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0.1. INTRODUCTION

0.1 Introduction

The parity nonconserving (PNC) nucleon interaction in nuclei caused by the PNC Weak
interaction, and PNC effects in neutron-nucleus reactions are subject of interest for both
experimentalists and theorists [1, 2, 3, 4, 5, 6, 7, 8, 9]. The overall scale of the observable
PNC effects is found to be in reasonable agreement with estimates in existing theory of the
weak interactions [1] based on the Standard Model. Complete understanding of PNC forces
in nuclear domain, which requires reliable QCD-based models of hadrons is far from being
reached. This motivates extensive studies of the strengths of the PNC forces.

The PNC effects have been probed in normal nuclei. Physics of exotic nuclei studied with
unstable nuclear beams [10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23] appears to be one of
the most promising modern nuclear areas. Due to their specific structure, exotic nuclei, e.g.,
halo nuclei can offer new possibilities to probe those aspects of nuclear interactions which are
not accessible with normal nuclei. It is therefore interesting to examine possibilities of using
exotic nuclei to investigate the effects of violation of fundamental symmetries, i.e., spatial
parity and time reversal.

Some aspects of the Weak interactions in exotic nuclei have been discussed in literature
[17, 18] in relation to the beta decay and to possibilities to study the parameters of the
Cabibbo-Kobayashi-Mascawa matrix.

The aim of the next sections is to present a simple evaluation of the magnitude of the PNC
effects in halo nuclei, following Hussein et al. [19]. We confine ourselves to the case of nucleus
11Be, the most well studied, both experimentally and theoretically [10, 11, 12, 15, 16]. One
finds that the ground state, the 2s1/2 halo configuration, acquires admixture of the closest in
energy halo state of opposite parity, 1p1/2. This effect originates from the weak interaction
of the external halo neutron with the core nucleons in the nuclear interior. As a result, the
neutron halo cloud surrounding the nucleus acquires the wrong parity admixtures that may
be tested in experiments which can probe the halo wave functions in the exterior.

The magnitude of the admixture is found to be ∼ 10−6×gWn that is an order of magnitude
bigger than the PNC effects in normal spherical nuclei. What is important to notice is that
the enhanced effect discussed here is proportional to the neutron weak constant gWn only. The
value of this constant remains to be one of the most questionable points in modern theory
of parity violation in nuclear forces [5]. The enhanced PNC mixing in halo found here can
be therefore useful in studies of the neutron weak constant. Another interesting question
related to the structure of the PNC force in nucleus, namely, the strength of the isovector
P-odd potential that has been discussed in Refs. [6, 7].
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0.2. WEAK NUCLEON-NUCLEON INTERACTION AND PARITY VIOLATING
EFFECTS. POTENTIAL APPROXIMATION

0.2 Weak nucleon-nucleon interaction and parity vio-

lating effects. Potential approximation

We start with writing the nuclear Hamiltonian H in the form

H = H0
S + V res

S +W PNC , (1)

where the first term H0
S =

∑
a(p

2
a/2m + US(ra)) is the single particle Hamiltonian of the

nucleons including the single-particle piece US of the strong interaction, V res
S is the residual

two-body strong interaction. The last term, W PNC is the PNC part of the Weak interaction
that is the source of the PNC effects.

The magnitude of the PNC effects is sensitive to both the weak PNC interaction matrix
elements between the states of opposite parity and to the nuclear structure effects given by
the strong part of the Hamiltonian 1. The latter one is invariant under spatial coordinate
reflections, and if there is no weak interaction term W PNC in 1, and as such parity is
preserved, the eigenstates |Ψs〉 of the strong Hamiltonian H0

S +V res
S with energies Es can be

labeled by the parity quantum number (positive or negative), |Ψ+
s 〉, |Ψ−s 〉. Due to presence

of PNC weak interaction W PNC in the nuclear Hamiltonian 1, a state of definite parity, say,
|Ψ+

s 〉, acquires very small admixtures of wrong parity configurations. This can be accounted
for by using the first order of perturbation theory with respect to W PNC (see Eq. ??):

|Ψ+
s 〉′ = |Ψ+

s 〉+
∑
s1

〈Ψ−s1|W PNC |Ψ+
s 〉

Es − Es1
|Ψ−s1〉. (2)

