
Physics of Radioactive Beams1

Chapter 7
Elastic and inelastic scattering

Carlos A. Bertulani, Texas A&M University-Commerce, TX 75429, USA

1These notes consist of a series of lectures presented by the author at the Geselschaft für Schw-
erionenforschung, Darmstadt, Germany in the Spring of 1994. GSI-Report 1994-11. This material
was latter extended and published in the book “Physics of Radioactive Beams”, C.A. Bertulani,
M. Hussein and G. Muenzenberg, Nova Science, Hauppage, NY, 2002, ISBN: 1-59033-141-9



0.1. INTRODUCTION

0.1 Introduction

Elastic scattering of radioactive nuclei is also sensitive to their matter distribution. This is
due to the dependence of the optical potential on the matter distribution, as is easily implied
in the “tρρ” approximation

The scattering amplitude is given in terms of the scattered wave, ψ+
r (r ) , by

f(θ) = − µ

2π~2

∫
e−ik

′·r U(r )ψ+
k (r )d3r (1)

A simple approximation is obtained if we replace ψ+
k by the plane wave, eik·r , i.e.,

fBA(θ) = − µ

2π~2

∫
e−ik

′·r U(r) eik·r d3r (2)

This is known as the Born-approximation. Rearranged slightly this becomes

fBA(θ) = − µ

2π~2

∫
eiq·r U(r )d3r (3)

which we recognize as the Fourier transform of the potential evaluated at q = k− k′ . Here
q is the change in momentum of the scattered particle. This momentum, q, is transferred
to the target and reappears as the recoil of the target. In terms of the scattering angle
q2 = 2k2 sin2 (θ/2) . Thus, in this approximation, by measuring f(θ) one tests U , which
by its way is related to the matter density. We will assess the theoretical tools which allow
to cross the bridge from elastic scattering measurements to the information on the matter
densities.

0.2 The distorted wave Born approximation

A more sophisticated version of the Born approximation is the distorted wave Born approx-
imation. Suppose the potential U can be written as the sum of two terms, U = U1 + U2 ,
and suppose we know or can easily obtain the scattering solution for U1 ,{

∇2 + k2 − U1(r )
}
χ±k (r ) = 0 (4)

where k2 = 2µE/~2 . We use the notation

H1 = H0 + U1, H = H1 + U2 (5)

and the Green’s function formalism,

G±1 =
1

E −H1 ± iη
, G± =

1

E −H ± iη
(6)
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0.2. THE DISTORTED WAVE BORN APPROXIMATION

so that 4 can be written as
(E −H1)χ

± = 0 (7)

and χ± can be expressed in terms of plane waves states using Eq. ??. We get

χ± = φ+G±0 U1χ
±, where G0 =

1

E −H0 ± iη
. (8)

The relation between G1 and G0 can be determined by using

1

A
− 1

B
=

1

B
(B − A)

1

A
(9)

which is true for operators as well as for numbers. Hence, if A = E − H1 ± iη and B =
E −H0 ± iη we find

G±1 = G±0 +G±0 U1G
±
1 (10)

and reversing the definitions of A and B one find

G±0 = G±1 −G±1 U1G
±
0 (11)

Substituting Eq. 11 into Eq. 8 one gets

χ± = φ+G±1 U1(χ
± −G±0 U1χ

±) = φ+G±1 U1φ (12)

The solution of the complete problem with the potentials U1 + U2 obeys the equation

(E −H)χ± = 0 (13)

and can be expressed again in terms of χ±, by using Eqs. 8 and 12

ψ± = χ± +G±U2χ
± = χ± +G±1 U

±
2 ψ
± (14)

The transition matrix element is given by

Tfi = 〈φ|U1 + U2|ψ+〉 = 〈φ|U1|χ+〉+ 〈φ|U1G
+
1 U2|ψ+〉

+ 〈φ|U2|χ+〉+ 〈φ|U2G
+
1 U2|ψ+〉

where we have used Eq. 14. Now, since G0(r, r
′) is symmetric in r and r ′ it follows that

G−0 (r, r ′) = 〈r ′|G−0 |r 〉 =
[
〈r |G+

0 |r ′〉
]+

(15)

or, simply G−0 = (G+
0 )+ .

Using Eqs. 15 and Eq. 12 we have

〈φ|U1G
+
1 U2|ψ+〉 = 〈G−1 U+

1 φ|U2|ψ+〉 = 〈χ−|U2|ψ+〉 − 〈φ|U2ψ
+〉
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0.2. THE DISTORTED WAVE BORN APPROXIMATION

and similarly, using equation 14,

〈φ|U2G
+
1 U2|ψ+〉 = 〈φ|U2|ψ+〉 − 〈φ|U2|χ+〉

Thus, collecting terms the transition matrix element is given by

Tfi = 〈φ|U1|χ+〉+ 〈χ−|U2|ψ+〉 (16a)

From Eq. 1 we see that

f(θ) = − µ

2π~2
〈φ|U |ψ+〉 (17)

Thus the relationship between the transition matrix element and the scattering amplitude is

f(θ) = − µ

2π~2
Tif (18)

The result 18 can be written as

f(θ) = f1(θ)−
µ

2π~2

∫
χ

(−)∗
1 (k′, r )U2(r )ψ(+)(k, r )d3r (19)

where we use the indices 1 on χ to indicate that they are distorted waves generated by the
potential U1 . The DWBA amplitude is obtained by approximating ψ+ by χ+

1 ,

fDWBA (θ) = f1(θ)−
µ

2π~2

∫
χ

(−)∗

1 (k′, r )U2(r )χ
(+)
1 (k, r )d3r (20)

This approximation is good if U2 is weak compared to U1 , and is called the “distorted-
wave Born approximation”. It is “Born” because it is first order in the potential U2 but
“distorted wave” because instead of using the plane waves as in Eq. 3 we used the distorted
waves χ1 which should be a better approximation to the exact solution.

This approximation can be generalized to inelastic scattering. In this case, U1 (and
hence f1 ) is chosen to describe the elastic scattering (i.e. it is an optical potential), while
U2 is the interaction which induces the non-elastic transition. The validity of the DWBA
then depends upon elastic scattering being the most important event which occurs when two
nuclei collide so that inelastic events can be treated as perturbations. The corresponding
inelastic scattering amplitude for a reaction A(a, b)B has the form

f inel
DWBA(θ) = − µ

2π~2

∫
χ

(−)∗
β (kβ, rβ) 〈b, B|U2|a,A〉χ(+)

α (kα, rα) d3rαd
3rβ. (21)

We have used this result before.
Here χ1 has been generalized to χα and χβ . The function χα describes the elastic

scattering in the α = a + A entrance channel arising from an optical potential Uα , while
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0.3. POLARIZATION POTENTIALS FOR REACTIONS WITH HALO NUCLEI

χβ describes the elastic scattering in the β = b + B exit channel arising from a potential
Uβ . The potential U2 which describes the non-elastic transition depends upon the type of
reaction and the model chosen to describe it.

Supplement A

0.3 Polarization potentials for reactions with halo nu-

clei

The mean effect of the coupling between the elastic channel and excited states is expressed by the
optical potential [1]. Instead of deriving this potential from first principles, one frequently adopts a
phenomenological approach, expressing it in terms of a few parameters. These parameters, which
may have a weak energy and/or mass dependence, are then fitted to a set of scattering data.
When, however, a few channels have strong influence on the elastic scattering, it is necessary to
handle the coupling with these channels separately. One possible approach is to express such
effects as a correction to the optical potential. If one is able to obtain this correction, usually
know as a polarization potential, the calculation of the elastic and the reaction cross sections
reduces to the simple task of solving a one-channel Schrödinger equation. This approach has
been used in several situations (for a review see [2]), including the cases of rotational [3, 4, 5, 6]
and vibrational excitations and that of transfer channels [7, 8].

