resonances (named by isovector
giant dipole resonances) with a hydrodynamic model in which rigid proton and neutron fluids
vibrate against each other, the restoring force resulting from the surface energy. Steinwendel and
Jensen [20] later developed the model, considering compressible neutron and proton fluids vibrating
in opposite phase in a common fixed sphere, the restoring force resulting from the volume symmetry
energy. The standard microscopic basis for the description of giant resonances is the Random Phase
Approximation (RPA) in which giant resonances appear as coherent superpositions of one-particle
one-hole (1p1h) excitations (see Fig. 5) in closed shell nuclei or two quasi-particle excitations in
open shell nuclei (for a review of these techniques, see, e.g., Ref. [21]).

Over the years, these vibrational modes of the nuclei, the giant resonances, were investigated in
great detail. Much of the information was gained using again virtual or real photons from electron
accelerators. But the broad variety of different giant resonance modes could only be discovered
using also hadronic probes, such as pions, protons, alpha particles and heavier nuclei.

Giant resonances are classified according to the degree of freedom being involved in the vibra-
tion. In general, giant resonances can be understood as small amplitude oscillations of the shape
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Figure 5: Giant resonances are described in terms of particle-hole excitations in closed shell
nuclei or two quasi-particle excitations in open shell nuclei.

and/or density distribution of the nucleus (see Fig. 4). One distinguishes electric vibrations from
magnetic vibrations depending on the external field coupling to the charge or spin of the nucle-
ons, respectively. The resonance has isoscalar character if proton and neutron are in phase and
isovector character if not. Depending of the spatial dynamic of the vibration the resonance can
be of monopole, dipole or quadrupole type. The isoscalar quadrupole resonances were discovered
in inelastic electron scattering by Pitthan and Walcher (1971) and in proton scattering by Lewis
and Bertrand [22]. Giant monopole resonances were found later and their properties are closely
related to the compression modulus of nuclear matter. Following these, other resonances of higher
multipolarities and giant magnetic resonances were investigated. Typical probes for giant resonance
studies are (a) γ’s and electrons for the excitation of GDR (isovector giant dipole resonance), (b)
α-particles and electrons for the excitation of isoscalar GMR (giant monopole resonance) and GQR
(giant quadrupole resonance), and (c) (p, n), or (3He, t), for Gamow-Teller resonances, respectively.

The giant vibrational modes are a gross property of all nuclei. The isovector giant dipole
resonance, e.g., has been identified in atomic nuclei all along the valley of stable isotopes. The
latter appears at excitation energies well approximated by the phenomenological dependence ~ω =
79A−1/3 which is equivalent to the picture of standing waves inside the nuclear volume. Giant
resonances are broad structures and not necessarily of Breit-Wigner shape. The reasons is a strong
damping of the collective motion of nucleons inherent in the giant vibration due to collisions of
the nucleons with each other. In addition, they are based on many complex configurations of the
nucleons taking part in the oscillation and the strength is not concentrated at one point. Since the
amplitudes are small, the restoring force is to a good approximation linear in the amplitude. Hence
the giant resonance can be viewed as the excitation of the first phonon of a harmonic oscillator.

Coulomb excitation is a well established tool to unravel interesting aspects of nuclear structure
[23]. Examples are the studies of giant resonances in heavy ion accelerators [24, 25, 26, 5]. Important
properties of nuclei far from stability [27, 28] have also been studied with this method.

Inelastic scattering studies with heavy ion beams have opened new possibilities in the field (for a
review the experimental developments, see Ref. [24]). A striking feature was observed when either
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Figure 6: Experimental cross sections (arbitrary units) for the excitation of 208Pb targets
by 17O (22A MeV and 84A MeV) and by 36Ar (95A MeV), as a function of the excitation
energy.

the beam energy was increased, or heavier projectiles were used, or both [29]. This is displayed in
figure 6, where the excitation of the GDR in 208Pb was observed in the inelastic scattering of 17O
at 22 MeV/nucleon and 84 MeV/nucleon, respectively, and 36Ar at 95 MeV/nucleon [30, 31]. What
one clearly sees is that the “bump” corresponding to the GDR at 13.5 MeV is appreciably enhanced.
This feature is solely due to one agent: the electromagnetic interaction between the nuclei. This
interaction is more effective at higher energies, and for increasing charge of the projectile.

Baur and Bertulani showed [15] that the excitation probabilities of the GDR in heavy ion
collisions approach unity at grazing impact parameters. They also showed that, if double GDR
resonance (i.e. a GDR excited on a GDR state) exists then the cross sections for their excitation
in heavy ion collisions at relativistic energies are of order of hundreds of millibarns. These cal-
culations motivated experimentalists [24] [30, 31] to look for the signatures of the DGDR in the
laboratory. This has by now become a very active field in nuclear physics with a great theoretical
and experimental interest [24, 26, 25, 5].

First evidence for the excitation of the two-phonon isovector giant dipole resonance (ivDGDR)
came from double charge exchange reactions of pions on different targets. The signal emerges as a
broad ridge in the missing energy spectrum of the scattered pion at about twice the energy of the
one-phonon giant dipole resonance (ivGDR), which is dominated by a smooth background from
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noncoherent excitations. At that time it was argued by Baur and Bertulani [15] that electromag-
netic excitation bombarding targets with heavy ion beams at relativistic energies should be an
outstanding probe to investigate multiphonon excitations of the giant resonance. Their basic idea
was to assume a two-step excitation process, where an oscillator phonon is excited ensuing from
the absorption of a virtual phonon, and consequently, if the flux of virtual photons is high enough,
a second photon of appropriate energy can be absorbed before the first phonon had time to decay.
Indeed, already in 1955, D. Brink [35] has argued that due to the internal structure of such giant
resonances they can be build not only on the ground state but on any excited states as well yet
also on a giant resonance itself.

This process to take place requires light of special quality. When the two ions are passing by
each other, the collision partners recognize, pictorially spoken, flash-lights of very short duration.
In the language of Fermi, Weizsäcker and Williams [36], a shower of virtual photons impinges onto
the ions. The maximum energy of these photons, their hardness so to say, is determined from
adiabacity and can be controlled experimentally by a proper choice of the beam momentum. The
intensity of the photon flux is steered by the charge of the collision partners, which is the dominant
parameter compared to a relativistic enhancement of the field stemming from retardation. Indeed
the electromagnetic field acting in such peripheral collisions of heavy ions, where the minimal
distance between the collision partners or impact is as large that strong interaction is impossible,
can be hard enough to allow production of Higgs particles through photon-photon fusion in case of
the Large Hadron Collider (LHC) currently set into operation at CERN (for a popular review, see
Ref. [37]).

0.11 Singles spectra in Coulomb excitation of GDR

In this Section, we apply the formalism developed in previous Sections in the analysis of the data
of Ref. [38], in which a projectile of 17O with an energy of Elab = 84A MeV excites the target
nucleus 208Pb to the GDR. We first seek parameters of the optical potential which fits the elastic
scattering data. The optical potential has a standard Woods-Saxon form with parameters

V0 = 50 MeV , W0 = 58 MeV , RV = RW = 8.5 fm and
aV = aW = 0.85 fm . (200)

In order to calculate the inelastic cross section for the excitation of the GDR, we use a Lorentzian
parameterization for the photoabsorption cross section of 208Pb [39], assumed to be all E1, with
EGDR = 13.5 MeV and Γ = 4.0 MeV. Inserting this form into Eq. 179 and doing the calculations
implicit in Eq. 178 for dnE1/dΩ, one can calculate the angular distribution and compare it with
the data in Fig. 7 (left). The agreement with the data is excellent, provided we adjust the overall
normalization to a value corresponding to 93 % of the energy weighted sum rule (EWSR) in the
energy interval 7 − 18.9 MeV. Taking into account the ±10% uncertainty in the absolute cross
sections quoted in Ref. [29], this is consistent with photoabsorption cross section in that energy
range, for which approximately 110 % of the EWSR is exhausted.
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Figure 7: Left figure: Ratio to the Rutherford cross section of the elastic cross section for the
17O+208Pb reaction at 84A MeV, as a function of the center-of-mass scattering angle. Data
are from Ref. [29]. Right figure: Virtual photon numbers for the electric dipole multipolarity
generated by 84A MeV 17O projectiles incident on 208Pb, as a function of the center-of-mass
scattering angle. The solid curve is a semiclassical calculation. The dashed and dotted
curves are eikonal calculations with and without relativistic corrections, respectively.

To unravel the effects of relativistic corrections, one can repeat the previous calculations un-
plugging the factor γ = (1− v2/c2)−1 which appears in the expressions 180 and 181 and using the
non-relativistic limit of the functions GE1m, as given in Eq. 176. These modifications eliminate
the relativistic corrections on the interaction potential. The result of this calculation is shown in
Fig. 7 (dotted curve). For comparison, we also show the result of a full calculation, keeping the
relativistic corrections (dashed curve). One observes that the two results have approximately the
same pattern, except that the non-relativistic result is slightly smaller than the relativistic one. In
fact, if one repeats the calculation for the excitation of GDRiv using the non-relativistic limit of
Eqs. 180 and 181, one finds that the best fit to the data is obtained by exhausting 113 % of the
EWSR. This value is very close to the 110 % obtained by Barrette et al [29].

In Fig. 7 (right) we also show the result of a semiclassical calculation (solid curve) for the
GDRiv excitation in lead, using Eq. 194 for the virtual photon numbers. One observes that the
semiclassical curve is not able to fit the experimental data. This is mainly because diffraction
effects and strong absorption are not included. But the semiclassical calculation displays the region
of relevance for Coulomb excitation. At small angles the scattering is dominated by large impact
parameters, for which the Coulomb field is weak. Therefore the Coulomb excitation is small and
the semiclassical approximation fails. It also fails in describing the large angle data (dark-side of
the rainbow angle), since absorption is not treated properly. One sees that there is a “window” in
the inelastic scattering data near θ = 2 − 3◦ in which the semiclassical and full calculations give
approximately the same cross section.
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Figure 8: Left side: differential cross section for the excitation of a giant dipole resonance in
Pb+Pb collisions at 640 MeV/nucleon, as a function of the center of mass scattering angle.
Right side: differential cross sections for the excitation of 350 keV continuun states in 8B
projectiles incident on Pb targets at 50 and 250 MeV/nucleon, respectively.

In Fig. 8 (left) we show a similar calculation, but for the excitation of the GDR in Pb for the
collision 208Pb + 208Pb at 640A MeV. The dashed line is the result of a semiclassical calculation.
Here we see that a purely semiclassical calculation, using Eq. 112 is able to reproduce the quantum
results up to a maximum scattering angle θm, at which strong absorption sets in. This justifies the
use of semiclassical calculations for heavy systems, even to calculate angular distributions. The
cross sections increase rapidly with increasing scattering angle, up to an approximately constant
value as the maximum Coulomb scattering angle is neared. This is explained as follows. Very
forward angles correspond to large impact parameter collisions in which case ωb/γv > 1 and the
excitation of giant resonances in the nuclei is not achieved. As the impact parameter decreases,
increasing the scattering angle, this adiabacity condition is fulfilled and excitation occurs. In Fig. 8
(right side) we plot the differential cross sections for the excitation of 350 keV continuum states in
8B projectiles incident on Pb targets at 50 and 250 MeV/nucleon, respectively. Again, the dashed
lines are semiclassical calculations, based on Eq. 112.

As discussed above, the semiclassical result works for large Z nuclei and for relativistic energies
where the approximation of Eq. 182 is justified. However, angular distributions are not useful at
relativistic energies since the scattering is concentrated at extremely forward angles. The quantity
of interest in this case is the total inelastic cross section. If we use a sharp-cutoff model (or black-
sphere model) for the strong absorption, so that χI(b) =∞ for b < bmin and 0 otherwise, then Eqs.
180 and 181 yield the same result as an integration of the semiclassical expression, Eq. 195, from
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bmin to ∞, as shown in Ref. [23].

Supplement F

0.12 Coulomb excitation of a harmonic oscillator

Let us consider the Coulomb excitation of a linear harmonic oscillator. For dipole excitations the
interaction Hamiltonian has the form (see Eq. 32)

HE1
int(t) = xf(t) + zg(t) , (201)

where f(t) and g(t) are time-dependent functions and x and z are the intrinsic nuclear coordi-
nates perpendicular and parallel to the beam, respectively. This field induces oscillations in the
perpendicular and parallel directions, and are therefore independent.