Here, prime denotes the corrected wave function that accounts for the PNC interaction and
sum goes over available states of opposite parity, |Ψ−s1〉. The magnitude of measurable PNC
effects is normally proportional to the coefficients fPNC [2] that determine the dominating
admixtures of the wrong parity states

f =
〈Ψ−s1|W PNC |Ψ+

s 〉
∆E

. (3)

The natural scale of the PNC effects in nuclei under usual conditions is [1],[2]

|f | ' 10−7 (4)

that is roughly the ratio of the strength of the Weak PNC forces ( matrix element in the
numerator of 3 ) and the strength of the strong interaction (energy denominator in 3 ). In
highly selective experiments, the PNC effects can be enhanced considerably as compared
to estimate 4, due to specific properties of a specially chosen nuclear system or process.
To reach high sensitivity to the wrong parity admixtures, one usually seeks possibilities to
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0.3. MICROSCOPIC PNC INTERACTION

have the denominator ∆E in 3 minimal while keeping the PNC matrix element at maximum
and to improve selectivity of measurable effect. This is typical for any tests of fundamental
symmetries.

Supplement A

0.3 Microscopic PNC interaction

The most widely used version of the microscopic PNC interaction is the DDH Hamiltonian W PNC
DDH

[1], where the PNC forces are mediated by mesons. Its form stems from the analysis of interactions
between intranucleon quarks via exchange of heavy bosons of Standard Model. The nonrelativistic
P-odd weak interaction between nucleons approximated by the one-meson exchange can be written
in the form [2, 1]

W PNC
DDH = i

h
(1)
π gπ

4
√

2m
(τ1 × τ2)(3)(σ1 + σ2) · [p1 − p2,Fπ]−

−
gρh

0
ρ

2m
(τ1 · τ2)(σ1 − σ2) · {p1 − p2,Fρ} −

−
gρh

0
ρ

2m
i(1 + µ)(τ1 · τ2)(σ1 × σ2) · [p1 − p2,Fρ}+W ′, (5)

where the standard notations Fπ(ρ) = e−mπ(ρ)|r1−r2|/ (4π|r1 − r2|) are used and [., .] and {., .}
denote the commutator and anticommutator, respectively. The subscripts 1 and 2 label the inter-
acting nucleons, the superscript (3) denotes the third isospin projection. Here, m, mπ and mρ are
the masses of the nucleon, π- and ρ-meson, respectively; σ (τ ) stand for the spin (isospin) Pauli
matrices, µ = 3.7 is the isovector part of the anomalous magnetic moment of nucleon. W ′ denotes
contributions from heavier mesons, which are less important. The values of the corresponding weak
and strong coupling constants h(1)

π , gπ, gρ, and h0
ρ can be found in [1, 2].

0.4 Effects of the nuclear environment

In nuclear environment, a nucleon experiences the combined action of the PNC forces 5 from
other nucleons. It is known, see, e.g., [2], that the most of P-odd effects caused by the weak
interaction W PNC

DDH , Eq. 5 in Eq. 1, can be successfully modeled by introducing the effective
one-body P-odd interaction, or the “weak potential”, Wsp, acting on the nucleon 1 as a
single-particle operator which arises from averaging W PNC over the states of other nucleons
Wsp ≡ 〈W PNC〉. Within this approximation, the Hamiltonian of the weak interaction in a
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0.5. PROTON AND NEUTRON WEAK POTENTIAL STRENGTHS

nucleus takes particularly simple form of a sum of the proton W p
sp and neutron W n

sp symmetry
violating potentials

Wsp = W p
sp +W n

sp = gWp
G

2
√

2m
{(σp · pp), ρ}+ gWn

G

2
√

2m
{(σn · pn), ρ}, (6)

where G = 10−5m−2 is the Fermi constant, pp(n) and σp(n) refer to the proton (neutron)
momentum and doubled spin respectively. The coherent contribution from all the occupied
nucleon orbitals composing the core yields the nuclear density ρ =

∑
occ |ψocc|2 in the ex-

pression 6. The dimensionless constants gWp and gWn of order of unity, for the proton and
neutron potentials, are related to the parameters of the DDH Hamiltonian and depend on
nuclear charge and neutron number. The single-particle approximation 6 for the PNC weak
interaction 5 turns out to be very accurate [2]. It works satisfactorily even in the case of
compound nuclear states [4, 26, 27, 28] where 6 gives the dominating contribution [26, 27]
despite the fact that the wave functions are of essentially many-body nature.