In this Section we discuss the derivation of the polarization potential resulting from the coupling
to states corresponding to the removal of a halo nucleon from radioactive beam projectiles. This
potential has been calculated by Canto, Donangelo and Hussein [9] for high energy collisions with
light targets. We refer to that reference for more details on the calculations.

Following the procedure introduced by H. Feshbach [1] for the derivation of the optical potential,
one defines the projection operators

P = |φ0 >< φ0| ; Q = 1− P, (22)

where φ0(x) ≡ φ0(x) represents the bound state of the halo system while Q is the projector onto
states in the continuum. The polarization potential can then be written [9]

Vpol(r, r
′) =< r;φ0|V Q G+Q V |φ0; r

′ >, (23)

where V is the coupling interaction and G+ is the optical Green’s operator. In order to evaluate
Eq. 23, we write the projector Q in its spectral form

Q =

∫
|φq >< φq| dq, (24)
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0.3. POLARIZATION POTENTIALS FOR REACTIONS WITH HALO NUCLEI

with q standing for the set of quantum numbers that characterize the continuum states.
With introduction of representations in the space or the relative coordinate r and with the

assumption that the interaction V is local, the polarization potential can be put in the form

V (r, r′) = F(r) G(+)(r, r′) F(r′), (25)

with the scalar form factor

F(r) = U(r)

[∫
φ2

0(x)u2(x) dx

]1/2

. (26)

In the derivation of Eq. 26, the following assumptions have been made [9]:

• the energies of the relevant states φq of Eq. 24 are small as compared to the collision energy,

• the matrix element < φ0|V |φ0 > is negligible,

• the coupling potential is separable in the form: V (r, x) ≈ U(r) u(x), where U(r) is the
real part of the halo nucleus-target optical potential and u(x) is an internal excitation form
factor [10].

Performing the partial waves expansion of the polarization potential and writing the `-projected
Green’s function explicitly, one gets the `-components of the polarization potential

V`(r, r
′) = F(r)

[
− 2µ

~2k
f`(kr<) h

(+)
` (kr>)

]
F(r′). (27)

Above, f`(kr<) and h(+)
` (kr>) are respectively the regular and the outgoing solutions of the radial

equation with the optical potential.
For practical applications, it is convenient to use the trivially equivalent local potential, defined

as [3]

V pol
` (r) =

1

f`(kr)

∫
V pol
` (r, r′) f`(kr

′) dr′, (28)

and adopt the on-shell approximation for the Green’s function [3]. This approximation amounts to
replacing h(+)

` → if` and its validity has been discussed in details in [11]. It leads to a separable
Green’s function and the trivially equivalent local potential takes the form

V pol
` (r) = −i 2µ

~2k
F(r) |S(1)

` |
∫ ∞

0

F(r′) F 2
` (kr′) dr′, (29)

where S(1)
` is the `-component of the optical S-matrix and F`(kr) is the regular Coulomb func-

tion [12]. To get Eq. (29), the authors of Ref. [9] have approximated the radial wave function as
f`(kr) ' |S(1)

` |1/2 F`(kr).
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0.3. POLARIZATION POTENTIALS FOR REACTIONS WITH HALO NUCLEI

In the r-region of interest for the neutron–removal process, only the tail of U(r) is relevant.
Therefore, the form factor can be written as

F(r) = F0 e
−r/α, with F0 = CeR0/α r. (30)

In Eq. 30, C is a constant which can be obtained from Eq. 26, R0 = R11Li +Rtarget, and α is the
diffusiveness associated to the optical potential U(r). Replacing Eq. 30 into Eq. 29, one gets

V pol
` (r) = −i W0(`, E) e−r/α. (31)

The strength W0(`, E) is given by

W0(`, E) =
|F0|2

E
|S(1)
` | I`(η, s), (32)

in terms of the radial integral

I`(η, s) =

∫ ∞
0

e−sρ F 2
` (ρ) dρ, (33)

where η is the Sommerfeld parameter and s = 1/(kα).
Using the asymptotic WKB approximation for F`(ρ),

F`(ρ) ≈
(

1− 2η

ρ
− `(`+ 1)

ρ2

)−1/4

sin

[
π

4
+

∫ ρ

ρ0

√
1− 2η

ρ
− `(`+ 1)

ρ2
dρ

]
, (34)

where ρ ≡ kr and ρ0 is the value of ρ calculated at the turning point of the Rutherford trajectory,
one obtains

I`(η, s) =
e−ηs

2s
[ηs K0(X) + X K1(X)] . (35)

In Eq. 35, K0(X) and K1(X) are modified Bessel functions with the argument

X = ηs

√
1 +

`(`+ 1)

η2
. (36)

The variable X measures the distance of closest approach in a Rutherford trajectory, in units of
α.

For a comparison with the results of [9], the high energy and large ` limit was investigated. In
this limit the polarization potential of Eq. (31) was shown to be identical to that obtained within
the eikonal approximation [9].
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0.4. ELASTIC SCATTERING OF HALO NUCLEI

Figure 1: (a) Elastic scattering of 17O projectiles with an energy of Elab = 84 MeV/nucleon
bombarding 208Pb targets. (b) Elastic scattering data of 12C+12C at 84 MeV/nucleon.

0.4 Elastic scattering of halo nuclei

Reactions with secondary beams have been studied at relatively high energies, Elab &
30 MeV/nucl. The distorted waves can be approximated by eikonal waves. This is valid
for small angle scattering. To see how this approximation works we consider first the scat-
tering of stable nuclei. The scattering amplitude in the eikonal approximation is

fel(θ) = ik

∫
bdb J0(qb)

[
1− eiχ(b)

]
(37)

where

χ(b) = χC(b) + χN(b) , χN(b) = − 1

~v

∫ ∞
−∞

dz U
[√

b2 + z2
]

, (38)

is the nuclear eikonal phase and χC(b) is the Coulomb eikonal phase appropriate for light
nuclei.

In Figure 1(a) we show the data on the elastic scattering of 17O projectiles with an
energy of Elab = 84 MeV/nucleon bombarding 208Pb targets. Data are from Ref. [13].

The calculation is done using Eq. 37 together with the “tρρ” approximation with the
parameters for σNN , αNN . We see that the approximation works extremely well (solid line).
It should be said however that this system is not very sensitive to the optical potential
since it is dominated by Coulomb scattering. Note that the vertical scale is a ratio of the
elastic scattering cross section and the Rutherford cross section. At θ ∼ 3o the cross section
deviates from the Rutherford cross section and decreases rapidly. This is due to the strong
absorption at small impact parameters. Any potential which is strongly absorptive (large

8 Physics of Radioactive Beams - C.A. Bertulani



0.4. ELASTIC SCATTERING OF HALO NUCLEI

imaginary part) at small impact parameters and rapidly decreases to zero at the strongly
absorption radius will reproduce well the data. The “tρρ” potential is no exception to this.