Introducing the occupation numbers nx ≡ n1 = 0, 1, 2, · · · and nz ≡ n0 = 0, 1, 2, · · · the
total number of occupied states is

N = nx + nz. (202)

Considering only the oscillations along one of the directions, e.g., along the x-direction, the
full Hamiltonian is

H = H0 − xf(t) , (203)

where the minus sign is arbitrary and was introduced to simplify further the equations.
The solutions for the intrinsic Hamiltonian, H0 = mω2x2/2, are obtained in terms of the

Hermite polynomials (here, n = nx)

ψ(x) =
(mω
π~

)1/4
(2nn!)−1/2Hn

(√
mω

~
x

)
exp

(
−mωx

2

2~

)
. (204)

Since this forms a complete basis, the wavefunction at time t can be written as

ψ(x, t) =
∞∑
n=0

exp [−iω (n+ 1/2) t] an(t) ψn(x) (205)

with the condition an(0) = δn,0. Inserting this expansion into the time-dependent Schrödinger

equation

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m
∂2

∂x2
+

1
2
mω2x2 + xf(t)

]
ψ(x, t) (206)

and using the identity (which can be derived from Hn+1(x) = 2xHn(x)− 2nHn−1(x))

xψn(x) =
(

~
2mω

)1/2 [√
nψn−1(x) +

√
n+ 1ψn+1(x)

]
(207)
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we get

i~
∞∑
n=0

exp [−iω (n+ 1/2) t]
dan
dt

(t) ψn(x) =

−
(

~
2mω

)1/2

f(t)
∞∑
n=0

exp [−iω (n+ 1/2) t] an(t)

×
[√
nψn−1(x) +

√
n+ 1ψn+1(x)

]
. (208)

Using the orthogonality conditions of ψn one obtains

dan
dt

(t) = if0(t)
[
e−iωt

√
n+ 1an+1(t) + e−iωt

√
nan−1(t)

]
, (209)

where
f0(t) = (2m~ω)−1/2 f(t). (210)

The above equation allows to obtain an(t) by interaction, starting with n = 0. The solution is

an(t) = in
χn(t)√
n!

exp
[
−
∫ t

0
dt′f0(t′)e−iωt

′
χ(t′)

]
(211)

where

χ(t) =
∫ t

0
dt′f0(t′)e−iωt

′
χ(t′) . (212)

But, ∫ t

0
dt′f0(t′)e−iωt

′
χ(t′) =

∫ t

0
dt′
dχ∗

dt′
(t′) χ(t′) =

1
2
|χ(t)|2 (213)

and the probability to excite the nth state is

Pn(t) =
|χ(t)|2n

n!
exp

[
− |χ(t)|2

]
. (214)

For a nucleus, n can also be considered as the number of phonons for the vibration along the
x-direction. The probability to put n0 vibrations along the z-direction and n1 vibrations along the
x-direction is

Pn0,n1(t) =
|χ0(t)|2n0 |χ1(t)|2n1

n0!n1!
exp

[
− |χ0(t)|2 − |χ1(t)|2

]
. (215)

The probability that N-phonons will be excited is

PN =
∑

n0, n1(N=n0+n1)

Pn0,n1 =
N∑

n0=0

Pn0,N−n0

=
N∑

n0=0

|χ0(t)|2n0 |χ1(t)|2(N−n0)

n0! (N − n0)!
exp

[
− |χ0(t)|2 − |χ1(t)|2

]

=
1
N !

exp
[
− |χ0(t)|2 − |χ1(t)|2

] N∑
n0=0

N ! |χ0(t)|2n0 |χ1(t)|2(N−n0)

n0! (N − n0)!
. (216)
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Figure 9: The harmonic oscillator model for the excitation of collective states in nuclei.

The last sum yields |φ(t)|2N , where

|φ(t)|2 ≡ |χ0(t)|2 + |χ1(t)|2 . (217)

Thus, one gets the Poisson formula

PN =
1
N !
|φ(t)|2N exp

[
− |φ(t)|2

]
. (218)

for dipole excitations of a harmonic oscillator. In Ref. [1, 2] it was shown that the same result can
be obtained for quadrupole excitations. Thus, the above result is very general (see Figure 9).

The Poisson equation is very useful one. It shows that all one needs to obtain the probability
to excite the nth state is to calculate the probability to excite the N = 1 state with first-order
perturbation, P first0→1 = |φ(t)|2 , and use it in the Poisson formula. Although this only holds for
a harmonic oscillator system, it has been largely used in many theoretical considerations of more
complicated systems. The factor exp

[
− |φ(t)|2

]
accounts for the loss of occupation probability due

to the excitation to all states from a given one. It also is responsible for conservation of unitarity,
so that

∑∞
N=0 PN = 1.
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0.13 Excitation and photon decay of the GDR and

double-GDR

We now consider the excitation of the target nucleus to the giant dipole resonance and the subse-
quent photon decay of that excited nucleus, leaving the target in the ground state. Experimentally,
one detects the inelastically scattered projectile in coincidence with the decay photon and demands
that the energy lost by the projectile is equal to the energy of the detected photon. To the extent
that the excitation mechanism is dominated by Coulomb excitation, with the exchange of a single
virtual photon, this reaction is very similar to the photon scattering reaction, except that in the
present case the incident photon is virtual rather than real. In this Section, we investigate whether
the connection between these two reactions can be formalized.

We have seen that, under the conditions ∆E/E � 1, the cross section for excitation of the
target nucleus partitions into the following expression (we assume that the contribution of the
E1-multipolarity is dominant):

d2σC
dΩdEγ

(Eγ) =
1
Eγ

dnγ
dΩ

(Eγ) σγ (Eγ) , (219)

where σγ
(
Eγ
)

is the photonuclear cross section for the absorption of a real photon with energy
Eγ = ∆E by the target nucleus, and the remaining terms on the right-hand-side are collectively
the number of virtual photons per unit energy with energy Eγ . This latter quantity depends on
the kinematics of the scattered heavy ion and on the optical potential but is otherwise independent
of the target degrees of freedom. This partitioning allows one to relate the excitation cross section
to the photoabsorption cross section.

Now, the usual way to write the cross section d2σCγ/dΩdEγ for the excitation of the target
followed by photon decay to the ground state is simply to multiply the above expression by a
branching ratio Rγ , which represents the probability that the nucleus excited to an energy Eγ will
emit a photon leaving it in the ground state [30]:

d2σCγ
dΩdEγ

(Eγ) =
1
Eγ

dnγ
dΩ

(Eγ) σγ (Eγ) Rγ (Eγ) . (220)

Instead, we propose the following expression, in complete analogy with Eq. 219:

d2σCγ
dΩdEγ

(Eγ) =
1
Eγ

dnγ
dΩ

(Eγ) σγγ (Eγ) , (221)

where σγγ (Eγ) is the cross section for the elastic scattering of photons with energy Eγ . Formally,
these expressions are equivalent in that they simply define the quantity Rγ . However, if one treats
Rγ literally as a branching ratio, then these expressions are equivalent only if it were true that
the photon scattering cross section is just product of the photoabsorption cross section and the
branching ratio. In fact, it is well-known from the theory of photon scattering that the relationship
between the photoabsorption cross section and the photon scattering cross section is more com-
plicated [41]. In particular, it is not correct to think of photon scattering as a two-step process
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Figure 10: Left side: cross section for the excitation of the GDR without the detection of the
decay photon. Data are from Ref. [30]. Right side: Cross section for excitation followed by
γ-decay of 208Pb by 17O projectiles at 84A MeV. The solid (dashed) line includes (excludes)
the Thomsom scattering amplitude. Data are from Ref. [30].

consisting of absorption, in which the target nucleus is excited to an intermediate state of energy
Eγ , followed by emission, in which the emitted photon has the same energy Eγ . Since the inter-
mediate state is not observable, one must sum over all possible intermediate states and not just
those allowed by conservation of energy. Now, if the energy Eγ happens to coincide with a narrow
level, then that level will completely dominate in the sum over intermediate states. In that case,
it is proper to regard the scattering as a two-step process in the manner described above, and
the two expressions for the cross section will be equal. However, for Eγ in the nuclear continuum
region (e.g., in the region of the GDR), this will not be the case, as demonstrated in the following
discussion.

We again consider the inelastic scattering of 17O projectiles of energy Elab = 84 MeV/nucleon
from a 208Pb nucleus at an angle of 2.5◦. We use Eq. (178) to calculate the E1 virtual photon
number and we use a Lorentzian parameterization of the GDR of 208Pb. We calculate Rγ and σγγ
according to the prescriptions of Ref. [30] and Ref. [41], respectively; in both cases we neglect the
statistical contribution to the photon decay. The results are compared in Fig. 10 (left), where is
very evident that they make very different predictions for the cross section, especially in the wings
of the GDR.

We next use these expressions to compare directly with the data of Ref. [30]. For this purpose,
we again calculate σγγ using the formalism of Ref. [41], which relates σγγ to the total photoabsorp-
tion. For the latter, we use the numerically-defined data set of Ref. [39] rather than a Lorentzian
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Figure 11: Experimental results for 136Xe projectile excitation (at 690A MeV) on a Pb target
(squares) and a C target (circles). The spectrum for the C target is multiplied by a factor
2 for better presentation. The resonance energies for one- and two-phonon giant resonances
are indicated. The dashed curve reflects the results of a first-order calculation for the Pb
target. The figure is taken from Ref. [43].

parameterization. The effect of the underlying compound nuclear levels (i.e., the statistical contri-
bution to the photon scattering) is also included. The calculation is compared to the data in Fig.
10. The left part shows the cross section for the excitation of the GDR without the detection of the
decay photon. The agreement with the data is excellent, giving us confidence that this calculation
of the virtual photon number as a function of Eγ is correct. The right part of Fig. 10 shows the
cross section for the excitation-decay process as a function of Eγ . Although the qualitative trend
of the data are well described, the calculation systematically overpredicts the cross section on the
high-energy side of the GDR (solid curve). If the Thompson amplitude is not included in σγγ , the
calculation is in significantly better agreement with the data (dashed curve).

The first Coulomb excitation experiments for the excitation of the DGDR were presented in
Refs. [42, 43]. In Fig. 11 we show the result of one of these experiments, which looked for
the neutron decay channels of giant resonances excited in relativistic projectiles. The excitation
spectrum of relativistic 136Xe projectiles incident on Pb are compared with the spectrum obtained
in C targets. A comparison of the two spectra immediately proofs that nuclear contribution to the
excitation is very small. Another experiment [42] dealt with the photon decay of the double giant
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resonance. A clear bump in the spectra of coincident photon pairs was observed around the energy
of two times the GDR centroid energy in 208Pb targets excited with relativistic 209Bi projectiles.
The theory of Coulomb excitation in the harmonic picture seems to describe reasonably well the
cross sections for these processes.

Coulomb excitation of exotic nuclei

0.14 Introduction

Coulomb excitation is a well established experimental probe in nuclear physics [44, 45, 46]. Tradi-
tionally, stable targets of the nuclei to be studied are prepared and then bombarded with heavy-ion
beams at beam energies of a few million electron-volts per nucleon, well bellow the Coulomb bar-
rier. When extended to radioactive beams this technique gives rise to some experimental challenges
[47]. One of these is that the radioactive beams are several orders of magnitude less intense than
stable beams. The other is that the beams prepared in-flight separation have energies of 30-1000
MeV/nucleon. One of the experimental ideas is to scatter exotic beam particles off a stable heavy
target and to detect them in coincidence with γ-rays, indicating an inelastic scattering process.
The large secondary beam energies allow the use of very thick targets, partially offsetting the low
beam intensities.

In Figure 12 we show the energy dependence of the Coulomb excitation cross section for a 40Sn
beam incident onto a gold target. We see that the cross section is dominated by giant resonance
excitation (GDR and GQR) at large beam energies. We have discussed the topic of excitation of
Coulomb excitation of giant resonances. The excitation of a particular low-lying state in the nucleus
is a very important tool for the nuclear spectroscopy of unstable nuclei. However, the physics to
pursue is clear. These states are well defined in excitation energy and have small widths. Thus, the
spin and parities of these states are obtained from a detailed study of the angular distribution of
the γ-rays. The excitation cross section carries the information on the reduced transition strengths,
B(πλ; Ii −→ If ) for the excitation. A great deal of nuclear structure information has been obtained
with this experimental method over the years .

We will investigate the Coulomb excitation to the continuum states of exotic nuclei. Since
most of the rare isotope nuclei are weakly-bound, the Coulomb excitation usually leads to their
breakup. This situation is similar to what happened with the Comet P/Shoemaker-Levy in 1994
which crashed on the surface of Jupiter. Approximately 1.5 to 2.2 hours after closest approach,
the comet (which was presumably a single body at the time) was broken apart by tidal forces into
at least 21 pieces. The pieces continued to orbit Jupiter with a period of approximately 2 years.
Due to gravitational forces from the Sun which changed the orbits slightly, on the next approach to
Jupiter the pieces impacted the planet. The pieces were spread out in a string, with the discernible
pieces. The first piece which impacted Jupiter on July 16, 1994 and the last on July 22, 1994.

There are many aspects of the excitation to the continuum which have not been considered yet.
In first order perturbation theory the Coulomb excitation cross sections are directly related to the
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Figure 12: Cross sections for Coulomb excitation of the first excited state (2+), the giant
dipole resonance (GDR), and the giant quadrupole resonance (GQR) for a 40Sn beam inci-
dent on a gold target, versus the beam energy. The calculation assumes a minimum impact
parameter of 16 fm.

photonuclear cross sections by means of the equation [48]

dσC (Ex)
dEx

=
∑
Eλ

nEλ (Ex)
Ex

σγEλ (Ex) +
∑
Mλ

nMλ (Ex)
Ex

σγMλ (Ex) , (222)

where σγπλ (Ex) are the photonuclear cross sections for the multipolarity πλ (π = E or M , electric
or magnetic) and Ex is the excitation energy.

The photo-nuclear cross sections are related to the reduced matrix elements, for the excitation
energy Ex, through the relation [49]

dσC (Ex)
dEx

=
(2π)3(λ+ 1)
λ [(2λ+ 1)!!]2

(
Ex
~c

)2λ−1 dB

dEx
(πλ, 0→ λ,Ex) (223)

where dB/dEx, are the reduced matrix elements, or response functions.
For differential cross sections one can write

dσ(Ex)
dΩ

=
1
Ex

∑
πλ

dnπλ
dΩ

(Ex, θ)σπλγ (Ex). (224)
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Figure 13: This is a photo of Jupiter and comet Shoemaker-Levy 9, as imaged by the Hubble
Space Telescope (HST), on May 18, 1994, when the giant planet was at a distance of 420
million miles (670 million km) from Earth. The gravitational interaction of Jupiter with the
comet has broken it up into many pieces, as can be seen in the left part of the figure.

It is important to account for the strong absorption properly. As stated previously, the total
cross section for Coulomb excitation in high energy collisions is well described semiclassically or
quantum-mechanically. Semiclassically one uses a minimum impact parameter. For stable nuclei
this quantity is easily defined. But, for halo nuclei with a diffuse matter distribution, it is not.
Moreover, since the Coulomb excitation cross sections are large, an ill-defined minimum impact
parameter can lead to a large error in the magnitude of the total Coulomb excitation cross section.
A better choice is to use the eikonal approach of Ref. [50].

Assuming that the virtual photon numbers can be well calculated, one needs the photonuclear
cross sections σπλγ (Ex), or equivalently, dB(πλ, Ji → Jf, Ex)/dEx ≡ B(πλ, Ji → Jf,Ex). Several
nuclear models were developed to obtain the response functions dB(πλ, Ji → Jf, Ex)/dEx for halo
nuclei.