0.5 Proton and neutron weak potential strengths

The knowledge about the proton and neutron constants gWp and gWn accumulated to date
can be summarized as follows:

gWp = 4.5± 2, gWn = 1± 1.5. (7)

These widely used values [2, 5, 25, 26] correspond to the best values [1] of the microscopic
parameters in the DDH Hamiltonian, Eq. 5, and they are found in reasonable agreement with
the bulk experimental data on parity violation, including the compound nuclear experiments
[3] and anapole moment measurements [32]. The above relatively small absolute value of
the neutron constant that follows from DDH analysis, results basically from cancellation
between π- and ρ-meson contributions to gWn , while both mesons contribute coherently to
the proton constant gWp , see, e.g., [5]. Due to this difference between the absolute values of
the proton and neutron constants, the proton constant tends to dominate most measurable
PNC effects [24, 25, 29, 30], especially when both gWp and gWn can contribute. In some cases
(such as odd proton nuclei), the contribution from the neutron constant, gWn , is suppressed
irrespectively of its strength [2, 6]. In this sense, one usually measures the value of gWp , and it
is difficult to probe gWn unless special suppression of the proton contribution occurs, and/or
contribution of gWn is highlighted. By contrast, the case we consider in this work is sensitive
to the value of the neutron constant only.
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0.6. HALO STRUCTURE EFFECTS ON THE PNC MIXING

Figure 1: (I) a) Schematic plot of matter distribution in halo nuclei. The dark region
corresponds to the nuclear core, the grey region shows the halo neutron cloud. b) The
spectrum of the bound states 11Be. c) Illustration of the single-particle PNC mixing in the
ground state of 11Be. (II) The core density distribution (logarithmic scale). The dashed line
corresponds to Ref. [12], the solid line gives parametrization 15.

0.6 Halo structure effects on the PNC mixing

The basic specific properties of the halo nuclei are determined by the fact of existence of
loosely bound nucleon in addition to the core composed by the rest of the nucleons [13] (we
will be interested here in the most well studied case of neutron halo). The matter distribution
is shown schematically in Fig. 1(I-a).

In one-body halo nuclei like 11Be, the ground state is particularly simple: it can be
represented as direct product of the single-particle wave function of the external neutron,
ψhalo, and the wave function of the core. The residual interaction V res

S in Eq. 1 can be
neglected as the many-body effects related to the core excitations are generically weak in
such nuclei [34]. The problem with the Hamiltonian 1 is reduced to a single-particle problem
for the external nucleon. The PNC potential matrix element between the ground state of
halo nucleus and a state with opposite parity is

〈ψ+
halo|W

PNC |ψ−halo〉 = gWn
G

2
√

2m
〈ψ+

halo|{(σn · pn), ρc}|ψ−halo〉, (8)
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0.6. HALO STRUCTURE EFFECTS ON THE PNC MIXING

where ρc(r) is the core density. Due to relatively heavy core for A ' 10, the difference
between the center of mass coordinate and the center of core coordinate can also be neglected.

The effective potential that binds the external neutron is rather shallow yielding a small
single-neutron separation energy, and one can expect small energy spacing between the op-
posite parity states. The PNC effects, Eqs. 3 and 2, can therefore be considerably magnified.
The spectrum of 11Be is shown in Fig. 1(I-b). To evaluate the PNC mixing fHALO in the
ground state of this nucleus, it is enough to know the single-particle matrix element between
the ground state 2s and the nearest opposite parity state 1p, and use their energy separation
that is known experimentally.