A better test of the theory is provided by more “transparent” systems as, e.g., 12C+12 C .
In Figure 1(b) we show the elastic scattering data of 12C +12 C at 84 MeV/nucleon. The
scattering is not dominated by Coulomb scattering as in the previous case. It is now much
more sensitive to the optical potential chosen. The dashed curve is the one obtained with
the “tρρ” approximation. We see that the agreement is quite good at forward angles, but it
fails at large angles. However, this is not a failure of the eikonal approximation but of a good
enough optical potential, which in this case was not provided by the “tρρ” approximation. To
show this point we also plot in Figure 1(b) the result of an eikonal calculation [14], but with
an adjusted optical potential (dashed line), the same one used in Ref. [13] with a full DWBA
calculation. In fact, at these energies and for not a too large scattering angle (θ . 30o) the
eikonal approximation works very well. The “tρρ” also gives reasonable results, as shown in
Refs. [15] and [14]. We now turn to the elastic scattering with radioactive beams.

Due to the low intensity of radioactive beams (∼ 103 − 104 particles per second) the
elastic scattering of radioactive beams were reported [16, 17] in few cases. To understand
the motivation for such experiments let us decompose f(θ) into “near” and “far”side com-
ponents. This is accomplished by first writing the Bessel function J0 in Eq. 37 as

J0(qb) =
1

2

[
H

(1)
0 (qb) +H

(2)
0 (qb)

]
(39)

where H
1(2)
0 (qb) is the Hankel function of order zero and first (second) type. Asymptotically,

these functions behave as running waves. With that the amplitude f(θ) can be written as
f(θ) = fnear(θ) + ffar(θ) , where fnear(θ) [or ffar(θ)] is given by Eq. 37 with J0(qb) replaced

by
1

2
H

(2)
0 (qb)

[
or

1

2
H

(1)
0 (qb)

]
. The function H(2)(qb) is more sensitive to large values of b

than H(1)(qb) does.
This fact is mainly due to the Coulomb interaction. In the limit when χC(qb) is negligible

and χN(qb) is pure imaginary (no refraction) it is easy to see that the following relation

holds (from the properties of the H
1(2)
0 functions)

fnear(θ) = −f ∗far(θ) (40)

The above results in an angular distribution, f(θ), that exhibits simple black-disk Fraunhofer
diffraction patterns since the near and far amplitudes are equal in magnitude and interfere,
as shown in Figure 2.

Back to Figure 1 we observe a small bump in the ratio-to-Rutherford cross section before
the angular distribution goes down in magnitude. This is called by the nuclear rainbow
effect. This is a situation characterized by the dominance of the far side component over the
near side. In other words, as the impact parameter decreases the influence of the Coulomb
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0.4. ELASTIC SCATTERING OF HALO NUCLEI

Figure 2: Near and far decomposition of the scattering amplitude.

interaction also diminishes and the nuclear force pushes the wave strongly (refracts strongly)
to the other side of the nucleus interfering there with the other part of the wave.

At very small angles one always encounters the opposite situation, namely, fnear/ffar � 1 ,
owing to the influence, on the angular region, of Coulomb repulsion which affects mostly
fnear .

The motivation for the elastic scattering with radioactive beams can now be made clear.
The elastic scattering of light systems as 12C+12 C, 16O+12 C and 16O+16 O shows sufficient
transparency for the cross sections to be dominated by far side scattering. It has been
speculated that exotic nuclei like 11Li would exhibit much stronger absorption because of
the weak binding of the excess neutrons so that there would no longer be far-side dominance.
Then the scattering would be more characteristic of the scattering by a black sphere for which
the near side and far side amplitudes are equal at all angles and their interference produces
marked diffractive oscillations. However, we shall show here that there are good reasons to
believe that this is not so, and that the scattering is still dominated by refraction.

We first study the case of p+11Li elastic scattering. This has been measured and reported
in Ref. [18] at Elab = 62 MeV. The results are shown in Fig. 3(I-a) (upper data points)
together with data for p+9Li at Elab = 60 MeV (lower data points). What is shown is
the ratio to the Rutherford cross section. Unfortunately, these p+9Li data are not purely
elastic. Due to experimental difficulties possible inelastic scattering to the (1/2−; 2.69 MeV)
excited state in 9Li could not be separated in the 9Li data. It has been estimated that the
inelastic contribution was not more than 30% of the total measured cross section [18].

One striking feature in the p+11Li angular distribution is observed; while the angle of
diffraction minimum follows from the systematics, the cross section values are reduced as
compared with those of the other isotopes. What is understood by systematics here is that

the diffraction angle is proportional to θ ∼ 1

R
. Since R ∼ A1/3 , then θ ∼ 1/A1/3 , i.e.,

10 Physics of Radioactive Beams - C.A. Bertulani



0.4. ELASTIC SCATTERING OF HALO NUCLEI

Figure 3: (I) Elastic scattering of protons on lithium isotopes at Elab = 62 MeV, reported
in ref. [18]. (a) Upper data points: p +11 Li. Lower data points: p +9 Li. (b) Upper data
points: p +9 Li. Middle data points: p +7 Li. Lower data points: p +6 Li. (c) p +11 Li. (II)
Sketch of spin-orbit effect on elastic scattering.

decreases with ∼ A1/3 .
An eikonal calculation can be done, using 37 and a standard potential of the form

UN(r) = −VR fV (r)− iWR fW (r) + 4iaI VI
d

dr
fW (r)

+ 2

(
~
mπc

)2
1

r

d

dr
[VS fS(r)] (l · s) + Vcoul. (41)

where
fi(r) = 1/ {1 + exp[(r −Ri)/ai]} (42)

for i = V,W and S ; with Ri = riA
1/3 . The first (second) term is the usual real (imaginary)

part of the optical potential. The third term is peaked at the surface of the nucleus and
is used to simulate a stronger absorption of the incoming nucleon at the surface of the
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0.4. ELASTIC SCATTERING OF HALO NUCLEI

nucleus. It is a correction due to the Pauli blocking effect. Since the momentum states of
the nucleons are occupied in the nucleus, the incoming nucleon has no chance to scatter
into those states. This has the effect of reducing the nucleon-nucleon cross section and
consequently the absorption. At the nuclear surface the nucleons are not as densely packed
and not as many momentum states are occupied. Therefore, nucleon-nucleon scattering is
more effective, increasing the absorption. The third term is a small correction in general.

Nucleus Set Real Imaginary Spin-orbit σR
VR rR aR Wv Ws rI aI VS rS as (mb)

6Li A 35.96 1.13 0.69 6.63 3.20 1.10 0.68 5.9 0.68 0.63 235
7Li A 35.96 1.13 0.69 15.15 1.06 1.14 0.60 5.9 0.71 0.63 258
9Li A 35.96 1.13 0.69 18.78 0.00 1.06 0.64 5.9 0.76 0.63 298
11Li A 35.96 1.13 0.69 6.46 4.35 1.17 0.79 5.9 0.80 0.63 461

B 18.06 1.385 0.546 4.26 4.60 0.56 1.16 5.9 0.80 0.63 388

Table 8.1 - Parameters for the real part of the central potential and for the imaginary
party of the central potential. Vi and Wi are in MeV, and ri and ai are in fm.

The last term in Eq. 41 is a spin-orbit correction. It follows the same principles as the
spin-orbit interaction in atoms. It causes interference between the scattering from opposite
sides of the nucleus, as shown in Fig. 3(II) where a proton with spin up scatters from
one and the other side of the nucleus. Since the angular momentum of the proton changes
sign in one and the other case, the spin-orbit interaction also changes sign. The interference
between these two situations leads to pronounced effects in the angular distribution.