Fortunately, nuclear physics allows us to use simple models as inputs to the Coulomb breakup
mechanism. Also, since the nuclear fragments are charged, interesting post-fragmentation phenom-
ena arise. In the next Sections we will describe some commonly used models. Some of them are
very crude, but enable to obtain the most relevant features of the fragmentation process.
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Supplement G

0.15 Dominance of a state in the continuum

It often occurs that the Coulomb excitation mechanism is dominated by transitions between the
ground state and a continuum resonant state. In this case, it was shown by Canto et al. [51] that
this part of the excitation mechanism can be described exactly in a coupled-channels approach,
while the other excitations can be described perturbatively. The method allows the inclusion of
the width of the states in a very simple and straightforward way. Fig. 14 represents the procedure.
One resonance is coupled to the ground state while the remaining resonances are fed by these
two states according to first order perturbation theory. The coupling matrix elements involves the
ground state and a set of doorway states |D(n)

λµ >, where n specifies the kind of resonance and λµ
are angular momentum quantum numbers. The amplitudes of these resonances in real continuum
states are

α(n)(ε) =< φ(ε)|D(n)
λµ >, (225)

where φ(ε) denotes the wavefunction of one of the numerous states which are responsible for the
broad structure of the resonance. In this equation ε = Ex −En, where Ex is the excitation energy
and En is the centroid of the resonance considered.

Let us assume for simplicity that the dominant resonant state has spin and parity JP = 1−.
However, the following results can be easily generalized to all spin-parity types. As we have stated
above, in this approach we use the Coupled-Channels equations for the coupling between the ground
state and the dominant resonance. This results in the following Coupled-Channels equations [51]:

i~
da0

dt
(t) =

∑
µ

∫
dε < φ(ε)|D(1)

1µ >< D(1)
1µ |VE1,µ(t)|0 > exp

{
− i

~
(E1 + ε)t

}
a

(1)
ε,1µ(t)

=
∑
µ

∫
dε α(1)(ε) V (01)

µ (t) exp
{
− i

~
(E + ε)t

}
a

(1)
ε,1µ(t), (226)

and

i~
da

(1)
ε,1µ

dt
(t) =

[
(α(1)(ε) V (01)

µ (t)
]∗

exp {i(E1 + ε)t/~} a0(t). (227)

Above, (n = 1) stands for the dominant resonance, a0 denotes the occupation amplitude of the
ground state and a

(1)
ε,1µ the occupation amplitude of a state located at an energy ε away from the

centroid of the resonance, and with magnetic quantum number µ (µ = −1, 0, 1). We used the short
hand notation V

(01)
µ (t) =< D

(1)
1µ |VE1,µ(t)|0 >.

Integrating Eq. 227 and inserting the result in Eq. 226, we get the integro-differential equation
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Figure 14: Schematic representation of Coulomb excitation of a dominant resonant state and
other states weakly-coupled to the ground state.

for the ground state occupation amplitude

d2a0

dt2
(t) = − 1

~2

∑
µ

V (01)
µ (t)

∫
dε |α(1)(ε)|2

×
∫ t

−∞
dt′

[
V (01)
µ (t′)

]∗
exp

{
−i(E1 + ε)(t− t′)/~

}
a0(t′), (228)

where we used that a(1)
ε,1µ(t = −∞) = 0. To carry out the integration over ε, we should use an

appropriate parametrization for the doorway amplitude α(1)(ε). A convenient choice is the Breit-
Wigner (BW) form which yields the square amplitude

|α(1)(ε)|2 =
1

2π

[
Γ1

ε2 + Γ2
1/4

]
, (229)

where Γ1 is chosen to fit the experimental width. In this case, this integral will be the simple
exponential ∫

dε |α(1)(ε)|2 exp
{
−i(E1 + ε)t

~

}
= exp

{
−i(E1 − iΓ1/2)t

~

}
. (230)
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A better agreement with the experimental line shapes of the giant resonances is obtained by
using a Lorentzian (L) parametrization for |α(1)(ε)|2, i.e.,

|α(1)(ε)|2 =
2
π

[
Γ1E

2
x

(E2
x − E2

1)2 + Γ2
1E

2
x

]
, (231)

where Ex = E1 + ε. The energy integral can still be performed exactly [52] but now it leads to the
more complicated result [51]∫

dε |α(1)(ε)|2 exp
{
−i(E1 + ε)t

~

}
=

(
1− i Γ1

2E1

)
exp

{
−i(E1 − iΓ1/2)t

~

}
+ ∆C(t) , (232)

where ∆C(t) is a non-exponential correction to the decay. For the energies and widths involved
in the excitation of giant resonances, this correction can be shown numerically to be negligible. It
will therefore be ignored. After integration over ε, Eq. 228 reduces to

d2a0

dt2
(t) = −S1

∑
µ

V (01)
µ (t)

∫ t

−∞
dt′
[
V (01)
µ (t′)

]∗
exp

{
−i(E1 − iΓ1/2)(t− t′)

~

}
a0(t′) (233)

where the factor S1 is S1 = 1 for BW-shape and S1 = 1− iΓ1/2E1 for L-shape.
We can take advantage of the exponential time-dependence in the integral of the above equation,

to reduce it to a set of second order differential equations. Introducing the auxiliary amplitudes
Aµ(t), given by the relation

a0(t) = 1 +
∑
µ

Aµ(t), (234)

with initial conditions Aµ(t = −∞) = 0, and taking the derivative of Eq. (234), one obtains

Äµ(t)−

[
V̇

(01)
µ (t)

V
(01)
µ (t)

− i

~

(
E1 − i

Γ1

2

)]
Ȧµ(t) + S1

|V (01)
µ (t)|2

~2

1 +
∑
µ′

Aµ′(t)

 = 0. (235)

Solving the above equation, we get a0(t). Using this amplitude and integrating Eq. (227), one
can evaluate a(1)

ε,1µ(t). The probability density for the population of a dominant continuum state
with energy Ex in a collision with impact parameter b, P1(b, Ex), is obtained trough the summation
over the asymptotic (t→∞) contribution from each magnetic substate. This yields

P1(b, Ex) = |α(1)(Ex − E1)|2
∑
µ

∣∣∣∣∫ ∞
−∞

dt′ exp
{
iExt

′} [V (01)
µ (t′)

]∗
a0(t′)

∣∣∣∣2 , (236)

where |α(1)(Ex−E1)|2 is given by Eq. 229 or by Eq. 231, depending on the choice of the resonance
shape.
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To first order, the contribution to the excitation of another resonance (the one on the top of
Fig. 14) from the dominant one is given by

P2(b, Ex) = |α(2)(Ex − E2)|2 S1

∑
ν

∣∣∣∣∣
∫ ∞
−∞

dt′ exp
{
iExt

′} ∑
µ

[
V (12)
νµ (t′)

]∗
×
∫ t′

−∞
dt′′V (01)

µ (t′′) exp
{
−i(E1 − iΓ1/2)(t− t′)

~

}
a0(t′′)

∣∣∣∣∣
2

. (237)

We should point out that Eq. 237 is not equivalent to second-order perturbation theory. This
would be true only in the limit a0(t) −→ 1. In this approach, a0(t) 6= 1, since it is modified by
the time-dependent coupling to the dominant state. This coupling is treated exactly by means of
the Coupled-Channels equations. This approach is justified due to the (assumed) small excitation
amplitude for the transition 1 −→ 2, since a1(t)� a0(t).

Equations similar to (236) can also be used to calculate the excitation probabilities directly
from the ground-state, with the proper choice of energies, widths, and transition potentials.

0.16 Cluster model

The cluster model [49] assumes a two-body description of one-body halos, e.g., 11Be
(10Be + n), 8B(7Be + p), and of three-body halos, e.g., 11Li(9Li + 2n), 6He(4He + n), etc. One
can obtain numerically the wave-functions of the (a = b + c)-system, given a potential Vbc (e.g.,
Woods-Saxon + spin - orbit + Coulomb, etc). However, as we have seen before, due to the small
binding energy of the halo systems the most important part of the wavefunction is beyond the
range of the potential Vbc. This part of the wavefunction is well described by an Yukawa of the
form

ψbc(r) = N0

√
η

2π
e−ηr

r
(238)

where η =
√

2µbcQ/~, µbc is the reduced mass of (b + c), Q is the separation energy, and N0 =
eηr0/

√
1 + ηr0 is a normalization factor which corrects the wavefunction to account for the finite

range, r0, of the (b+ c) potential. There is no resonance structure in the b+ c continuum. This is
clearly a good assumption for the deuteron and also for other neutron halo systems.

If we further assume that the final state is a plane-wave state (i.e., we neglect final state
interactions) ψf ≡ 〈q|r〉 = eiq.r. The response functions for electric multipole transitions2

dB

dEx
(Eλ,Ex) = S

∑
µ

∣∣∣〈q ∣∣∣Ô(Eλµ)
∣∣∣ψbc(r)

〉∣∣∣2 d3q

(2π)3
(239)

where S is a spectroscopic factor (i.e., probability to find the system in the state (b+ c)). Ô(Eλ) is
the electric multipole operator (see Supplement D) corrected to exclude c.m. motion, i.e.,

2Magnetic multiple transtions will be strongly suppressed and will not be considered here.
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Ô(Eλµ) = e
∑
i=p

[(
1− 1

A

)λ
+ (−1)λ

(Z − 1)
Aλ

]
rλi Yλµ + e

∑
i=n

Z

(
− 1
Aλ

)
rλi Yλµ (240)

where the sum runs over all protons (p) and neutrons (n) in the nucleus.
For a cluster-system the sum runs over the (effective) charges of the clusters. For example,

Ô(E1, µ) = e

(
ZbAc − ZcAb

Aa

)
rbcY1µ(r̂bc)

Ô(E2,µ) = e

(
ZbA

2
c + ZcA

2
b

A2
a

)
rbcY2µ(r̂bc) (241)

where r̂bc is the relative position of b − c. Using d3q = q2dqdΩq =
√

2Ex(µbc/~2)3/2dE
dΩq in Eq. 239 and integrating over Ω, one finds [54]

dB(Eλ;Ex)
dEx

=
2λ−1

π2
(λ!)2(2λ+ 1) SN2

0 [O(λ)]2
(

~2

µbc

)λ √
Q(Ex −Q)λ+1/2

E2λ+2
x

(242)

where

O(λ) =
ZbA

λ
c − (−1)λZcAλb

Aλa
e. (243)

The maximum of this function occurs at

Eλ =
2λ+ 2
λ+ 3/2

Q. (244)

In Figure 15(a) we show the photonuclear cross sections obtained by using Eq. 242 in the
definition 223. The E2 and E3 photonuclear cross sections are smaller than the E1 by factors of
order of 105 and 109, respectively3. The have a longer tail than the E1 photonuclear cross section
due to the factor E2λ−1

x in Eq. 223. These results show that a cluster-like correlation between
the valence neutrons is not so effective in producing an enhancement of the low energy part of the
photonuclear cross sections for higher multipolarities, as it does for the dipole case.

While the cluster model is questionable for 11Li it is quite reasonable for 11Be. 11Be may be
described, in a good approximation, as a neutron bound to a 10Be core. The 1/2+ spin-parity
of Be11 may be reproduced by adjusting the 10Be + n potential so as to yield a ground state for
the 2s1/2 orbit at 505 keV. For example, if one uses a simple Woods-Saxon potential of the form
V = V0/ {1 + exp [(r −R) /a]} + V p−Be

C (r) the parameters V0 = −51.55 MeV, R = 3 fm and
a = 0.505 fm will do the job, assuming that V p−Be

C (r) is the Coulomb potential between a uniform
charged sphere, with Z = 4, RC = R, and the proton. The response function may be obtained by
using this wave function for ψbc(r) in Eq. 239 and the continuum wave-function calculated for the
same potential.

3The spectroscopic factor and the normalization constant (S, and No, in eq. 242 were set to unity, for
simplicity.
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Figure 15: (a) Photo absorption cross section of 11Li in the cluster model. The solid (dashed)
[dotted] curve corresponds to dipole (quadrupole) [octupole] multipolarity. The quadrupole
(octupole) values were multiplied by a factor of 105 (109) [54]. (b) Coulomb dissociation
cross section 11Be+Pb→ n+ 10Be, at 70 MeV/nucleon, compared to a calculation based on
the cluster model. The dashed curve includes a reacceleration effect of the 10Be fragment.

However, the response function will be dominated by the tail of the ground state wave-function.
Thus, we can use the analytical formulas deduced above. For the Be11 case (Z = 4, A = 11) and
dipole excitations we get [55]

dB(E1)
dEx

= S1
e2ηr0

1 + ηr0

3~2

π2µ
e2

(
Z

A

)2√
Q

(Ex −Q)3/2

E4
x

. (245)

The Coulomb dissociation cross section obtained by using this response function is compared
to experiment by T. Nakamura et. al.[56]. In Figure 15(b) we show dσ/dEx (solid line), using
the cluster model, with S1 = 1, r0 = 4 fm is compared to the experimental data. We remark
that the spectroscopic factor S1 = 1 is not very far from the reported value of 0.77 [57] deduced
from the 11Be reaction. Thus, in view of the simplicity, we consider the cluster model to work
very well in this case. The dashed curve in Fig. 15(b) considers the effect of post-acceleration (or
reacceleration) which we shall discuss later.