The second effect of halo is that the value of the matrix element of the operator 6 between
the halo states can be dramatically reduced as compared to its value in the case of “normal”
nuclear states. The single-particle weak PNC potential 6 in Eq. 8 originates from the DDH
Hamiltonian, Eq. 5, which is two-body operator, this fact is hidden in the nucleon density
of the core ρc(r). The external neutron spends most of its time away from the core region
where only it can experience the PNC potential created by the rest of nucleons. Indeed,
the dominant contribution to the matrix element of 6 between the halo states in 8 must
come from the regions where the three functions can overlap coherently: ψ+

halo(r), ψ
−
halo(r)

and the core density ρcore(r). The latter one is essentially restricted by the region of nuclear
interior, r < rc thus reducing the effective volume of required interference region to 4

3
πr3

c .
Normalization condition implies that the extended wave function of the bound state halo
ψ±halo(r) must be considerably reduced in the volume of coherent overlap 4

3
πr3

c . By contrast,
in “normal” nuclei the radii of localization of the wave functions with opposite parity that
can be mixed by the weak interaction coincide generically with the core radius rc. The
resulting suppression for the PNC halo matrix element 〈ψ−halo(r)|Wsp|ψ+

halo(r)〉 with respect
to the matrix element for the normal nuclei can be extracted from the following simple
estimate

〈ψ−halo|Wsp|ψ+
halo〉

〈ψ−normal|Wsp|ψ+
normal〉

∼
(

rc
rhalo

)3

∼
(

2fm

6fm

)3

∼ 1

25
· · · 1

30
(9)

where the mean square radii of halos from Ref. [12] was used. This suppression factor
can cancel out the effect of the small energy separation (the denominator in Eq. 3) and to
suppress the PNC effects. This simple estimate does not account for the structure of the
halo wave functions which can be quite substantial and may even lead to further suppression
in the PNC mixing. In the following, we present a detailed analysis of the related effects.
The crude estimate 9 turns out rather pessimistic.
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0.7. HALO MODEL AND EVALUATION OF THE PNC MIXING IN THE GROUND
STATE OF 11BE

0.7 Halo model and evaluation of the PNC mixing in

the ground state of 11Be

The form of the single-particle wave functions of halo states can be deduced from their basic
properties [16] and their quantum numbers [12]. The results of the Hartree-Fock calculations
which reproduce the main halo properties (e.g., mean square radii) are also available [12].
One can use the following ansatz for the model wave function of the 2s halo state:

ψ2s = R2s(r)Ω
l=0
j=1/2,m, R2s(r) = C0(1− (r/a)2) exp(−r/r0). (10)

Here, R2s(r) is the radial part of the halo wave function and Ωl=0
j=1/2,m is the spherical spinor.

As we can neglect the center of mass effect for the heavy (A = 10) core, the halo neutron
coordinate r in R2s(r) = χ2s(r)/r is reckoned from the center of nucleus. The constant C0

is determined from the normalization condition,
∞∫
0

dr[χ2s(r)]
2 = 1 (the radial wave functions

are chosen to be real). One has

C0 =
23/2a2

r
3/2
0

√
45r4

0 + 2a4 − 12a2r2
0

. (11)

The parameters r0 and the a are the corresponding lengths to fit the density distributions
obtained in Ref. [12] and the mean square radius. The value of a is practically fixed to be
a = 2fm what corresponds to the position of the node. The node position have been restored
from the analysis of the scattering process [16].

For the wave function ψ1p = R1p(r)Ω
l=1
j=1/2,m of the excited state 1p, the following simplest

form of the radial wave function turns out to be adequate

R1p(r) = C1r exp(−r/r1), (12)

where C1 is the normalization constant C1 = 2√
3
r
−5/2
1 and the only tunable parameter r1 is

related to the 1p halo radius. The mean square root radii for the halo wave states, Eqs. 10
and 12, are given by√

〈r2
2s〉 = r0

(
6(45r4

0 + 2a4 − 12a2r2
0)

105r4
0 + a4 − 15a2r2

0

)1/2

,
√
〈r2

1p〉 =

(
15

2

)1/2

r1. (13)

The matrix element of the weak interaction 6 and 8 between the ground state and the
first excited state reads

〈2s|Wsp|1p〉 = igWn
G√
2m

∞∫
0

drχ2s(r)