The parameters used to describe the elastic scattering of several nuclei are shown in Table
8.1 [18]. These fits are shown in Fig. 3(I-b) together with the experimental data for 6Li, 7Li
and 9Li. In Fig. 3(I-c) several fits are shown which are not worth the discussion, since they
fail badly to reproduce the data. They have been generated with optical potentials based on
the folding of the densities (e.g., the “tρρ”-potential). This shows that the relationship of
matter densities and elastic scattering is not an easy task to accomplish. The solid curve is a
fit obtained with the optical potential parameters in the last row of Table 3.1. A microscopic
calculation using multiple nucleon-nucleon collisions [19] was also not able to reproduce the
data [18].

In order to understand what is the reason for this disagreement we look back into Eq. 21.
Elastic scattering occurs for a = b and A = B . Let us assume that a represents 11Li. we
see that under the action of a small interaction a wavefunction is modified in lowest order to

|ψ′n〉 = |ψn〉+
∑
m 6=n

〈ψm|U |ψn〉
En − Em

|ψm〉 (43)

If we assume that |ψn〉 is the ground state this equation says that during the action of the
potential U the wavefunction acquires small components from excited states. At the end of
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0.4. ELASTIC SCATTERING OF HALO NUCLEI

Figure 4: Elastic scattering of 11Li by 12C (a) and by 28Si (b) as reported in Refs. [16, 17].

this process the wavefunction can return to its initial state again. The modification of the
wavefunction during the action of the potential is called by “polarization”. It does not lead
to an excitation but it has consequences.

This phenomenon can be described by a “polarization potential”, which is proportional
to the second term of Eq. 43 (see Supplement A). In 11Li there are no excited states. In this
case, the sum in Eq. 43 has to be replaced by an integral over states in the continuum. It is
believed that, since the binding energy of 11Li, or 11Be, is quite small, the strength1 of this
coupling to the states in the continuum is quite large [20]. A derivation of a polarization
potential appropriate for the coupling to the states in the continuum of a halo nucleus is
presented in Supplement A.

For nucleus-nucleus elastic scattering the theoretical description is in principle simpler
since the surface and spin-orbit terms of the potential are absent. Elastic scattering of 11Li
by 12C and 28Si have been measured [16, 17]. The data were also contaminated by inelastic
scattering. These are shown in Figs. 4 together with fits from numerical calculations with
properly chosen optical potentials. The basic conclusion of these two works is that the optical
potentials have to be of long range. But the scattering is still dominated by refraction, i.e.,
ffar(θ)� fnear(θ) [22].

The elastic scattering data can be used to discriminate between different nuclear mod-
els for Borromean systems. A work along these lines was performed by Thompson and
collaborators [23].

1Not only 〈0|U |ψcont.〉 , but also Econt. − E0 is small.
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0.5. VIBRATIONAL (OR DEFORMED) POTENTIAL MODEL

Supplement B

0.5 Vibrational (or deformed) potential model

The asymptotic form of the scattered wave for an unbound particle is

φ
(±)
k,α =

[
eik·r + f

(±)
k (θ)

e±ikr

r

]
χs (44)

where χs is a spin-isospin wave function.
Assuming that a residual interaction Uint between the projectile and target exists and is weak

we can use the DWBA result 21 for the inelastic amplitude. For a nuclear excitation |0〉 → |λµ〉 ,
where λµ is the final angular momentum (and projection), it is convenient to define

〈kλ|Tλµ|k0〉 ≡ 〈ψλµφ(−)
kλ
|Uint|ψ0 φ

(+)
k0
〉 (45)

where kλ is defined as

Ekλ =
~2k2

λ

2M
=

~2k2
0

2M
− ~ωλ (46)

and ~ωλ is the excitation energy. kλ is the vector kλ = kλ r/r.
For excitation energies ~ωλ � Ekλ , one obtains the useful relation

kλ =
(
k2

0 − 2Mωλ/~
)1/2 ∼= k0

(
1− Mωλ

~k2
0

)
(47)

or
∆k = kλ − k0 =

ωλ
v

(48)

where v is the projectile velocity.
From 18 the scattering amplitude is given by

fλµ(θ) = − M

2π~2
〈kλ|Tλµ|k0〉 (49)

The differential cross section for inelastic scattering is given by

dσλµ(θ)

dΩ
=
kλ
k0

|fλµ(θ)|2 =

(
M

2π~2

)2
kλ
k0

|〈kλ|Tλµ|k0)〉|2 (50)

For collective excitations the projectile induces small deformations of the target surface. The
matter density of the target will be slightly deformed by an additional term (proportional to
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the derivative of the ground state density. This term in peaked at the target surface. Since
microscopically the interaction potential Uint can be regarded as a folding of the nucleon-nucleon
interaction and the matter densities, one expects that Uint is also peaked at the target surface.
This carries the spirit of the Bohr-Mottelson model for collective vibrations. The approximation is
valid for light projectiles, mainly proton, α′s, C, O, etc.

In this model, the optical potential is not spherically symmetric, but is slightly deformed. The
equipotential surfaces of this field Uα(r ) are given by Eq. ??, i.e.,

rθ = r

{
1 +

∑
λµ

α∗λµYλµ(r̂)

}
(51)

for constant r . In other words,
Uα(rθ, θ) = U0(r) (52)

where U0(r) is the non-deformed field. Conversely,

Uα(r, θ) = U0

(
r

1 +
∑

λµα
∗
λµ Yλµ(r̂)

)

= U0(r)− r
dU0(r)

dr

∑
λµ

α∗λµ Yλµ(r̂) +O(α2) (53)

Thus, the residual interaction is given by

Uint = −r dU0(r)

dr

∑
λµ

α∗λµ Yλµ(r̂) ∼= −R0
dU0(r)

dr

∑
λµ

α∗λµ Yλµ(r̂) (54a)

where R0 is the peak position of dU0(r)/dr .
Thus, for isoscalar excitations we can write (λ ≥ 2)

f ISλµ (θ) =
M

2π~2
〈Ψλµ|α∗λµ|Ψ0〉R0

〈
φ

(−)
k

∣∣∣∣ dU0(r)

dr
Yλµ(r̂)

∣∣∣∣φ(+)
k0

〉
(55)

We can rewrite it as

f ISλµ (θ) =
M

2π~2

1√
2λ+ 1

δλ

〈
φ

(−1)
k

∣∣∣∣dU0(r)

dr
Yλµ(r̂)

∣∣∣∣φ(+)
k0

〉
(56)

where δλ is the deformation parameter for the nuclear excitation.
The monopole |0〉 → |λ = 0〉 transition amplitude is given by

f0(θ) =
M

2π~2
α0

〈
φ

(−)
k

∣∣∣∣(3U0(r) + r
dU0(r)

dr

)
Y00

∣∣∣∣φk0

〉
(57)
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Assuming charge independence of the nuclear interaction, the isovector excitations by the pro-
jectile nuclear field arise when the target has a number of protons which is different from that of
the neutrons.

From Eq. 54a the surface potential which induces isovector excitations is given by

−Rn
dU

(n)
0

dr

∑
λµ

α
(n)∗
λµ Yλµ(r̂)−Rp

dU
(p)
0

dr

∑
λµ

α
(p)∗
λµ Yλµ(r̂) (58)

Center of mass correction imply that

d
(n)
λµ ≡ Rn α

(n)∗
λµ Yλµ(r̂) = Z

(
− 1

A

)λ
Rα∗λµ Yλµ(r̂)

d
(p)
λµ ≡ Rp α

(p)
λµ Yλµ(r̂) =

[(
1− 1

A

)λ
+ (−1)λ

(Z − 1)

Aλ

]
Rα∗λµ Yλµ(r̂) (59)

where d(n)
(
d(p)
)

is the vibrational amplitude of the neutron (proton) fluid. R is the mean radius
of the total (proton + neutron) density.