Supplement B

0.17 The random phase approximation (RPA)

The RPA model is a useful tool to describe the nuclear response function in terms of microscopic
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degrees of freedom. There are many ways to derive the RPA. We will adopt the space (or coordinate)
representation, following the work of Bertsch and Shlomo [58, 59]. Let us assume that we know the
solutions of

Hφi = eiφi. (246)

The formal solution to (H + Vx)Ψ = EΨ is

Ψ = φ− Vx
H − E

Ψ. (247)

If V1 is a weak perturbation a state φi will change to a state φ′i. Using φ ≡ φi and Ψ ∼= φi in the
above equation

φ′i
∼= φi −

Vx
H − E

φi (248)

Using the completeness relation,
∑

i | φi >< φi | = 1, the second term above can be rewritten, as

φ
′
i
∼= φi +

∑
j

< i | Vx | j >
ei − ej

φj (249)

in an obvious notation.
If a weak time-dependent field Vx(r)cos(ωt) is turned on slowly at t = −∞, the perturbed wave

functions are found to be

φ′i(t) = φi +
1
2

∑
j

〈 i|Vx | j〉
{

e−iωt

ei − ej − ω
+

eiωt

ei − ej + ω

}
φj(t) (250)

which is a first-order solution of the time dependent Schrödinger equation

i

~
∂φi
∂t

= [H + Vx (r) cosωt]φi ≡
~2

2m
∇2φi + V φi + Vx (r, t)φi. (251)

The time-dependent density, counting all occupied orbitals, is

n (r, t) =
occ∑
i

∣∣φ′i(t)∣∣2 = n0 (r) + cosωt δn (r) (252)

where n0 (r) is the initial density (unperturbed), and

δn (r) =
occ∑
i

∑
j

〈 j|Vx | i〉 〈 i| n̂ (r) | j〉
{

1
ei − ej − ω

+
1

ei − ej + ω

}
. (253)

In this formula n̂ (r) means the density operator, and

〈 i| n̂ (r) | j〉 =
∑
k

∫
φ∗i (r1 . . . rn)φj (r1 . . . rn)

n−1∏
`6=k

dr`. (254)
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The time-dependent current is

j(r, t) = sinωt
occ∑
i

∑
j

〈 j|Vx | i〉 〈 i| j | j〉
[

1
ei − ej − ω

− 1
ei − ej + ω

]
(255)

where

〈 i| j | j〉 =
~

2im

∑
k

∫
[− (∇φ∗i )φj + φ∗i (∇φj)]

n−1∏
`6=k

dr`. (256)

We now define a response function for the density change at r inducing by a potential field at
r′, leaving out the explicit time dependence:

π0
(
r, r′, ω

)
=

occ∑
i

∑
j

〈 i|n (r) | j〉 〈 j|n
(
r′
)
| i〉
[

1
ei − ej − ω

+
1

ei − ej + ω

]
. (257)

Then the response to an arbitrary external field can be calculated from the integral

δnip =
∫
π0
(
r, r′

)
Vx
(
r′
)
d3r′ (258)

which is the independent particle response.
But, besides the external field, the induced density oscillation will cause the self-consistent field

to oscillate at the same frequency as well. The time-varying mean field is given by

δV (r) =
∫
d3r′

δV (r)
δn (r′)

δn
(
r′
)
. (259)

Adding this potential to the external field, we obtain an implicit equation for the self-consistent
density,

δnRPA (r) =
∫
π0 (r, r2)

[
Vx (r2) +

∫
d3r′

δVx (r2)
δη (r′)

δnRPA
(
r′
)]

d3r2. (260)

Defining the RPA response function

δnRPA =
∫
πRPA

(
r, r′

)
Vx(r′)d3r′ (261)

the previous equation is satisfied for any Vx if πRPA satisfies the implicit equation

πRPA
(
r, r′

)
= π0

(
r, r′

)
+
∫
d3r2d

3r3 π
0 (r, r2)

δVx (r2)
δn (r3)

πRPA
(
r3, r′

)
. (262)

Compactly, in operator form,

πRPA = π0 + π0 δV

δn
πRPA (263)
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which has the formal solution

πRPA=
[
1− π0 δV

δn

]−1

π0. (264)

In practical terms, the equation is often replaced by a matrix equation, representing π (r, r′) on a
spatial mesh [58]. Then the solution is obtained by inverting the matrix representing

(
1− π0δV/δn

)
.

Of importance to calculate the Coulomb excitation cross sections is the so-called strength func-
tion, or response function, defined as

S (Vx, ω) =
∑
f

|< i |Vx| f >|2 δ (ω − Ei − Ef ) . (265)

Giving π (r, r′, ω) a small imaginary part and using Im [1/ (x+ iη)] = πδ (x) , one can show that

S (Vx, ω) =
1
π

∫
d3rd3r′ V x (r)Vx

(
r′
)

Imπ
(
r, r′

)
. (266)

The above formalism is especially useful if one has a separable interaction for δV/δn in Eq.
264, i.e., if

v
(
r, r′

)
= kf (r) f

(
r′
)
≡ δV/δn (267)

then

πRPA
(
r, r′

)
=
[
1− k

∫
d3rd3r′f (r) f

(
r′
)
π0
(
r, r′

)]−1

π0. (268)

The resonances of the RPA theory are found at the singularities of the above function, i.e.,

1 + k

∫
d3rd3r′f (r) f

(
r′
)
π0
(
r, r′

)
= 0. (269)

This is called the RPA dispersion relation. Using Eq. 257 we can rewrite it as

∑
ph

|< p | f | h >|2
[

1
ep − eh − ω

+
1

ep − eh + ω

]
= −1

k
. (270)

The qualitative behavior of the RPA resonances may be seen from a graphical solution of
270. (Note that in 270, p denotes particle, or occupied, states and h are hole, or unoccupied,
states). The solid lines on Fig. 16 are the left-hand-side of Eq. 270. The function has poles at
energies εi corresponding to particle-hole excitations, ep− eh. The solutions to the equation are the
frequencies where the functions equals −1/k.

For a repulsive interaction (k > 0) there is a solution at an energy higher than all the particle-
hole energy differences. This is the collective vibration; it will have a large transition strength for
the field f . There are also other solutions to the dispersion relation located near the unperturbed
particle-hole energies, indicated by small dots. When the interaction is attractive, there will be a
resonance lower in energy than the lowest particle-hole state (large circles).
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Figure 16: Graphical solution of RPA equations.

In the limit when all particle-hole energies are degenerated in energy, i.e., ep − eh = e, the
dispersion relation 270 has a simple solution given by

ω2
c = e2 + 2ek

∑
ph

|< p | f | h >|2 . (271)

Thus, the sign of v determines the direction of the energy shift with respect to the particle-hole
state; an attractive v lowers ω while a repulsive interaction raises it.

The above formalism has been used, e.g., in Ref. [58] and RPA computer program along this
approach is given in Ref. [59]. But, this formalism depends on the separability of the residual
interaction. Since the exchange interaction is non-local, a separable interaction is not always
convenient. To treat the non-local interactions properly a matrix formulation of RPA is more
appropriate. In orbital representation

π0
(
r, r′

)
=
∑
i,j,k,l

< i | n̂ (r) | j > π0 (ij, kl) < k | n̂
(
r′
)
| l > (272)

where
π0(ij, kl) = δikδjl

ni − nj
ei − ej − ω

(273)

with ni = 0 (1) for empty (occupied) states.
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It is easy to see that this definition is equivalent to 257. Inserting 272 in 273 we get

π0 =
∑
i,j,k,l

< i | n̂ (r) | j > δikδjl
ni − nj

ei − ej − ω
< k | n̂

(
r′
)
| l >

=
∑
i,j,k,l

{
< iempty | n̂ (r) | l > (−nj) δj`

ei − ej − ω
< iempty | n̂

(
r′
)
| l >

+ < iocc | n̂ (r) | l >
(1− nj) δjl
ei − ej − ω

< iocc | n̂
(
r′
)
| l >

}
=

∑
ij

{
< iempty | n̂ (r) | jocc >

(−1)
ei − ej − ω

< iempty | n̂
(
r′
)
| jocc >

+ < iocc | n̂ (r) | jempty >
1

ei − ej − ω
< iocc | n̂

(
r′
)
| jempty >

}
. (274)

Exchanging the indices i and j of the first term, the Eq. 257 is obtained.
The residual interaction is represented by

< ij | v | k` > =
∫
d3rd3r′φ∗i (r)φj (r)

δV (r)
δn (r′)

φ`
(
r′
)
φk
(
r′
)
. (275)

It is often convenient to express the RPA configurational response in a diagonal form. To
accomplish this, we define the amplitudes for the orbital pairs (ij) as xα(i, j), where the α labels
the eigenvectors. In this representation the response function is

πRPA (ij, k`) =
∑
α

2ωαxα (ij)xα (k`)
ω2 − ω2

α

. (276)

The eigenvalue equation is simply

(ei − ej − ωα)x (ij) + (ni − nj)
∑
k`

< ij | v | k` > x (k`) = 0. (277)

The normalization of an x(i, j) vector is∑
ij

(ni − nj)x2
α (ij) = 1. (278)

It is common to use a notation with particle-hole amplitudes (ni − nj) = +1 denoted by Xij =
Xph and hole-particle amplitudes (nj − ni = +1) by Yph. The matrix eigenvalue equation is written(

A B
−B −A

)(
X
Y

)
= ω

(
X
Y

)
(279)

with
Aph,p′h′ = (ep − eh) δp,p′δh,h′ + < ph | v | p′h′ > (280)
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and
Bph,p′h′ =< hp | v | p′h′ > . (281)

The corresponding normalization equation is∑
ph

(
X2
ph − Y 2

ph

)
= 1. (282)

In terms of the eigenvector amplitudes, the transition density for the vibration α is given by

δn (r) =
∑
ij

〈i| n̂ (r) |j〉xα (ij) =
∑
ph

〈p| n̂ (r) |h〉Xph + 〈h| n̂ (r) |p〉Yph. (283)

The transition potential of the vibration maybe defined similarly, using

δV =
∫
d3r′δn

(
r′
)
v
(
r− r′

)
(284)

where v (r− r′) is the two-particle interaction. Given the transition potential of the vibration, the
X and Y amplitudes may be recovered from

Xα,ph =
< p | δV | h >
ep − eh − ωα

, Yα,ph =
< h | δV | p >
ep − eh + ωα

(285)

For the simple case that there is only one particle-hole configuration, 〈hp| v |ph〉 = 〈ph| v |hp〉 =
V. Then, V, X and Y are numbers rather than matrices or vectors and the eigenvalue equation
reads (abbreviating ep − eh ≡ e)

eX + V (X + Y ) = ωX, −eY − V (X + Y ) = ωY

or
(e+ 2V ) (X + Y ) = ω (X − Y ) , e (X − Y ) = ω (X + Y ) . (286)

The X+Y term is proportional to a density and the X−Y term is proportional to a current.
The 1st equation behaves like Newton’s equation, relating the time derivative of the current to
forces which depend linearly on a density distribution. The second equation is a consequence of
the continuity condition which relates a time rate of change of density to the current. The two
equations can only be satisfied simultaneously if the frequency ω obeys the relation,

ω2 = e2 + 2V e

which is the same as Eq. 271.
If V is weak the change in ω is small and ω ≈ e+ V, what is expected for a small perturbation.
Using 285 and 282 we find

X =
√
e

ω

V

e− ω
, Y =

V

e+ ω
. (287)
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Suppose we have an operator M with the particle-hole matrix element m = 〈p|M |h〉 =
〈h|M |p〉 . Then from Eq. 265 one gets the collective state transition strength

[〈0|M |RPA〉]2 = m2 (X + Y )2 = m2 e

ω
. (288)

Thus excitations which are shifted to lower energy by the interaction have a larger transition
strength. But, the oscillator strength (sum rule) associated with the transition is proportional to
288 × ω, and is thus independent of the residual interaction.

0.18 Collective response in halo nuclei

For isovector excitations, i.e., E1-excitations, the residual nucleon-nucleon interaction (see Supple-
ment B) can be chosen as a density dependent contact interaction.

v =
∑
i<j

(τi · τj) vτδ (ri − rj) (289)

with vτ = 350 MeV fm3 [58]. The interaction strength vτ is chosen as a compromise between a
value that fits the symmetry energy of nuclear matter and a value that fits the giant dipole in 16O.

The first RPA calculation for 11Li was performed by Bertsch and Foxwell [60]. They have chosen
a mean-field Woods-Saxon potential which yields an occupied p1/2 neutron orbital bound by 0.2
MeV. Fig. 17(a) shows the results of their calculations for the dipole response of 11Li. The “free
response” is what is obtained by switching-off the residual interaction (see Supplement B). This
has a broad peak around 15 MeV associated with 1~ω transitions, and a low continuum starting
at the neutron threshold. The RPA response has the strength shifted upward, with about half of
the energy-weighted sum in a peak at 22 MeV. There is much less collectivity here than for N = Z
nuclei.

One sees that the usual RPA fails to yield enough strength at low energies. In fact, the total
electromagnetic dissociation cross section that one obtains by using the response presented in Fig..
17(a) is ≤ 0.28 b for 11Li + Pb at 800 MeV/nucleon. Moreover, an artificial energy for the p1/2

orbit (∼ 0.2 MeV) is used. The experimentally known value of the one-neutron separation energy
is about 1 MeV and for such a value of εp1/2 a too small cross section is obtained (' 0.19 b versus
the experimental value of 0.9 b).

To mock-up cluster-like correlations within the RPA, an RPA-cluster model was developed by
Teruya et al. [62] with an enlarged p − h configuration space to accommodate the dineutron-
dineutron hole excitations. One ends up treating 11Li as composed of three species of particles:
protons, neutrons and dineutrons (the dineutron is treated as structureless). In this approach there
is no problem in fixing the p1/2 energy as 1.0 MeV and the correct dineutron separation energy of
ε = 0.3 MeV, since the Woods-Saxon potentials for the nucleons and dineutrons are different. The
results of this calculation [62] is presented in the Figure 17(b). Also shown is the dipole response
calculated by using the cluster model (dashed line) using S1 = 1, N0 = 1 in Eq. 245. Besides the
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Figure 17: (a) 11Li dipole response. Solid line is the free response. Dashed line is the RPA
response. (b) Cluster model reponse (dashed curve) compared with the RPA-cluster model
response [62] (solid curve).

usual GDR (Giant Dipole Resonance) at E ' 16 MeV, not shown in the Figure, one finds a strong
peak at 1.81 MeV. The B(E1) value under this peak is found to be 2.38 e2 fm2 which corresponds
to ' 85% of the dipole cluster sum-rule and 8% of the usual energy weighted sum-rule [63]. Other
RPA studies for the electromagnetic response of halo nuclei have been performed, e.g., by Fayans
[64] and Bertulani and Sustich [54]. The low energy peak of the E1-response, as observed in Fig.
17(b) is called by soft dipole mode ( or Pigmy resonance).