(
ρc(r)

d

dr
+
ρc(r)

r
+

1

2

dρc(r)

dr

)
χ1p(r). (14)
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0.7. HALO MODEL AND EVALUATION OF THE PNC MIXING IN THE GROUND
STATE OF 11BE

The core nucleon density ρc(r) has been tuned to reproduce the data obtained from Ref.
[12]. Their results are well reproduced by the Gaussian-shaped ansatz ρc(r),

ρc(r) = ρ0e
−(r/Rc)

2

(15)

with the values of the parameters ρ0 = 0.2fm−3 and Rc = 2fm, as shown on Fig. 1(II).
Using the model wave functions 10 and 10 and the core density 15, the required integrals

can be done analytically, and one arrives at the result

〈2s|W |1p〉 = igWn
G√
2m
R (16)

where

R = ρ0R
3
cC0C1

{
3I2(y)−

[
3

(
Rc

a

)2

+ 1

]
I4(y) +

+

(
Rc

a

)2

I6(y)− Rc

r1

[
I3(y)−

(
Rc

a

)2

I5(y)

]}
(17)

where y = Rc(r0 + r1)/r0r1 and the functions In are given by

In(y) =

∞∫
0

dx xne−x
2−yx = (−1)n

√
π

2

dn

dyn

[
ey

2/4erfc(y/2)
]
,

where erfc(y) is the error function

erfc(y) = 1− 2√
π

y∫
0

dt exp(−t2/2).

To obtain the results for the PNC weak interaction matrix element, one can use the param-
eters r0 and r1 in the halo wave functions to fit the radial densities of the halos obtained by
H. Sagawa [12].

The results for the best parameters are shown in Figs. 2(a) and 2(b) for the 2s and the
1p halos, respectively. One sees that the agreement for the densities is good. Below, the
values

r0(best value) = 1.45fm, r1(best value) = 1.80fm, (18)

are used to calculate the matrix elements in Eqs. (14, 16 and 17). The radial wave functions
χ are given in Fig. 3(a). To check robustness of the results with respect to variations in the
halo structure details, deviations of the both r0 and r1 from 18 were used. The values of the
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0.7. HALO MODEL AND EVALUATION OF THE PNC MIXING IN THE GROUND
STATE OF 11BE

Figure 2: (a) The halo density in the ground state, ρ2s1/2(r) =
(
R2s1/2(r)

)2
/4π. The dashed

line corresponds to the Hartree-Fock calculations of ref. [12], the solid line gives parametriza-

tion 10). (b) The halo density in the first excited state, ρ1p1/2(r) = 1
4π

(
R1p1/2(r)

)2
. The

dashed line corresponds to the Hartree-Fock calculations of Ref. [12], the solid line gives
parametrization 12 and 18.

halo radii given by 13,
√
〈r2

2s〉 = 5.9fm and
√
〈r2

1p〉 = 4.9fm are close to the values of ref.

[12] 6.5fm and 5.9fm which agree with experimental matter radii.

Substituting the values 18 into the expressions for the matrix elements one obtains the
following value of the matrix element 〈2s|Wsp|1p〉HALO

〈1p|Wsp|2s〉HALO = −i 0.2 gWn eV,

= −i 0.2 eV (for gWn ' 1 ). (19)

It is seen that this value is only few times smaller than the standard value of the matrix
element of the weak potential between the opposite parity states in spherical nuclei (see e.g.,
Ref. [2]), that is typically about one eV . This results from the wave function structure
and comes basically from the facts that the 2s wave function crosses zero line near the core
surface while the 1p radial wave function does not have nodes. Thus the functions χ1p and
dχ2s/dr look similar and are folded constructively with ρc(r) in the region of interaction
(nuclear interior), see Fig. 3(b).