The isovector potential becomes

−R
∑
λµ

α∗λµ Yλµ(r̂)


Q

(n)
λ︷ ︸︸ ︷

Z

(
− 1

A

)λ
dU

(n)
0

dr
+


Q

(p)
λ︷ ︸︸ ︷(

1− 1

A

)λ
+ (−)λ

Z − 1

Aλ

 dU
(p)
0

dr

 (60)

Note that if U (n)
0 = U

(p)
0 and Q(p)

λ = −Q(n)
λ there will be no isovector excitations.

If the radii of the neutron and proton potentials are slightly different

U
(n)
0 = U0 (r +R−Rn) ∼= U0(r) + (R−Rn)

dU0(r)

dr

U
(p)
0 = U0 (r +R−Rp) ∼= U0(r) + (R−Rp)

dU0(r)

dr

where U0(r) is a mean potential with mean radius R .
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Inserting 60 into 58 the isovector potential becomes

∆U = −R
∑
λµ

α∗λµ Yλµ(r̂)

{(
Q

(n)
λ +Q

(p)
λ

)[dU0

dr
+R

d2U0

dr2

]

−
(
Q

(n)
λ Rn +Q

(p)
λ Rp

) d2U0(r)

dr2

}
∼= −R

∑
λµ

α∗λµ Yλµ(r̂)
(
Q

(n)
λ +Q

(p)
λ

) dU0

dr
(61)

Thus, for isovector excitations,

f IVλµ (θ) =
M

2π~2

1√
2λ+ 1

δλ

(
Q

(n)
λ +Q

(p)
λ

) 〈
φ

(−)
k

∣∣∣∣dU0

dr
Yλµ(r̂)

∣∣∣∣φ(+)
k0

〉
(62)

If we now use the eikonal approximation, φ(−)∗
k (r )φ

(+)
k0

(r ) ∼= eiq·r+iχ(b), the integrals in Eqs. 56,
57 and 62 become

Iλµ =

∫
d3r Fλ(r)Yλµ(r̂) eiq·r+iχ(b) (63)

where

Fλ(r) =


3U0 + r

dU0

dr
, λ = 0

dU0

dr
, λ > 0

(64)

Using

Yλµ(r̂) =

√
2λ+ 1

4π

√
(λ− µ)!

(λ+ µ)!
Pλµ(cos θ)eiµφ (65)

and ∫
dφ eiqtb cosφ+iµφ = 2πiµ Jµ(qtb) (66)

we can write 63 as

Iλµ =
√
π(2λ+ 1)

√
(λ− µ)!

(λ+ µ)!
iµ
∫ ∞

0

db b Jµ(qtb) e
iχ(b)

×
∫ ∞
−∞

Pλµ

(
z√

b2 + z2

)
Fλ (b, z)eiq`zdz (67)

where (see Eq. 46)

q` = k0 − kλ cos θ ∼= k0 − kλ ∼=
ωλ
v

and qt ∼= 2
√
k0kλ sin

θ

2
, (68)

Physics of Radioactive Beams - C.A. Bertulani 17
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where θ is the scattering angle and we use the mean wavenumber 〈k〉 =
√
k0kλ to compute qt .

Thus, to compute the inelastic scattering amplitudes in the deformed potential model + eikonal
approximation one needs to calculate two simple integrals. The scattering amplitudes will depend
on the optical potential parameters and on deformation parameters δλ and α0.

0.6 Inelastic scattering of exotic nuclei

As we have seen the deformed potential model is based on the surface peaked assumption
for the transition density. Although this assumption is reasonable for the excitation of
heavy nuclei (e.g., 40Ca, 208Pb, etc.), it is rather crude for light nuclei, especially when the
transition density extends radially beyond the nuclear size. This is the case for the soft
multipole excitations, for which the transition densities have very long tails, as shown in
Fig. 5(a).

The transition strengths were calculated [14] by using the self-consistent HF + RPA
method [26]. The dominant peaks of all multipoles appear at Ex = 1 − 1.5 MeV, having a
narrow width of ΓFWHM ≤ 1 MeV. The transition strengths for the soft modes are calculated
to be B(EO) = 61.4 e2 fm4, B(E1) = 0.82 e2 fm2 and B(E2) = 31.5 e2 fm4, respectively,
exhausting 11%, 2% and %7 of the EWSR (Energy Weighted Sum Rule) values. Although
the fraction of the EWSR is small, the transitions strengths of the soft multipoles are larger
than those of the giant resonances in the same nucleus, because of the very low excitation
energies of the soft modes.

In order to test the validity of the formulas developed in the last Sections a calculation
of the differential cross sections of monopole and quadrupole resonances in 208Pb excited
by an α-projectile at Elab = 172 MeV is shown in Fig. 5(b) [14]. The transitions densities
of both states are calculated by using the HF density of 208Pb and assuming 100% of the
energy-weighted sum rules. It is remarkable that both the angular distributions and the
absolute magnitudes of the cross sections at forward angles, Ocm ≥ 15o , are well described
by using the established optical potentials for the nucleon-nucleus scattering.

We now consider the 11Li - 12C reaction at Elab = 30 and 60 MeV/nucleon. The param-
eters of the Gaussian potential in Eq. 70 at 30 MeV are v0 = 43.9 MeV, ω0 = 3.29 MeV,
and a = 2.93 fm for neutrons and v0 = 44.9 MeV, ω0 = 2.88 MeV, and a = 2.93 fm for
protons. At 60 MeV, very similar values [14] were taken. The calculated differential cross
sections are shown in Figure 6.

There are substantial differences between the monopole and the quadrupole excitations.
The first crucial point is the steeper slope of the monopole cross section at very forward
angle, θ ∼ 0o ; the difference is clearly seen in the ratio between the first and second peaks
of the cross sections, which is almost 1 for L = 2 but than 10 for L = 0 .

To understand this we observe that, due to the term e−z
2/a2

in the integrand of Eq. 74,
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Figure 5: (a) The transition strengths for monopole, dipole and quadrupole excitations in
11Li. (b) Differential cross sections of monopole and quadrupole resonances in 208Pb excited
by an α-projectile at Elab = 172 MeV.

that integral is dominated for z ' 0 values. Thus, Oλµ ∝ Pλµ(0) . But Pλµ = (0) = 0 ,
unless λ + µ =even. Thus three Legendre polynomials with different µ contribute to the
cross section in the L = 2 case, while only one appears in the L = 0 case.

The first deep minimum for the L = 0 case is found at θ ∼= 1.6 (1.0)o while a shallow ap-
pears at θ ∼= 1.0 (0.7)o for the L = 2 case at Elab = 330 (660) MeV. These differences were
certainly an important due in finding the giant monopole states is many heavy nuclei [25].
It is expected that they play the same role for the inelastic scattering of exotic nuclei.

For Elab = 660 MeV the dips of all multipole excitations occur in shorter intervals because
of the larger wave number.