Some authros interpret the soft dipole mode in halo nuclei as a collective vibration of the core
against the valence neutrons. Its strength is located at much loer energies than the usual giant
dipole resonances, and they are located at much lower energies. Because of that hey are also known
as pigmy resonances (see Fig. 18).

As shown in Ref. [54] the electric dipole interaction is the most relevant for the Coulomb break-
up (see Figure 19(a)). This is because the effective multipole charge (Eq. 242) is small for 11Li
for higher multipolarities. However, for other systems, like 8B→ p +7 Be, other multipolarities are
equally important.
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Figure 18: Schematic view of GDR and pigmy resonances (soft dipole resonances) in 6He
and 6Li (by Shintaro Nakayama [61]).

0.19 Single-particle model with nucleon-nucleon corre-

lations

To gain insight on the relevance of n-n correlations on the response function of 11Li we take
again only two models: (a) the Green’s function method of Esbensen and Bertsch [65] and the (b)
three-body model of Chulkov, Jonson and Zhukov [66].

The Green’s function method is a single-particle + (n-n) correlations. In such a model the
dipole strength distributions can be expressed in terms of the two-particle Green function for J = 1
final states [65],

dB(E1)
dE

=
1
π

Im
∑
µ

∫
d3r1d

3r2d
3r′1d

3r′2

× Ψ∗g.s.(r1, r2)D∗µ(r1, r2)G(E, r1, r2, r
′
1, r

′
2)Dµ(r

′
1, r

′
2)Ψg.s.(r

′
1, r

′
2) (290)

where Ψg.s.

(
r

′
1, r

′
2

)
is the correlated ground state of the two valence neutrons (see Ref. [65]), and

Dµ (r1, r2) = −Ze
A

[r1Y1µ(r̂1) + r2Y1µ(r̂2)] (291)
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Figure 19: (a) Total Coulomb excitation cross section of 11Li projectiles incident on a lead
target as a functiuon of the beam energy. The solid (dashed) line represents the contri-
bution of isovector dipole (effective-charge-corrected quadrupole) excitations. The dash-
dotted line represents the contribution of effective-charge-corrected octupole excitations.
The quadrupole and the octupole results have been multiplied by 104 and 106, respectively.
(b) Correlated dipole response of 11Li is shown in the figure by a solid line. The dot-dashed
curve shows the response neglecting the effect of pair-interaction in the final state.

is the effective dipole operator.
The Green’s function G includes the continuum-continuum interactions between the neutrons.

In the Tamm-Dancoff approximation (TDA) it is given by

G(E) = [1 +G0(E)v]−1G0(E)
= G0(E)−G0(E)v [1 +G0(E)v]−1G0(E) (292)

where

G0(E) =
∑
µ,f

|(j1j2)1µ〉 〈(j1j2)1µ|
e1 + e2 − E − iη

(293)

is the non-interacting two-particle Green’s function and the sum over final states (f) includes all
independent two-particle states. The second equality in Eq. 292 shows that the TDA response can
be written as an uncorrelated response minus a correction term.

The correlated dipole response is shown in Figure 19(b) by a solid line. The dot-dashed curve
shows the response neglecting the effect of pair-interaction in the final state. It predicts more
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strength at higher energies; the effect of the final state interactions is to shift the maximum in the
strength much closer to the threshold.

In a three-body approach, based on hyperspherical harmonics the differential cross section for
the 11Li break-up to a final excitation energy of E, and scattering angle θ [66] is given by

d2σ

dEdθ
∼ NE1(E)E2(sin θ)2(cos θ)2

∑
KK′`1`2

BKK′`1`2
(E)Ψ`1`2

K (θ)
[
Ψ`1`2
K′ (θ)

]∗
((2.14))

where the coefficients BKK1`1`2 are components of the response function of the operator Ô(E1),
NE1(E) is the E1-virtual photon number, and Ψ`1`2

K . Explicitly,

BKK1`1`2(E) =
∑
m1m2

〈
φ0

∣∣∣Ô(E1)
∣∣∣ iK

(qρ)2
JK+2

(√
2

~
ρq

)[
Y`1`2Km1m2

(Ωρ
5)
]∗〉

×

〈
φ0

∣∣∣Ô(E1)
∣∣∣ iK

(qρ)2
JK′+2

(√
2

~
ρq

)[
Ψ`1`2
K′m1m2

(Ωρ
5)
]∗〉∗

(294)

where Ji are Bessel functions, q is the momentum transfer, Ωρ
5 is the hyperangle and ρ the hyper-

radius.
Chulkov et al. [66] have used this approach, and an schematic treatment of the final state

interactions, to compare with the experimental data. They found that their calculated curve has
the maximum shifted as compared to the experimental data. This might be an indication of
Coulomb reacceleration effects which we will discuss later.

In Ref. [68] the experimental data for dσ/dE have been compared with some theoretical models.
This is shown in Fig. 20 and explained in its caption. The best fit was obtained with a phenomeno-
logical Breit-Wigner fit. However, it is questionable if these data can be directly compared with
the theoretical response functions, due to reacceleration effects.

0.20 Coulomb reacceleration effect

Breakup processes in nucleus-nucleus collisions are complicated, in whatever way they are treated.
They constitute at least a three-body problem, which is further complicated due to the long range
Coulomb force. Exact treatments (like the Fadeev-approach) are therefore prohibitively cumber-
some. On the other hand, many approximate schemes have been developed in the field of direct
nuclear reactions, and these approaches have been used with considerable success [67].

Effects of Coulomb reacceleration were first observed in the experiment of Ieki et al. [68]. In
Fig. 21 we see that the velocity of 9Li fragments are faster, in average, than those of the two
detached neutrons in a Coulomb break-up of 28 MeV/nucleon 11Li incident on lead targets.

This effect can, in principle (we will discuss this later again), be understood qualitatively as
follows. The 11Li is deccelerated up to a point where it dissociates. This occurs around the distance
of closest approach. Afterwards the 9Li fragments is accelerated, whereas the neutrons are not.
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Figure 20: The measured decay energy spectrum dσM/dEd for 11Li→ 9Li +n+n. The curves
are results of Monte Carlo simulations for Breit-Wigner-type photonuclear cross sections
(solid, E0 = 0.70 MeV, Γ0 = 0.80 MeV), a correlated-state model [65] (dashed), and a
dineutron-cluster model [55] (long dashed).

Since 9Li is lighter than 11Li its final velocity is greater than the incoming beam velocity. The
neutrons are consequently slower.

Baur, Bertulani and Kalassa [69] developed a semiclassical model to obtain quantitatively the
extra-amount of energy gained (lost) by 9Li (2n). The model averages the reacceleration energies
along the trajectory with the probability that the break-up occurs at time t. For a given impact
parameter b the extra-energy gained by reacceleration of 9Li (or the energy lost by the neutrons)
is given by

4E9(b) = − 9
11

< Ex > +
π

22
ZTZae

2

b
(295)

∆E2n(b) = − 2
11

< Ex > −
π

22
ZTZae

2

b
(296)

where ZT is the target charge, Za = 3 is the charge number of 11Li, and < Ex > is the average
energy transferred by the Coulomb interaction to the break-up of 11Li. The simplest way to calculate
< Ex > is by means of the cluster model.
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Figure 21: (i) (a) Spectrum of the longitudinal component of the center-of-mass velocity of
9Li and two neutrons in the frame of the incident 11Li. (b) Spectrum of the longitudinal
component of the relative velocity V9 - V2n. The histogram shows the result of a Monte
Carlo simulation assuming no Coulomb acceleration effects. (ii) Schematic representation of
the breakup of 11Li projectiles.

One has

< Ex > (b) =

∫∞
S2n

dEx Ex dP/dEx∫∞
S2n

dEx dP/dEx
(297)

dP

dEx
=

NE1(Ex, b)
Ex

σγ(Ex) (298)

For small impact parameters such that Exb/γ~v << 1,

nE1(Ex, b) =
Z2
Tα

π2
(
Ex
γ~v

)2(
c

v
)2

[
K2

1 (x) +
1
γ2
K2

0 (x)
]

(299)

∼=
Z2
τ2α

π2

1
b2

(
c

v
)2

is roughly independent of Ex, so that

< Ex > ∼=
∫∞
S2n

dEx σγ(Ex)∫∞
S2n

dEx σγ(Ex)/Ex
. (300)
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Figure 22: Coulomb reacceleration of 10Be fragments originated from the break-up of 72
MeV/nucleon 11Be projectiles on lead. Data are from [56].The longitudinal momentum ∆p//
is plotted against the scattering angle θ(b ∼ c1 + c2/θ). The theory [69] is shown by curves.

Using Eq. 300 and the definitions of σγ(Ex) given by Eq. 223 we find that

< Ex > ∼=
∫∞

2n dEx(Ex − S2n)3/2/E3
x∫∞

2n dEx(Ex − S2n)3/2/E4
x

= 6S2n
∼= 1.8 MeV. (301)

At large impact parameters < Ex > will be smaller than this value, monotonically decreasing.
This model has been used by Nakamura et al. [56] in the analysis of the Coulomb reacceleration

of 10Be fragments originated from the break-up of 72 MeV/nu
cleon 11Be projectiles on lead. In this case, the quantities derived above where rewritten in terms
of the longitudinal momentum ∆p// and scattering angle θ(b ∼ c1 + c2/θ). A comparison with his
data is given in Fig. 22.

The agreement with the theory of Ref. [69] is good, despite its simplicity.
Another interesting point is to know if the reacceleration effect would influence the decay

spectrum. If we rely on Eqs. 295 and 296 and neglect the first terms of both equations we obtain
that the relative energy between the fragments is distorted by the reacceleration effect by an amount
given by (a = b+ c)

∆Erel =
1
2
µbc(vb − vc)2 ∼=

1
4
ma

µbc

(∆E)2

Elab
. (302)
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This yields a distortion of order of 100 keV in the spectrum of the relative energy of the
fragments, at small impact parameters. Averaging over impact parameters this distortion is of
order of 20 keV, which is quite small. Thus, while the spectrum might be distorted, the average
relative energy is not much affected.

0.21 Dynamical breakup model in a coupled-channels

approach

One should expect that perturbation theory fails in describing the breakup process when the cross
sections attain very high values. In fact, as we show later in this Section, the break-up Coulomb
probability of weakly-bound nuclei calculated with first-order perturbation theory is close to unity.
This can be understood with use of simple arguments. The energy transferred by the Coulomb field
to the excitation of a projectile nucleus, with N neutrons and Z protons, incident with velocity v
on a target nucleus with charge eZT at an impact parameter b is approximately given by [49, 73, 55]
E∗ = 2(NZ/A)(ZT e2)2/mNb

2v2, where mN is the nucleon mass. For 11Be projectiles (N = 7, Z =
4) incident on lead at b = 15 fm and v ≈ 0.5c, one gets E∗ ≈ 1 MeV. This energy is more than
sufficient to break 11Be apart, since the separation energy a neutron from this nucleus is about
0.5 MeV. This means that, at small impact parameters the break-up probability is of order of unity
and a non-perturbative treatment of the break-up process should be carried out.

0.21.1 Coulomb break-up of loosely-bound clusters

Let us consider a projectile nucleus composed of two clusters with charges eZb and eZc, and masses
mb and mc, respectively, incident on a target with charge eZT . We assume that the projectile follows
a straight-line trajectory with velocity v and impact parameter b. In the dipole approximation,
the interaction potential (neglecting magnetic interactions and nuclear forces) responsible for the
break-up of the projectile, is given by

V =
γZT e

2

(b2 + γ2v2t2)3/2

∑
k=b,c

Zk(byk + γvtzk) =

√
2π
3

γZT e
2

(b2 + γ2v2t2)3/2

(Zb
mc

ma
− Zc

mb

ma
)r
{
ib [Y11(r̂) + Y1−1(r̂)] +

√
2 γ v t Y10(r̂)

}
, (303)

where γ = (1 − v2/c2)−1/2, and yk, zk represent the transverse and longitudinal coordinates of
the particles, respectively. r is the vector from b to c and ma = mb + mc. The first (second)
term inside the curly brackets represents the transverse (longitudinal) part of the interaction. It is
important to notice that the longitudinal part of the interaction has been modified to account for
the current-interaction which is very important at relativistic energies. The modification amounts
in replacing γ2 by γ in the term proportional to vt in Eq. 303. This mocks up the effect of
the current-interaction and reproduces the correct expression for the E1 excitation amplitude to
first-order.
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In first-order time-dependent perturbation theory, the probability amplitude for the projectile
break-up, i.e., the transition from the ground state | 0 > to a state | q > in the continuum is given
by

a
(1)
(q) =

1
i~

∫ t

−∞
e−iE0−Eq)t′/~ < q|V (t′)|0 > dt′. (304)

For loosely-bound projectiles the ground state can be represented by an Yukawa wavefunction
given by Eq. 238. Neglecting final state interactions, the states |q > are given by φq(r) =< r|q >=
eiq.r + eiqr/r(η+ iq), where the wave number q is related to the energy Eq as Eq = ~2q2/2µbc. The
second term of < r|q > guarantees the orthogonality and completeness of the initial and final
states.

The dipole matrix elements are given by [49]

< q|rY1m(r̂)|0 >= i 4 N0

√
2πη

q

(q2 + η2)2
Y1m(q). (305)

To first order, the breakup probability is obtained by integrating the square modulus of 304
over the density of final states, i.e.,

P (1)(b, t) = 2P (1)
m=1 + P

(1)
m=0 =

∫
|a(1)

(q)|
2 d3q

(2π)3
, (306)

summed over the beam-axis components of the angular momentum carried by the Coulomb field,
m = 0, ±1. The integral over q is easily accomplished if one uses the sudden approximation, which
is valid for

b

γv
(Eq +B)� 1. (307)

For weakly-bound nuclei, as 11Be, Eq + B ≈ 1 MeV, and at bombarding energies ELab ∼ 1 GeV,
the above relation shows that the sudden approximation is valid for impact parameters b < 300 fm.