It is interesting to compare the results of Figs. 5(b) and 6. Since the surface is sharp
in 208Pb, the slope decreases very slowly in the case of 208Pb + α , while it drops quickly
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Figure 6: Multipole excitations in 11Li interacting with 12C targets.

in the 12C +11 Li case because of the very diffuse surface of 11Li. It should be noticed
that the absolute magnitude of the differential cross section in Fig. 6 is of the order of 100
mb/sr for the monopole and quadrupole excitations which is almost the same as observed
magnitude of the Pb + α reaction in Fig. 5(b). It is also seen that the soft dipole mode
has a smaller cross section and a different angular dependence than those of the other two
multipoles. Although a secondary beam always has lower intensity than ordinary beams,
the soft multipole excitations could be tested experimentally with modern high sensitivity
detector systems.
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Supplement C

0.7 The folding potential model

From Eq. 45 we can write the transition matrix element as

Tλµ =

∫
d3R

∫
d3rφ

(−)∗
k (R )Uint (|R− r |) δρλµ(r )φ

(+)
k0

(R ) (69a)

where δρλµ = ψ∗λµ ψ0 is the transition density. Instead of using the deformed potential model we
can think of Uint (|R− r |) as the potential between each nucleon and the projectile. That is, the
transition |0〉 → |λµ〉 is caused by the (target-nucleon) - projectile interaction.

For simplicity, we shall use a Gaussian form for the (target-nucleon) - projectile potential. This
form is reasonable for α , carbon or an oxygen projectile. A Gaussian potential can be easily
expanded into multipoles

Uint = (v0 + iω0) e
−(R−r )/a2

= (v0 + iω0) e
−(R2+r2)/a2

e−R·r/a2

= 4π (v0 + iω0) e
−(R2+r2)/a2

∑
λµ

iλ jλ

(
2i
rR

a2

)
Yλµ(R̂)Y ∗λµ(r̂) (70)

Inserting this into Eq. 69a and using the eikonal approximation we get

Tλµ = 4π (v0 + iω0)
∑
λµ

iλ
∫
d3Reiq·r+iχ(b)

× e−R
2/a2

Yλµ(R̂)

∫
d3rδρλµ(r ) e−

r2

a2 jλ

(
2i
rR

a2

)
Yλµ(r̂) (71)

Using Eq. 66 we get (R ≡ (b,z))

Tλµ = 8π2 (v0 + iω0)
∑
λµ

iλ+µ

∫
db bJµ(qtb)e

iχ(b)

× e−b
2/a2

∫ ∞
−∞

dz e−z
2/a2+iωλz/v Yλµ(θ(z, b), 0)

×
∫
d3r e−r

2/a2

jλ

(
2i
rR

a2

)
δρλµ(r )Y ∗λµ(r̂)
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Or, using δρλµ(r ) ≡ δρλµ(r)Yλµ(r̂) , and Eq. 65,

Tλµ = 2π
√

4π (v0 + iω0)
∑
λµ

iλ+µ
√

2λ+ 1

√
(λ− µ)!

(λ+ µ)!

×
∫ ∞

0

db bJµ(qtb) e
iχ(b)Fλµ(b) (72)

where

Fλµ(b) = e−b
2/a2

∫ ∞
0

dr r2δρλ(r)Oλµ(r, b)e−r
2/a2

(73)

and

Oλµ(r, b) =

∫ ∞
−∞

dz e−z
2/a2

jλ

(
2i
rR

a2

)
ρλµ

(
z√

z2 + b2

)
eiωλz/v (74)

Given the parameters v0 , ω0 and a of the nucleon-projectile potential and the transition
density δρλ(r), Eq. 72 together with Eq. 49 allows us to calculate the inelastic scattering amplitude
fλµ(θ) .

A link between the deformed potential model and the folding model is obtained by using the
standard vibrational model. We can write

δρλ = −


δλ√

2λ+ 1

dρo
dr

for λ ≥ 1

α0

(
3ρ0 + r

dρ0

dr

)
for λ = 0

(75)

As in the deformed potential model, the scattering amplitude is determined by the optical potential
parameters and the deformation parameters δλ and α0. Isovector excitation are obtained by
multiplying the above densities by Q

(n)
λ +Q

(p)
λ (see Eq. 60).

Another commonly used model for δρλ is the Tassie Model [24] which is given

δρλ(r) = − δλ√
2λ+ 1

(
r

R0

)λ−1
dρ0

dr
, λ ≥ 1. (76)

where R0 is the nuclear radius. For λ = 0 , one can use 75. In general, both models yield basically
the same transition density for heavy nuclei and low lying collective states. The Tassie model is a
variant of the standard vibrational model and is more frequently used than the former (also known
as the Bohr-Mottelson Model).
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0.8 Charge-exchange reactions with radioactive beams

Charge exchange reactions, i.e. (p, n), (n, p) reactions, are an important tool in nuclear
structure physics, providing a measure of the Gamow-Teller strength function in the nuclear
excitation spectrum (for a review see, e.g., [27]) . Experiments with heavy-ion charge-
exchange reactions like (6Li, 6He), (12C, 12N), or (12C, 12B) are common [28, 29], one of the
advantages being that both initial and final states involve charged particles, so that a better
resolution can often be achieved.

But, apart from this aspect, heavy-ion charge-exchange reactions can help us to under-
stand the underlying nature of the exchange mechanism. On microscopic grounds charge
exchange is accomplished through charged meson exchange, mainly π- and ρ-exchange. It
is well known that neutron-proton scattering at backward angles results from small angle
(low momentum transfer) charge-exchange, and is one of the main pieces of evidence for the
pion exchange picture of the nuclear force. The width of the peak is roughly given by the
exchanged pion momentum divided by the beam momentum. Therefore, a similar enhance-
ment in the 180 degree elastic scattering of nuclei should be seen in charge exchange between
mirror pairs of nuclei.

Charge exchange between mirror nuclei is particularly interesting because at small angles
the exchange has zero momentum transfer. Looking at forward angles also has the advantage
of eliminating competing processes, namely proton-neutron transfer. Another important
advantage of mirror nuclei charge-exchange over (p, n) reactions is that the strong absorption
of heavy ions selects large impact parameters and therefore emphasizes the longest range part
of the charge exchange force.

In this Section we present a simple description of charge exchange reactions at interme-
diate and high energy in terms the microscopic π- and ρ-exchange potentials, as developed
by Bertulani and collaborators [30]. The eikonal approach to the nucleus-nucleus scattering
is used.

The differential cross section for inelastic scattering in a single-particle model is given by

dσ

dΩ
=
k′

k

( µ

4π2~2

)2

(2jP + 1)−1(2jT + 1)−1
∑
ν,m

∣∣∣∣∫ ∞
0

db b Jν(Qtb)M(m, ν, b) eiχ(b)

∣∣∣∣2 , (77)

where

M(m, ν, b) =

∫ ∞
0

dqt qt Jν(qtb)

∫ 2π

0

dφq e
−iνφq M(m, q) (78)

M(m, q) = < ΦP
f (rP ) ΦT

f (rT )|e−iq.rP V (q) eiq.rT |ΦP
i (rP ) ΦT

i (rT ) >, (79)

and m = (mT , m
′
T , mP , m

′
P ) is the set of angular momentum quantum numbers of the

projectile and target wavefunction. m is measured along the beam axis, and the subindices
T and P refer to the target and projectile, respectively.
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We also saw that the probability of one-boson-exchange at the impact parameter b and
is given by

P(b) =
k′

k

(
1

4π2~v

)2

(2jP + 1)−1(2jT + 1)−1 exp {−2 Im χ(b)}
∑
ν,m

|M(m, ν, b)|2 , (80)

where Imχ(b) is the imaginary part of the eikonal phase.
Equations 77 and 80 are the basic results of the eikonal approach to the description

of heavy-ion charge-exchange reactions at intermediate and high energies. They can also
be used for the calculation of the excitation of ∆ particles in nucleus-nucleus peripheral
collisions. The essential quantity to proceed further is the matrix element given by Eq. 79
which is needed to calculate the impact-parameter-dependent amplitude M(m, ν, b) through
Eq. 78. The magnitude of this amplitude decreases with the decreasing overlap between the
nuclei, i.e. with the impact parameter b. At small impact parameters the strong absorption
will reduce the charge-exchange probability. Therefore, we expect that the probability given
by Eq. 80 is peaked at the grazing impact parameter.
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NUCLEONS