Within the sudden approximation we can omit the exponential factor in 304 and the integrals
can be evaluated analytically as (α is the fine structure constant)

P (1)(b, t) =
1
6

(
ZTαc

ηbv

)2 (
Zb

mc

ma
− Zc

mb

ma

)2

N2
0

×


[

1 +
γvt/b√

1 + (γvt/b)2

]2

+
1

1 + (γvt/b)2

 . (308)

The first (second) term inside the curly brackets arises from the transverse (longitudinal) part
of the interaction potential 303. It is clear that only the transverse contribution survives at t =∞.
The longitudinal contribution cancels since the component of the electric field along the beam axis
is an odd function of time. The breakup probability at t =∞ is given by

P (1)(b, ∞) =
2
3

(
ZTαc

η b v

)2 (
Zb

mc

ma
− Zc

mb

ma

)2

N2
0 . (309)
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For grazing collisions with heavy targets at high energies the breakup probabilities of Eq. 309
are close to (or even exceeds) unity for halo nuclei incident on heavy targets. Therefore, first-
order perturbation theory cannot be used. However, if the sudden approximation holds a non-
perturbative closed expression can still be derived to all orders. The amplitude can then be written
as [neglecting the longitudinal component of the interaction potential, Eq. 303]

a
(S)
(q) =< q| exp

{
1
i~

∫ ∞
−∞

V (t)dt
}
|0 >=< q| exp {−iCr sin θ sinφ} |0 > , (310)

where

C =
2ZTαc
bv

(
Zb

mc

ma
− Zc

mb

ma

)
. (311)

Using the completeness relation

φ0(r) φ∗0(r′) +
1

(2π)3

∫
φ∗q(r) φq(r′) d3q = δ(r− r′) (312)

one finds

P (S)(b) =
∫
|a(S)

(q) |
2 d3q

(2π)3
= 1− η2N2

0

4π2

∣∣∣∣∫ d3r
e−2ηr

r2
e−iCr sin θ sinφ

∣∣∣∣2 . (313)

The above integral can be easily evaluated and the result is

P (S)(b) = 1− 4η2N2
0

C2

[
arctan(

C
2η

)
]2

. (314)

When C/2η � 1 (large impact parameters) the above relation reproduces the first-order result 309.
If on the other hand C/η is large one gets, to lowest order in η/C,

P (S)(b) = 1− π2η2N2
0

C2
. (315)

For the reaction 11Li + Pb −→ 9Li + 2n + Pb at 100 MeV/nucleon, with an impact parameter of
13 fm, the sudden approximation yields P (S)(b) ' 0.4, while in first-order perturbation theory we
get P (1)(b, ∞) ' 0.7. Thus, first-order approximation fails at small impact parameters.

The results of Eqs. 308, 309 and 314 were obtained on the basis of the sudden approximation.
In the example considered, the 11Li break-up probability is appreciable even for large relative ener-
gies in the projectile frame (Eq ∼ 2 MeV), where the sudden approximation starts to break-down.
In addition, the treatment of this Section cannot account for the energy distribution of the break-
up cross section. A more powerful coupled-channels treatment is therefore desirable. However,
one faces the difficulty that the final states are in the continuum (one would have to consider a
continuous channel label) and the coupling matrix elements present divergency problems, caused
by the non-localized behavior of the continuum wavefunctions. This difficulty is avoided by a dis-
cretization of the continuum along the lines proposed by Bär and Soff [76] in their non-perturbative
calculations of atomic ionization by heavy ions. In the next Section we use a similar treatment of
the continuum developed by Bertulani and Canto [74]. The method is a useful starting point to
understand the main features of a coupled-channels calculation with states in the continuum.
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0.21.2 Discretization of the continuum and semiclassical treat-
ment of the coupled-channels problem

Our basis of time-dependent discrete states are defined as

|φ0〉 = e−iE0t/~ |0〉 , with E0 = −B and |φj`m〉 = e−iEjt/~
∫

Γj(E) |E, `m〉 (316)

where |E, `m > are continuum wavefunctions of the projectile fragments (without the interaction
with the target), with good energy and angular momentum quantum numbers E, `, m. The func-
tions Γj(E) are assumed to be strongly peaked around an energy Ej in the continuum. Therefore,
the discrete character of the states |φj`m > (together with |φ0 >) allows an easy implementation of
the coupled-states calculations. We assume that the projectile has no bound excited states. This
assumption is often the rule for very loosely-bound systems. The orthogonality of the discrete
states 316 is guaranteed if ∫

dE Γi(E) Γj(E) = δij . (317)

For the continuum set |E`m > we use, for the sake of simplicity, the plane wave basis

< r|E`m >= u`, E(r)Y`m(r) =
(

2µ
~2

)3/4 E1/4

√
π
j`(qr) Y`m(r̂) (318)

which obey the normalization condition (E = ~2q2/2µ)

< E`m|E′`′m′ >= δ``′δmm′δ(E − E′). (319)

These states arise from the partial wave expansion of the plane wave exp(iq.r). Writing the time-
dependent Schrödinger equation for Ψ(t) =

∑
j`m aj`m φj`m, taking the scalar product with the

basis states and using orthonormality relations, we get the equations

i~
daj`m
dt

=
∑
j′`′m′

Vj`m;j′`′m′ aj′`′m′ e−i(E
′
j−Ej)t/~. (320)

We use the index j = 0 for the ground state |0 > and j = 1, 2, . . . for the discrete continuum states.
Vj`m;j′`′m′ are the matrix elements < φj`m|V |φj′`′m′ >.

For Γj(E) we consider two different sets of functions. Firstly the set Γ1(E), . . . ,ΓN (E);

Γj(E) =
1√
σ
, for (j − 1)σ < E < jσ, and Γj(E) = 0 , otherwise. (321)

This set corresponds to histograms of constant height 1/
√
σ and width σ. The states Γj(E)

trivially satisfy the orthonormalization condition of Eq. 317. They present the advantage of leading
to simple analytical expressions for the coupling matrix elements. On the other hand they have
discontinuities at the edges, which lead to numerical difficulties. The second set consists of the
functions

χj(E) = Nnj

(
E

σ

)n2
j

e−nj(E/σ). (322)
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Figure 23: A set of functions given by the expression 322 of text, before (a) and after (b)
orthogonalization.

The normalization constant

Nnj =
1√
σ

[
(2nj)2n2

j+1

(2n2
j )!

]1/2

, (323)

guarantees that
∫
χj(E)χj(E) dE = 1. The functions χj are peaked at E = nj σ and have width

≈ σ. The integer nj = K.j is proportional to the index-j and the proportionality constant, a small
integer K, is a parameter of the set which determines the overlap of two consecutive functions
χj and χj+1. Three consecutive functions χ4 , χ5 and χ6 are shown in Fig. 23(a) for K = 3
and σ = 40/3 keV. With this choice χ5 is peaked at the maximum of the experimental break-up
cross-section (E ≈ 250 keV) of 11Li projectiles. However, this set fails to satisfy the orthogonality
condition of Eq. 320. This shortcoming can be fixed by the definition of a new set Γj(E) of linear
combinations

Γj(E) =
N∑
k=1

Cjk χk(E), (324)

with the coefficients Cij determined so that the resulting combinations be orthogonal. These
coefficients can be found by means of an orthogonalization procedure as, e.g., the Gram-Schmidt
method [75]. The result of the application of this method to the functions of Fig. 23(a) is shown in
Fig. 23(b). The set of Eq. 324 has the advantages of being continuously derivable and of leading
to reasonably simple coupling matrix elements.

A comparison between basis states φj`m(r) generated with each of these sets [through Eq. 316]
is made in Figs. 24(a) and 24(b). We chose for convenience the parameters σ = 40 keV, j = 5 for
the first set (Eq. 321) and K = 3, j = 5, σ = 13.3 keV for the second set (Eq. 322). With this
choice one of the Ej is equal to 200 keV for both sets. We take ` = 1, m = 1, as example. One
observes that the discrete wavefunctions φj`m decrease rapidly enough with r, so that the matrix
elements < φj`m|rY1µ|φj′`′m′ > are finite. The use of the histograms 321 for Γj(E) leads to beats in
φj`m as displayed in Fig. 24(a). These beats are the result of the discontinuous nature of Γj(E) and
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Figure 24: Radial wave functions for the discretized continuum using the histogram set (a)
and the continuous set (b). We used Ej = 200 keV , and ` = 1.

arise from the interference from the borders of the histograms. Due to this behavior, the numerical
evaluation of < φj`m|rY1µ|φj′`′m′ > is more involved than with the second set of Γj-functions, 324.
Indeed, as we see from Fig. 24(b) the beats disappear with the use of the basis set 324. Although
the use of plane-wave basis allows the derivation of simple results with both sets, this fact is of
relevance for improved coupled-channels calculations in the continuum.

Using 316 and the properties of the spherical harmonics one finds

Vj`m;j′`′m′ =
(−1)m√

2
γZT e

2

(
Zc

mb

ma
− Zb

mc

ma

) √
(2`+ 1)(2`′ + 1)

(b2 + γ2v2t2)3/2

(
`0 10 `′0

)
×

{
ib

[(
`−m 11 `′m′

)
+
(
`−m 1−1 `′m′

)]
+
√

2 γvt
(
`−m 10 `′m′

)}
Ij`;j′`′ (325)

where
Ij`;j′`′ =

∫
r3dr

∫
dE Γj(E)

∫
dE′ Γj′(E′) u∗`, E(r)u`′, E′(r). (326)

From 325 one deduces that the interaction potential is different from zero only if |` − `′| = 1, as
expected.

The use of the plane wave basis is especially useful because, exploiting the recursion and closure
relations of the spherical Bessel functions, one obtains the general result

Ij`;j′`′ =
~2

µ

{
`+ `′ + 2

2
Fjj′ + δ`,`′+1Gj,j′ + δ`+1,`′ Gj′j

}
, (327)

where
Fjj′ =

∫
dq Γj(E) Γj′(E) Gjj′ =

∫
dq q Γj(E)

d

dq
Γj′(E) (328)

with E = ~2q2/2µ. Explicit forms can be found for each basis set:
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Figure 25: (a) Radial matrix elements, Eqs. 325 and 326 for the transition j → j + 1
(dashed-line), and for the j → j one (solid line). We used ` = 0 and `′ = 1. (b) Radial
matrix elements for the transition j → j′, keeping Ej = 200 keV and varying Ej′ .

(a) Histogram - Applying this relation to the histogram set 321, one can show that for j, j′ 6= 0

Ij`;j′`′ = ~
√

2
µσ


`+`′+1

2

[√
j −
√
j − 1

]
if j = j′

−(−1)(j+`−j′−`′)/2
√

j+j′−1
2 if |j − j′| = 1

0 otherwise.

(329)

For j = 0 or j′ = 0, only the integral with `, or `′ = 1 is necessary, and the result is

I00; j1 = Ij1; 00 =
√

2ησ
π

E
3/4
j

(E0 + Ej)2

(
~2

2µ

)3/4

(330)

where Ej = (j − 1/2)σ.
(b) Continuous basis - For the set of continuous energy functions 324 one finds, for j, j′ 6= 0{

Fjj′

Gjj′

}
=
√
µσ

2~2

∑
n,n′

CjnCj′n′NnNn′
Γ(n2 + n′2 + 1/2)
(n+ n′)n2+n′2+1/2

{
1

2n′2 − n′(2n2+2n′2+1)
n+n′

}
(331)

where Γ(z) is the gamma-function and we simplified the notation using n ≡ nj . For j = 0, or
j′ = 0, one finds

I00; j1 = Ij1; 00 =
√

2ησ
π

E
3/4
j

(E0 + Ej)2

(
~2

2µ

)3/4 ∑
n

n2!
nn2+1

√
(2n)2n2+1

(2n2)!
Cjn . (332)

As we have seen above, the use of the plane wave basis 318 results in the elegant derivation of
Ij`; j′`′ presented by Eqs. 327 and 328. Nonetheless, the s-wave (` = 0) state of Eq. 318 is not
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Figure 26: (a) Coulomb break-up probability, per unit energy interval (MeV−1), of 11Li
projectiles incident on lead at 100 MeV/nucleon and b = 15 fm, as a function of the final
total kinetic energy of the fragments. (b) Breakup probability as a function of the time,
τ = vt/c.

orthogonal to the bound-state wave function. To restore orthogonality one has to add an extra
piece to this function. One expects however that this approximation does not affect the results
appreciably since to access this state one needs at least two transitions: the 0→ j1 followed by the
j′1→ j′0 one. But the later transition competes with the transition to the ground state, j1→ 00,
which is the dominant one. A more severe restriction is the use of plane waves to describe the
continuum. A realistic calculation would have to use outgoing waves for u(+)

`, E(r) which would carry
information about the final state interactions of the (b+ c)-system.

0.21.3 Application to the breakup of 11Li

Let us consider the break-up of 11Li-projectiles incident on heavy targets at energies around 100
MeV/nucleon. In Figure 25 we show the integrals Ijl;j′l′ for the continuum-continuum coupling
(j, j′ 6= 0). In particular we choose ` = 0 and ` = 1. The coupling j0 → j′ = j, 1, shown in Fig.
25(a) (` = 0 to ` = 1 in this case) of the state. In Figure 25(a) we plot Ij0;j′1 for a transition
between states with different energies. In particular we take the transition between neighboring
states, with j′ = j + 1. Using the results obtained with the continuous energy set, Eqs. 331 and
332. One observes that while the integral for the jj-coupling decreases with energy, the one for
the j, j + 1-coupling increases steadily. These results reproduce the trend shown by Eq. 329. In
Figure 25(b) it is shown how Ij0;j′1 varies as a function of E′j , for a fixed Ej = 0.2 MeV. One
observes that it is maximum for neighboring energy states and has an oscillatory behavior. This
has as a consequence that the j, j′ 6= j-coupling will practically not contribute to the total break-up
probability, PBU(E) , since its contribution will be washed out.
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The break-up probability per unit energy interval, PBU(E) , is given by

PBU(E) =
∑
ij

Γi(E) Γj(E) Qij (333)

where

Qij = Re

[∑
`m

a∗i`m aj`m

]
. (334)

In Figure 26(a) we show the break-up probability per unit energy interval for the reaction
11Li + Pb at 100 MeV/nucleon and b = 15 fm, calculated from Eq. 333 by solving the coupled-
differential Eqs. 320 for ai`m. We see that the energy distribution of the fragments is peaked at
E ∼ 0.25 MeV. Therefore, the most relevant momentum transfer to the 11Li nucleus occurs at
q =
√

2µbcB/~ ∼ 20 fm−1.
The validity of the dipole approximation for the interaction potential 325 to calculate the

continuum-continuum coupling can only be justified for qr � 1. But, as shown in Fig. 24, the
discretized wavefunctions extend up to 400 fm. Thus, unless the matrix elements for the continuum-
continuum coupling, Eq. 326, have its main contribution from r � 20fm, the dipole approximation
is not valid. The jj-coupling do satisfy this requirement. In this case the wave functions have
equal energies, but different angular momenta. This causes an asymptotically (r � 1/q) constant
phase difference between the wave functions entering in Ijl;jl′ . This leads to cancellations in the
integrand of Eq. 326 for large r. The situation is different for the (j, j′ 6= j)-coupling. In this case
the integrand has contributions from larger values of r and these contributions increase with the
energy. With a correct treatment of the multipole expansion of the interaction potential 303 the
integrals Ij`;j′ 6=j,`′ would decrease with E. We expect that the transitions between 00 → j′, ` = 1
and j′, ` = 1 → 00 dominate the excitation process, so that the matrix elements between states
with j 6= j′ 6= 0 do not play an important role. Also, to minimize the consequence of the breaking
down the dipole approximation in the continuum-continuum coupling at j 6= j′, one can use a large
parameter K (e.g., here K = 4 was used). This leads to small Ij 6=j′ .

In Figure 26(b) the solid line represents PBU , the total breakup probability [Eq. 333 integrated
over energy], as a function of the adimensional parameter τ = vt/b, for b = 15 fm. This is
obtained by solving the coupled-channels Eqs. 320 for a time t and calculating the sum PBU (t) =∑

j`m |aj`m|2. The dashed-line corresponds to the neglect of all transitions, except for the 0 → j`
ones. In the low energy limit, Eq. 307, this gives the same result as Eq. 307. The solid-line includes
all possible transitions. The break-up probability occurs in a time scale of ∆t ∼ b/v. As t → ∞
the break-up probability is 40% smaller than that calculated by first order perturbation theory.

Improvements of the model described in this Section have been done in Refs. [77, 78].

0.21.4 Dynamical breakup model in space-time lattice

In order to obtain the spectrum of relative energy of the fragments, a non-perturbative solution of
the Schrödinger equation is necessary. Such a solution would include the effects of reacceleration
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properly. First studies using this procedure has been performed by Bertsch, Bertulani and Esbensen
[70, 71, 72]. One assumes a potential model for the halo nucleus. For example, a Woods-Saxon
potential may be used for the nuclear interaction of the n +10 Be, p +7 Be or (2n) +9 Li systems.
In the last case a dineutron model is assumed. To this potential a time-dependent non-relativistic
Coulomb interaction is added,

Vcoul = Zτe
2[

Zc
| rc −R(t) |

+
Zx

| rx −R(t) |
− Za
R(t)

] (335)

where a = c+ x is the projectile, rc = −rAx/Aa, and rc = r(1−Ax/Aa).
The potential above can be expanded into multipoles. Normally, the dipole part of the expansion

is the most relevant one. The time dependent wavefunction for the relative motion of c+x is given
by

Ψ(r, t) =
1
r

∑
`m

u`m(r, t)Y`m(r̂). ((3.9))

Inserting this expansion in the Schrödinger equation and retaining only the dipole expansion of
the potential 335 we get[

d2

dr2
− `(`+ 1)

r2
− 2µcx

~
VN (r)

]
u`m(r, t) +

∑
`′m′

S
(`m)
`′m′ u`′m′(r, t) = −2µcx

~
∂u`m
∂t

(336)

where

S
(`m)
`′m′ = −2µcx

~
(−1)m√

2

[
b2 + v2t2

]−3/2√(2`+ 1)(2`′ + 1)
(
` 1 `′

0 0 0

)
×

{
ib

[(
` 1 `′

−m 1 −m′
)

+
(
` 1 `′

−m −1 −m′
)]

+
√

2vt
(
` 1 `′

−m 0 −m′
)}

r.

(337)

This equation can be solved by a finite difference method. A truncation on the `,m values is
needed. Only a few angular momentum states are needed (e.g., up to ` = 5). Denoting α ≡ (`,m),
the wave function uα at time t+ ∆t is obtained from the wave function at time t, according to the
algorithm [70]

uα(t+ ∆t) =
[

1
iτ
−∆(2) +

∆t
2~τ

Vα

]−1 [ 1
iτ

+ ∆(2) − ∆t
2~τ

Vα +
∆t
~τ

Ŝ

]
uα(t). (338)

In this equation τ = ~∆t/4µbx(∆r)2 and Ŝuα(t) =
∑
α′
S

(α)
α′ uα′(t). Also,

Vα(r) = VN (r) +
~2`(`+ 1)

2µbcr2
. (339)

The wave functions uα(r, t) are discretized in a mesh in space, with a mesh-size ∆r. The second
difference operator ∆(2) is defined as

∆(2)u(j)
α = u(j+1)

α (t) + u(j−1)
α (t)− 2u(j)

α (t), with u(j)
α ≡ uα(rj , t). (340)

Physics of Radioactive Beams - C.A. Bertulani 83



0.21. DYNAMICAL BREAKUP MODEL IN A COUPLED-CHANNELS APPROACH

The 1st operation on the right side of Eq. 338 is trivial. The second one needs special attention
(see Supplement C).

The wave function calculated numerically at a very large time will not be influenced by the
Coulomb field. The numerical integration can be stopped there. The continuum part of the wave
function is extracted by means of the relation (and normalized to unity)

Ψc(r, t) = [Ψ−Ψgs < Ψgs | Ψ >]
[
1− |< Ψgs | Ψ >|2

]−1/2 (341)

where Ψgs is the initial wave function.
This wave function can be projected onto continuum eigenstates of the potential VN (r) in

order to obtain the excitation probability of that state. For illustration lets us use the simplifying
assumption that the final states are plane waves. A projection onto these states is equivalent to a
Fourier transform of the time dependent wave function. One gets

Ψc(p) =
∑
`m

C`m(p)Y`m(p̂) (342)

where

C`m(p) =

√
2
π
i`
∫
dr r j`(pr)u

(c)
`m(r, t) (343)

where j` is the spherical Bessel function. The probability density for an excitation to a final state
with energy E is

P (b, E,Ω) =
1
2

(
2µbx
~2

)3/2√
E | Ψc(p̂) |2 . (344)

Integrating over Ω :

P (b, E) =
1
2

(
2µbx
~2

)3/2√
E
∑
`m

| C`m(p) |2 . (345)

In first-order perturbation theory this spectrum would be given by

P (1)(b, E) =
4π
9

(
2ZT e2

~v

)2(
E

~v

)2 dB(E1)
dE

[
K2

0 (x) +K2
1 (x)

]
(346)

where the K ′s are the modified Bessel functions and x = Eb/~v. In this case dB(E1)/dE is
calculated by using the ground state and continuum states of the same Woods-Saxon potential 4

for c + x. To illustrate, we show P (b, E) for 8B(7Be, p)Pb at 50MeV/nucleon in Fig. 27(I). We
see that at small impact parameter the coupling between the continuum states is stronger and
the reacceleration changes appreciably the form of the spectrum. Due to the reacceleration effect
higher order energy states are more populated than in the perturbative calculation.

What matters for experiments is the impact parameter integrated spectrum. From that we
can calculate the average energy obtained by reacceleration. This is shown in Figure 27(II). The
solid line is the result of the perturbative calculation. The dashed line is based on the semiclassical

4In the p+7 Be case a static Coulomb potential (for homogeneously charged sphere) is added to VN .

84 Physics of Radioactive Beams - C.A. Bertulani



0.21. DYNAMICAL BREAKUP MODEL IN A COUPLED-CHANNELS APPROACH

Figure 27: (I) Energy spectrum of the relative motion of p +7 Be in first-order perturbation
theory (solid line) and in the non-perturbative approach (dashed) at (a) b = 15 fm and (b)
b = 50 fm. A 8B+ 208Pb collision at 50 MeV/nucleon is assumed. (II) Reacceleration energy
gained by the fragments in the reaction 8B(7Be, p)Pb as a function of the bombarding energy.
The solid line is a the perturbative calculation. The dashed line is based on semiclassical
formulas, eqs. 295 - 298. The circles with error bars are the result of a Monte-Carlo classical
simulation of the reacceleration energy averaged over impact parameter [79].

formulas, using Eqs. 295-298. The circles with error bars are the result of a Monte-Carlo classical
simulation of the reacceleration energy averaged over impact parameter [79]. Here it is assumed
that 8B projectiles break-up at the closest distance to the target. The proton and the 7Be are
taken as 4 fm apart just after the break-up and are allowed to follow a free Rutherford trajectory
afterwards. The relative energy between the fragments at a large distance from the target is then
calculated. Different initial orientations between the proton and the 7Be were allowed.

The somewhat different results presented in Fig. 27(II) are inherent to the very different
approaches used. The method of solving the Schrödinger equation directly yields the smallest of
the results. This can be understood as follows. The methods used to calculate the dashed line and
the circles assume that the break-up occurs at the distance of closest approach. This overestimates
the reacceleration energy, since in a quantum mechanical approach the proton is first brought to the
continuum, then tunnels the Coulomb barrier inducing a time-delay to the reacceleration process.
This leads to an effective break-up position which is farther away than the distance of closest
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Figure 28: (a) Energy spectrum for the breakup of 11Li at 28 MeV/nucleon. Data points
are from [68]. Solid (dashed) line includes (does not include) the reacceleration effect [72].
(b) Longitudinal relative momentum of the neutrons and the 9Li fragments in the breakup
of 11Li projectiles at 28 MeV/nucleon. Data are from [68]. Solid curve is a calculation from
[72].

approach. One also observes from Fig. 27(II) that the reacceleration effect is more relevant at
small laboratory energies.

In Ref. [72] the method of solving numerically the time-dependent Schrödinger equation are
compared to the existing data on the energy spectrum of 11Be and 11Li break-up.

In Fig. 27(II) the non-perturbative results are shown as a dashed line. We see that the spectrum
is very little influenced by the reacceleration effect. In this case, perturbation theory works very
well (as in the 8Be case at Elab ≥ 30 MeV/nucl.). The same is not true for the break-up of 11Li at
28 MeV/nucleon. This is shown in Fig. 28(a).

The reacceleration effect is very important in this case due to the very large break-up prob-
abilities at small impact parameters. This induces higher order dynamical continuum-continuum
interactions which distort the spectrum appreciably. One also observes that although the dynami-
cal corrections modify the spectrum in the right direction the discrepancy with the experiment is
appreciable. This might be a deficiency of the cluster model and has to be studied more carefully.
Also, the spectrum of the relative longitudinal momentum of the fragments is not in a good agree-
ment with the dynamical calculations of Ref. [72], at least for the higher part of the spectrum.
This is shown in the figure 28(b).

Other dynamical calculations have been performed by several authors [80, 81, 82, 78, 83], using
similar methods as we discussed so far.
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Supplement C

0.22 Solving the t.d. Schrödinger equation

The operations []uα in the r.h.s. of Eq. 338 is easy. The operation []−1 u′α is more complicated.
The problem is to find the vector u in the equation

v = A−1 v, where v = A u (347)

u is a vector composed with the u(j) = u(rj , t) components of the wave-function u(r, t). In Eq. 338
A is a tri-diagonal operator (matrix). In matrix notation

v1

v2

.

.

.
,
.
vN


=



A1 0 0 . . 0 .
A−2 A2 A+

2 0 . . .
0 A−3 A3 A+

3 0 . .
.
.
0 . . . . . AN





u1

u2

u3

.

.

.
uN


. (348)

This involves the following relations

A−i ui−1+Aiui+A+
i ui+1= vi. (349)

Assuming a solution of the form
ui+1 = αiui + βi (350)

and inserting in 349 we find the recursion relations for αi and βi :

αi−1= γi A
−
i , βi−1 = γi

(
A+
i βi − vi

)
(351)

where
γi = − 1

Ai + αiA
+
i

. (352)

At the end of the lattice we assume uN = vN . This implies that αN−1 = 0 and βN−1 = vN .
For the problem defined by Eq. 338 we have

Ak =
1
iτ

+ 2 +
∆t
2~τ

v(k)
α , and A−k = A+

k = −1. (353)

We can now determine αi and βi by running Eqs. 351 backwards from i = N −2 down to i = 1.
Then we use Eq. 350 running forward from i = 2 to N , assuming that u1 at the other extreme of
the lattice is given by u1 = v1/A1 .

Physics of Radioactive Beams - C.A. Bertulani 87



0.22. SOLVING THE T.D. SCHRÖDINGER EQUATION

Another way to solve the problem 348 for u is by a LU-decomposition, followed by a forward
and backward substitution. This method does not need to involve the Dirichlet condition.

Let us assume that the A matrix in 348 can be written as a product of B and U matrix, where

A = LU =


b1 c1 0 0 . .
a2 b2 c2 0 . .
0 a3 b3 c3 . .
. .. . .. . .

 (354)

L =



1 0 0 0 . .
α2 1 0 0 . .
0 α3 1 0 . .
0 0 α4 1 . .
. . . . . .
. . . . . .