Supplement D

0.9 Pion- and rho-exchange between projectile and tar-

get nucleons

In momentum representation the pion+rho exchange potential is given by

V (q) = − f 2
π

m2
π

(σ1 · q)(σ2 · q)

m2
π + q2

(τ1 · τ2)−
f 2
ρ

m2
ρ

(σ1 × q) · (σ2 × q)

m2
ρ + q2

(τ1 · τ2) , (81)

where the pion (rho) coupling constant is f 2
π/4π = 0.08 (f 2

ρ/4π = 4.85), mπc
2 = 145 MeV, and

mρc
2 = 770 MeV.
The central part of the potential above has a zero-range component, which is a consequence of

the point-like treatment of the meson-nucleon coupling. In reality the interaction extends over a
finite region of space, so that the zero range force must be replaced by an extended source function.
This can be done by adding a short-range interaction defined at q = 0 in terms of the Landau-
Migdal parameters g′π and g′ρ. We will use g′π = 1/3 and g′ρ = 2/3, which amounts to remove
exactly the zero-range interaction (for details, see, e.g., [27]).

Since the ρ-exchange interaction is of very short-range, its central part is appreciably modified
by the ω-exchange force. The effect of this repulsive correlation is approximated by multiplying
V cent
ρ by a factor ξ = 0.4 and leaving V tens

ρ unchanged since the tensor force is little affected by
ω-exchange [32].

With these modifications the pion+rho exchange potential can be written as

V (q) = Vπ(q) + Vρ(q) =

[
v(q)(σ1 · q̂)(σ2 · q̂) + w(q) (σ1 · σ2)

]
(τ1 · τ2) , (82)

where
v(q) = vtensπ (q) + vtensρ (q) , (83)

and
w(q) = wcentπ (q) + ξ wcentρ (q) + wtensπ (q) + wtensρ (q) , (84)

with

vtensπ (q) = −Jπ
q2

m2
π + q2

, vtensρ (q) = Jρ
q2

m2
ρ + q2

(85)

wcentπ (q) = −1

3
Jπ

[
q2

m2
π + q2

− 3 g′π

]
, wcentρ (q) = −2

3
Jρ

[
q2

m2
ρ + q2

−3

2
g′ρ

]
(86)

wtensπ (q) =
1

3
Jπ

q2

m2
π + q2

, wtensρ (q) = −1

3
Jρ

q2

m2
ρ + q2

. (87)
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The values of the coupling constants Jπ and Jρ in nuclear units are given by

Jπ =
f 2
π

m2
π

≡ f 2
π

(~c)3

(mπc2)2
' 400 MeV fm3

Jρ =
f 2
ρ

m2
ρ

≡ f 2
ρ

(~c)3

(mρc2)2
' 790 MeV fm3 (88)

Turning off the terms wcentπ,ρ , or vtensπ,ρ and wtensπ,ρ , allows us to study the contributions from the
central and the tensor interaction, and from π- and ρ-exchange, respectively.

Using Eq. 82, single-particle wavefunctions, φj`m, and the representations

τP · τT = τ 0
P τ

0
T + τ+

P τ
−
T + τ−P τ

+
T

σP · σT = σ0
Pσ

0
T + σ+

T σ
−
P + σ−P σ

+
T

yields

M(m, q) = w(q)
∑
µλ

< φ
(π)

j`m′T
|σµ τλ eiq.rT |φ(ν)

j`mT
>< φ

(ν)

j`m′P
|σµ τλ e−iq.rP |φ(π)

j`mP
>

+ v(q)
∑
µµ′λ

q̂µ q̂
′
µ < φ

(π)

j`m′T
|σµ τλ eiq.rT |φ(ν)

j`mT
>< φ

(ν)

j`m′P
|σµ τλ e−iq.rP |φ(π)

j`mP
> (89)

where

q̂µ =

√
4π

3
Y1µ(q̂) . (90)

Eq. 89 reduces to

M(m, q) = w(q)
∑
µ

< φj`m′T |σµ e
iq.r|φj`mT >< φj`m′P |σµ e

−iq.r|φj`mP >

+
4π

3
v(q)

∑
µµ′

Y1µ(q̂)Y1µ′(q̂) < φj`m′T |σµ e
iq.r|φj`mT >< φj`m′P |σµ′ e

−iq.r|φj`mP >

(91)

Expanding eiq.r into multipoles we can write

< φj`m′|σµ eiq.r|φj`m >= 4π
∑
IM

iI Y ∗IM(q̂) < φj`m′ |jI(qr)YIM(r̂)σµ|φj`m > . (92)

Since jI(qr)YIM(r̂) is an irreducible tensor,

σµ jI(qr)YIM(r̂) =
∑
I′M ′

(I1Mµ|I ′M ′) ΨI′M ′ , (93)
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where ΨI′M ′ is also an irreducible tensor. Therefore,

< φj`m′|σµjI(qr)YIM(r̂)|φj`m >=
∑
I′M ′

(I1Mµ|I ′M ′) < φj`m′|ΨI′M ′|φj`m >

=
∑
I′M ′

(I1Mµ|I ′M ′) (jI ′mM ′|jm′) < φj||ΨI′ ||φj > .

(94)

The Eqs. 91-94 allows one to calculate the charge-exchange between single-particle orbitals.
The quantity needed is the reduced matrix element < φj || [jI(qr)σ⊗YI ]I′ ||φj > (see, e.g., [33]).
If several orbitals contribute to the process, the respective amplitudes can be added and further on
averaged in the cross sections.

0.10 Low-momentum limit and Gamow-Teller matrix

elements

From Eqs. 81-87 we see that the central interaction wcent(q) dominates the low-momentum
scattering q ∼ 0. In this case, the matrix element 89 becomes

M(i→ f ; q ∼ 0) ∼ Cspins w
cent(q)M(GT ;P → P ′)M(GT ;T → T ′) , (95)

where
Cspins =

∑
µ

< IPMP1µ|IP ′MP ′ >< ITMT1µ|IT ′MT ′ > , (96)

and M(GT ;A → A′) =< A||στ ||A′ > are the Gamow-Teller (GT) matrix elements for a
particular nuclear transition of the projectile (A = P ) and of the target (A = T ).

Inserting 95 into Eq. 78 and using the low-momentum limit, we obtain

M(i→ f ; b) ∼ Cspins w
(0)M(GT ;P → P ′)M(GT ;T → T ′) δν0 , (97)

where

w(0) = 2π

∫ qcut

0

dq q wcent(q) , (98)

where qcut is a cutoff-momentum, up to which value the low momentum approximation can
be justified.

With these approximations, a general expression can be obtained from Eq. 77,

dσ

dΩ
(q ∼ 0) =

k′

k

( µ

4π2~2

)2 [
w(0)

]2
F (θ)B(GT ; P → P ′)B(GT ; T → T ′)

×
∑
spins

[Cspins]
2 (99)
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where
B(GT ;A→ A′) = |< A′||στ ||A >|2 (100)

is the Gamow-Teller transition density for the nucleus A. The sum over spins includes an
average over initial spins and a sum over the final spins of the nuclei.