 U =


β1 α1 0 0 . .
0 β2 γ2 0 . .
0 0 β3 γ3 . .
. . . .
. . . .

 . (355)

Then, AU = V → L(Uu) = v, or Ly = V . The elements of y are



y1

y2

.

.

.
yN

 =


β1 γ1 0 0 . . .
0 β2 γ2 0 . . .
0 0 β2 γ3 . . .
0 0 . . . . .





u1

u2

u3

.

.

.
uN


. (356)

This can be solved by backwards substitution

uN =
yN
βN

, βiui + γiui+1 = yi , (357)

or
ui = (yi − γ1ui + 1) / βi. (358)

The other matrix equation


1 0 0 0 . .
α1 1 0 0 . .
0 α3 1 0 . .
0 0 α4 1 0 .
. . . . .





y1

y2

.

.

.
yN

 =



v1

v2

.

.

.
vN

 (359)

can be solved by forward substitution

y1= v1, αiyi−1 + yi = vi , (360)
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or
yi= vi−αiyi−1. ((D.15))

Now, we need to find αi and βi as a function of the original elements of A

1 0 0 0 . . .
α2 1 0 0 . .
0 α3 1 0 . .
. . . .
. . . .
. . . .





β1 γ1 0 0 0 . .
0 β2 γ2 0 0 . .
0 0 β3 γ3 . .
. . .
. . .
. . βN



=


b1 c1 0 0 0 . .
b2 b2 c2 0 0 . .
0 a3 b3 c3 0 . .

. . . .

. . . .


which implies

b1 = β1, b2 = α2γ1 + β2, · · · , bi = γi−1αi + βi.

or
βi= bi−γi−1αi , ci = γi. (361)

Also,
a2 = β1α2, a3 = β2α3, · · · , ai = βi−1αi,

or
αi =

ai
βi−1

. (362)

Thus, knowing ai, bi and ci, one can go upwards with this set of equations to solve the problem.
In our particular case,

ai = ci = −1. (363)

Thus, the above equations simplify to

β1 = b1, βi= bi−
1

βi−1
, i = 2, ..., N

y1 = v1, yi= vi+
yi−1

βi−1
, i = 2, ..., N

uN =
yN
βN

, ui=
(yi + ui+1)

βi
, i = N − 1, ..., 1. (364)
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0.23 Relevance of postacceleration effects and photo-

absortpion cross sections

As we have seen in the last section, postacceleration effects are manifest in theoretical calculations,
and seem to have some experimental support. However, in most cases the effect is not relevant.
There are also some theoretical results which deny the existence of the post-acceleration effects.
Let us present a model developed by Baur, Hencken and Trautmann [84]

We consider the breakup of a particle a = (c+n) (deuteron, neutron-halo nucleus) consisting of
a loosely bound neutral particle n and the core c (with charge Zc) in the Coulomb field of a target
nucleus with charge Z: a + Z → c + n + Z. As a further simplification the a = (c + n) system is
assumed to be bound by a zero range force. The bound-state wave function of the system is given
by the wavefunction 238 (here we use N0 for simplicity). The T-matrix for the reaction can be
written as [85]

T =
〈
χ

(−)
qc ψqn

∣∣∣Vnc ∣∣∣χ(+)
qa φ0

〉
= D0

∫
d3R χ

(−)
qc (R)e−iqn·Rχ(+)

qa (R), (365)

with the “zero range constant” D0 given by D0 = ~2
√

8πη/2µ. The initial state is given by the
incoming Coulomb wave function χ

(+)
qa with momentum qa and the halo wave function φ0. The

final state is given by the independent motion of the core described by the outgoing Coulomb wave
function χ(−)

qc in the Coulomb field of the target nucleus Z with asymptotic momentum qc and the
free neutron with momentum qn, described by a plane wave. In these wave functions the Coulomb
interaction is taken into account correctly to all orders.

There exists another form of the T -matrix element, which is not equivalent to Eq. 365. It is
called the “prior-form” [67]. The final state is described by a c.m. motion of the (c + n) system
(as a Coulomb wave function) and a relative wave function of the unbound (c+ n) system.

The present “post-form” description, Eq. 365 includes the effects of “postacceleration”. “Postac-
celeration” arises in a purely classical picture of the breakup process. The nucleus a = (c+n) moves
up the Coulomb potential, loosing the appropriate amount of kinetic energy. At the “breakup
point”, this kinetic energy (minus the binding energy) is supposed to be shared among the frag-
ments according to their mass ratio (assuming that the velocities of c and n are equal). Running
down the Coulomb barrier, the charged particle c alone (and not the neutron) gains back the
Coulomb energy, resulting in its “postacceleration”. Of course this picture is based on the purely
classical interpretation of this process, and will be modified in a quantal treatment, where such a
“breakup point” does not exist. The semiclassical limit of the theory in this case can be found,
e.g., in [86]. A purely classical formula for this postacceleration, where the “breakup point” cor-
responds to the distance of closest approach is given in [69]. Postacceleration is clearly observed
in low energy deuteron breakup, in the (fully quantal) theoretical calculations as well as in the
corresponding experiments, see e.g., [87, 88].

The formula Eq. 365 is also useful for the description of the Coulomb dissociation of halo nuclei
at high beam energies, see [89]. Within this theory postacceleration effects become negligibly small
in the high energy region. This is seen in the numerical calculations [89] and in the analytical
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Figure 29: The two bremsstrahlung type of graphs, which describe the Coulomb breakup
in the Born approximation. Three-momentum conservation at each vertex determines the
intermediate momenta qint.

investigations to be described below. It can, e.g., be applied to 11Be and 19C Coulomb dissociation
experiments of Nakamura et al. [56], disregarding the importance of finite range effects.

On the other hand the 1st order semiclassical Coulomb excitation theory was widely applied to
the Coulomb dissociation of high energy neutron halo nuclei, see, e.g., [90]. The theory corresponds
to the “prior form”, mentioned above. The question of higher order electromagnetic effects was
studied in [91] within this framework. These effects were found to be small, for zero range as well as
finite range wave functions of the a = (c+n)-system. It seems interesting to note that postaccelera-
tion effects arises through higher order electromagnetic effects in straight line semiclassical theories,
see [92]. Through the interference of 1st and 2nd order amplitudes even a “post-deceleration” can
arise.

Let us try to establish the relation between the apparently very different post-form and semi-
classical theory. It was noticed [90] that in the limit of Coulomb parameters ηa = ZcZe

2/~va � 1
(i.e. in the Born approximation), where va denotes the velocity of particle a (va = ~qa/ma), both
theories give the same result. Expanding the Coulomb wave functions up to first order in the
Coulomb fields one finds

TBorn = fcoulD0

 1
q2
a − [qc + qn]2

+
mn

ma

[
q2
c − (qn − qa)

2
]
 . (366)

Here fcoul = 2ηaqa/ (qcoul)
2 is the usual Coulomb amplitude with the “Coulomb push” qcoul =

qa− (qc + qn), for further details see [85]. The two terms in the parenthesis correspond to the two
graphs shown in Fig. 29. For small values of qcoul the two terms almost cancel and the expansion
in qcoul was found to be in agreement with the semiclassical result, see [90].

We now show that this agreement is also true in the case of arbitrary values of ηa and ηc. The
beam energy must be high (compared to the binding energy Ebind) and the two fragments need to
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be scattered into forward angles.
This is reminiscent of the result in the theory of bremsstrahlung. Replacing the neutron by a

photon the diagrams of Fig. 29 are identical to the bremsstrahlung in lowest order. In this case it
was already noticed that the Born result remains valid for arbitrary values of η for high energies
and small scattering angles [93]. Here we want to show that the same applies in this case.

The T -matrix can be evaluated analytically in this model due to well known Nordsieck formula
[94] (see Eqs. (11)–(13) of [85]). Using this formula one obtains the T -matrix Eq. 365 in terms
of a hypergeometric function F as well as its derivative F ′. The argument of the hypergeometric
function F (and F ′) is given by [85, 89]:

ζ(λ) =
2q2

coul(qaqc + qaqc)− 4(qcoulqa + λqa)(qcoulqc − λqc)
(q2

coul − 2qcoulqa − 2λqa)(q2
coul + 2qcoulqc − 2λqc)

.

We observe that (for λ = 0) this parameter ζ(0) is found to be negative and −ζ(0)� 1 for beam en-
ergy large compared to the binding energy and for perpendicular momentum transfers q⊥ � 2ηaq‖
(nonadiabatic case), where q‖ = ω/v with ~ω = Ebind +Erel and where the relative energy between
c and n is Erel = ~2q2/2µ with the relative momentum given by q = (mcqn −mnqc) /ma. It was
already noticed in the numerical evaluation of the process, due to −ζ(0) � 1, that the hyperge-
ometric series does not converge and an analytic continuation had to be used. Here we use this
fact to our advantage and make a linear transformation to get the argument of the hypergeometric
function close to 0. The transformation used leads to the argument of the hypergeometric function
z = 1/ (1− ζ(0)) (Eq. 15.3.7 of [95]). In this respect this approach differs from the one used in the
bremsstrahlung case, where a transformation giving an argument close to one is used. Using only
the lowest order term in the hypergeometric series one obtains after some algebra (up to an overall
phase)

T ≈ 4π D0 fcoul e
−πξ/2

[
e−iφ

1
q2
a − (qn + qc)2

+ e+iφmc

ma

1
q2
c − (qn − qa)2

]
. (367)

Hereby, the relative phase is φ = σ0(ηc)− σ0(ηa)− σ0(ξ)− ξ/2 log |ζ(0)|. The σ0(η) = argΓ(1 + iη)
are the usual Coulomb phase shifts, and ξ = ηc − ηa. The correspondence to the Born result is
clearly seen. One only has an additional prefactor e−πξ/2 and a relative phase e±iφ between the two
terms. The phase φ obviously is higher orders, O(ξ). Since vc ∼ va the quantity ξ is usually very
small and so is φ for the cases of [56]. The prefactor is also well known in the semiclassical theory,
where it accounts for the replacement of the “Coulomb displaced” trajectories with the straight
line trajectories. Both corrections vanish in the limit ξ → 0 and the result coincides with the usual
Born approximation (even if ηa and ηc are not small).

We have seen that the T -matrix in the case of large Coulomb parameters ηa and ηc corresponds
to the Born result (small Coulomb parameter) in the sudden (or nonadiabatic) case q⊥ � 2ηaq‖.
We note that the derivation of Eq. (367) only depends on the condition −ζ(0)� 1 (and not on the
values of the η’s). For ηa, ηc � 1 one can define a classical path for both a and c in the initial and
final state and Eq. (367) can be related to the semiclassical approach.

In many experimental situations the Coulomb push qcoul is small. One can expand Eq. (366)

92 Physics of Radioactive Beams - C.A. Bertulani



0.23. RELEVANCE OF POSTACCELERATION EFFECTS AND
PHOTO-ABSORTPION CROSS SECTIONS

or Eq. (367) with φ = ξ = 0 for small values of qcoul. One obtains

T = fcoul
2D0

π2

m2
nmc

m3
a

2q · qcoul

(κ2 + q2)2 . (368)

This result is in remarkable agreement with the usual 1st order treatment of electromagnetic exci-
tation in the semiclassical approximation.

In the semiclassical approach the scattering amplitude is given by the elastic scattering (Ruther-
ford) amplitude times an excitation amplitude a(b), where the impact parameter is related to the
q⊥ and η. The absolute square of a(b) gives the breakup probability P (b), in lowest order (LO). It
is given by [90, 91]

dPLO

dq
=

16y2

3πη
x4

(1 + x2)4
,

where the variable x is related to the relative momentum between n and c by x = q/η and y is a
strength parameter given by

y =
2ZZcmne

2

~vamabη
. (369)

This formula shows very interesting scaling properties: Very many experiments, for neutron
halo nuclei with different binding energy, beam energy, scattering angles (or qn and qc) all lie on
the same universal curve! (Corrections for finite values of ξeff = ωb/v = ξ(θ) = 2ηaq‖/q⊥ should
also be applied, according to [91].).

Postacceleration effects are also of importance for the use of Coulomb dissociation for the study
of radiative capture reactions of astrophysical interest. They could also affect the extraction of
photo-neutron cross sections [96] by using the Coulomb dissociation of radioactive nuclear beams.
The effect has to be considered for each particular case, in order to access its relevance. For the
cases in which Coulomb reacceleration is known to be of minor relevance, the Coulomb excitation of
halo nuclei is a powerfull tool to access the information on the photo-absorption cross sections. As
an example we show in Figure 30 the dipole strength distributions for 6He as measured by Aumann
and collaborators [97]. The agreement with the E1 response, as calculated by Cobis et al.[98] and
by Danilin et al. [99] in the three-body framework is quite reasonable.

In Fig. 31 we show the photoneutron cross sections σ(γ,xn) for 16O [100] (upper-half panel)
and for the unstable isotopes 20,22O (lower panels) as extracted from the measured electromagnetic
excitation cross section (symbols) [96]. The thresholds for decay channels involving protons (which
were not observed in the experiment) are indicated by arrows. For 20,22O the data are compared
to the shell model calculations of Sagawa and Suzuki [101].
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Figure 30: The dipole strength distributions for 6He as measured by Aumann and collabora-
tors [97]. The curves are adapted from Ref. [98] (dotted curve) and from Ref. [99] (dashed
curve). The experimentally [97] derived E l-strength distribution and the errors are given
by the solid line and the broad, shaded band, respectively. The abscissa is the excitation
energy E * minus the two-neutron separation energy Eth, , the experimental value of which
amounts to 0.975 MeV.
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Figure 31: Photoneutron cross sections σ(γ,xn) for 16O [100] (upper-half panel) and for the
unstable isotopes 20,22O (lower panels) as extracted from the measured electromagnetic ex-
citation cross section (symbols) [96]. The thresholds for decay channels involving protons
(which were not observed in the experiment) are indicated by arrows. For 20,22O the data
are compared to the shell model calculations [101].
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