With these approximations the scattering angular distribution is solely determined by
the function

F (θ) =

∣∣∣∣∫ db b J0(kb sin θ) eiχ(b)

∣∣∣∣2 . (101)

In the sharp-cutoff limit (exp[iχ(b)] = Θ(b − R)), this function reduces to the very simple
result

F (θ) =
R2

k2 sin2 θ
J2

1 (kR sin θ) , (102)

which displays a characteristic diffraction pattern.
From the above discussion, we see that the ability to extract information on the Gamow-

Teller transition densities in a simple way depends on the validity of the low-momentum
transfer assumption. We shall test this assumption, using the results obtained above, in the
special case of the 13C(13N, 13C)13N reaction at 70 MeV/nucleon, as reported in Ref. [31].

Supplement E

0.11 Matrix elements for mirror nuclei

A reasonably good candidate for the investigation of charge-exchange between mirror nuclei is the
reaction 13C(13N, 13C)13N since 13C targets are now available and a relatively intense 13N beam
can be produced [31]. This pair of mirror nuclei is also suitable because the first excited state (3

2

−
)

lies relatively high in energy (3.51 MeV), so that a clear separation can be done between ground-
state and excited state transitions. Also, these nuclei have a single nucleon on the 1p1/2 orbit.
Since the reaction is very peripheral, one expects that the charge-exchange process is practically
determined by the participation of these valence nucleons. Therefore, this reaction should be a
clear probe of charge exchange in a nuclear environment.

One assumes that the pion or rho is exchanged between the neutron in the 1p1/2-orbital of 13C
and the proton of the 1p1/2-orbital of 13N. Configuration mixing is not included for simplicity.

Using Eq. A.2.24 of Ref. [33] one finds

< p1/2 || [jI(qr)σ ⊗ YI ]I′ || p1/2 >= − 1

2
√

3π


F0, if I=0, I ′ = 1;

2
√

2F2, if I=2, I ′ = 1;
0 otherwise,

(103)
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where

FI =

∫ ∞
0

R2
1p1/2

(r) jI(qr) r
2 dr . (104)

The above result means that only transitions with ∆` = 0 and ∆` = 2 in the 1p1/2-orbital are
allowed. We calculate the radial form factors F0 and F2 using harmonic oscillator functions for the
1p1/2-orbitals in 13N and 13C:

R1p1/2(r) =

(
8

3π1/2a5

)1/2

r e−r
2/a2

, (105)

where a = (~/mNω)1/2 is the oscillator parameter. For 13C and 13N we take a = 1.55 (fm).
We find

F0 =

(
1− q2a2

6

)
e−q

2a2/4 , and F2 =
q2a2

6
e−q

2a2/4 . (106)

The matrix element 92 becomes

< φj`m′|σµ e±iq.r |φj`m >= C0(m, m′, µ)F0(q) + C2(m, m′, µ, q̂)F2(q), (107)

where

C0(m, m′, µ) = − 1√
3

(1m,m′ −m|m′) δm′−m,µ (108)

C2(m, m′, µ, q̂) = 4

√
2π

3
(1m,m′ −m|m′) (21,m′ −m− µ, µ|1,m′ −m)

×Y ∗2,m′−m−µ(q̂) (109)

Inserting these results in Eq. 91, the integral (78) is easily performed. Using

Y`m(q̂t) = (−1)(`+m)/2

(
2`+ 1

4π

)1/2
[(`−m)! (`+m)!]1/2

(`−m)!! (`+m)!!
eimφ, if `+m = even

= 0 , otherwise , (110)

and ∫ 2π

0

ei(m−ν)φ dφ = 2π δm,ν (111)

and the definition (78), one finds

M(m, ν, b) =

∫ ∞
0

dq q Jν(qb)

{
w
[
X00F2

0 (q) +X02F0(q)F2(q) +X22F2
2 (q)

]
+

4π

3
v(q)

[
W00F2

0 (q) +W02F0(q)F2(q) +W22F2
2 (q)

]}
, (112)
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Figure 7: (a) Probability for π- (dashed-curve) and ρ-exchange (dotted-curve) in the reaction
13C(13N, 13C)13N at 70 MeV/nucleon, as a function of the impact parameter. The solid curve
represents the result of the full interaction. (b) Angular distribution for charge-exchange in
the reaction 13C(13N, 13C)13N at 70 MeV/nucleon. The contribution from π- (dashed-curve)
and ρ-exchange (dotted-curve) are displayed separately. The solid curve represents the result
of the full interaction.

where the coefficients Xij and Wij are given in terms of sums of products of C0 and C2 (see Ref.
[30]).

The momentum integral in 112 can be performed numerically. This simple example shows how
the magnetic quantum numbers complicate the calculation. The inclusion of other orbits yields a
lengthy calculation.

0.12 Application to 13C +13 N

The method described above was used in Ref. [30] to study the charge-exchange reaction
with 13C +13 N at 70 MeV/nucleon. An optical potential was chosen to fit the reaction
12C +12 C at 85 MeV/nucleon [13].

Figure 7(a) shows the contributions from π (dashed-curve) and from ρ-exchange (dotted-
curve) to the charge exchange probability as a function of the impact parameter. The
solid curve is the total probability. The exchange probability is peaked at grazing impact
parameters: at low impact parameters the strong absorption makes the probability small,
whereas at large impact parameters it is small because of the short-range of the exchange
potentials. The value of the exchange probability at the peak is about 1.2× 10−5. It is clear
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from Figure 7(a) that the process is dominated by π-exchange. At small impact parameters
the short-range ρ-exchange contribution is large due to a larger overlap between the nuclei.

In Figure 7(b) the differential cross section is plotted. One observes that at very forward
angles the π-exchange contributes to the largest part of the cross section. But ρ-exchange
is important at large angles. It has the net effect of smoothing out the dips of the angular
distribution. Since π-exchange is of longer range than ρ-exchange, the dips caused by the
two contributions are displaced; the ones from ρ-exchange alone are located at larger angles,
as expected from the relation θ ∼ 1/r. If we put F0,2 = 1 and exp iχ(b) = 1, we obtain
that at very small scattering angles the π- and ρ-exchange contributions to the differential
cross sections are approximately of the same magnitude. This means that ρ-exchange is more
important when distortions are weaker, i.e., in nucleon-nucleon or nucleon-nucleus scattering
[27].

The non-spin flip components are strongly suppressed and the cross section is dominated
by simultaneous spin-flip components, with ∆j = 0 (33%) and ∆j = 2 (16.8%). This can be
understood in terms of the contributions of the tensor and the central part of the pion+rho
interaction to the heavy-ion charge-exchange. The central (tensor) force is responsible for
the ∆j = 0 (2) transitions.

The total cross section obtained is 7.6 (µb). The peak value of the differential cross section
at 0◦ is 3.5 (mb/sr). These values are of the order of magnitude of the charge-exchange cross
sections measured for other systems [29].

Finally, we make a remark on the double exchange reactions. From the values obtained
above one sees that the charge exchange probability as a function of impact parameter is
small, of order of 10−5. Even for enhanced transitions, one should not expect an increase
higher than a factor 10 in the probability. An estimate of double-charge exchange is obtained
from Eq. (16), replacing P(b) by P2(b)/2. That is, the ratio between the single and the
double-charge exchange is of order of 10−4 − 10−5. If the single-step total cross section is
of order of tens of microbarns, the double-step one is of order of nanobarns, in the best
cases. Similarly, if the peak of the differential cross section at zero degrees is of order of
tens of millibarns, the corresponding one for double-charge exchange will be of order of
microbarns, in the best cases. The measurement of double-charge-exchange in heavy-ion
collisions therefore requires intense beams and good detection efficiency.
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