The matrix element of Wsp between the “normal” nuclear states can be evaluated for
example, in the oscillator model. Taking the typical matrix element between the states 2s
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0.7. HALO MODEL AND EVALUATION OF THE PNC MIXING IN THE GROUND
STATE OF 11BE

Figure 3: (a) Plot of the radial wave functions of the states |2s1/2〉 and |1p1/2〉, χ2s1/2(r) =
rR2s1/2(r) and χ1p1/2(r) = rR1p1/2(r). (b) Plot of the functions contributing to the weak PNC

matrix element. The function s(r) = d
dr
χ1p1/2(r)+

χ1p1/2(r)

r
+ dρc/dr

2ρc
χ1p1/2(r) (dot-dashed line)

depends on r in the way similar to χ2s1/2(r) (dashed line). The combination χ2s1/2(r)ρcs(r)
that enters the PNC matrix element in Eq.(14) is shown by the solid line. It contributes
coherently to 〈2s|Wsp|1p〉.

and 1p and using the same formula 14, one has

〈1p|Wsp|2s〉osc = −igWn Gρ0

( ω

2m

)1/2

(20)

where ω ' 40A−1/3MeV is the oscillator frequency [33] with A the nuclear mass number. We
used here the constant value of the core nucleon density, ρ0 ' 0.138fm−1/3. This is a good
approximation in the case of normal nuclei [26].

Recalling the energy difference between the ground state and the first excited state 1p
that is known experimentally,

|∆EHALO| = Ep1/2 − Es1/2 = 0.32MeV (21)

we obtain, using Eq. 19, the coefficient of mixing the opposite parity state (1p) to the halo
ground state 2s:

|fHALOsp | =
|〈1p|Wsp|2s〉|
|∆EHALO|

' 0.2eV gW

0.32MeV

' 0.6× 10−6gWn ' 0.6× 10−6 (for gWn ' 1). (22)
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0.7. HALO MODEL AND EVALUATION OF THE PNC MIXING IN THE GROUND
STATE OF 11BE

This PNC mixing is about one order of magnitude stronger than the scale of single-particle
PNC mixing in “normal” nuclear states that can be extracted from Eq. 20. In the case of
normal p− s mixing, we have

|fnormalsp | =
|〈1p|Wsp|2s〉|

ω
=
GgWn ρ0√

2m

(m
ω

)1/2

' 0.7× 10−7gWn ' 0.7× 10−7 (for gWn ' 1) (23)

in the same region of nuclei with A ∼ 11. The above value 23 for the normal PNC mixing
is rather universal and it is practically insensitive to variations of the details of the normal
nuclear wave functions and core densities [26]. One should stress that in the halo case, the
energy denominator in Eq. 22 is ω/|∆EHALO| ' 50 times smaller than in the normal case
23, based on the oscillator model. Comparing Eqs. 22 and 23, we find the halo enhancement
factor in the PNC mixing to be

|fHALOsp |
|fnormalsp |

' 9.

This result is quite remarkable in a number of respects. First, it is seen that in experiments
when the halo wave functions in nuclear exterior are probed, the value of PNC mixing is even
stronger than in “normal” nuclei. Secondly, this PNC mixing is dominated by the neutron
weak constant gWn . Such experiments with neutron halo nuclei therefore provides a unique
opportunity to probe the value of this constant. Usually, the sensitivity of experiments to
the value of this constant is “spoiled” by comparably large value of the proton weak constant
gWp , cf. Eq. 7.

In order to assess the reliability of these results, one can verify the stability of the en-
hancement factor against variations in the parameters of the halo wave functions. As one
can see from the results presented in Table 10.1, the matrix element 19 is changed by few
per cent only when the wave functions are deformed. The enhancement factor 22 is therefore
quite stable.

r0 = 1.40 r0 = 1.45 r0 = 1.50
r1 = 1.75 1.168 1.052 0.950
r1 = 1.80 1.110 1.000 0.903
r1 = 1.85 1.056 0.952 0.860

Table 10.1 - Stability analysis for the matrix element of Wsp between the halo states 2s1/2 and
1p1/2. The results for the values of the parameters r0 and r1 differing from the best values are
shown. The central entry in the table corresponds to the best value. It is seen that variations in
r0 and r1 do not affect 〈2s1/2|Wsp|1p1/2〉 any considerably.

The analysis presented above rests basically on the most reliably known facts: the quan-
tum numbers of the states involved, the halo radii which match the matter radii known
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0.8. ANAPOLE MOMENT OF AN EXOTIC NUCLEUS

from experiment, and the Hartree-Fock wave functions. With these input data, the fur-
ther quantitative analysis is a straightforward analytical exercise which does not require any
approximations. The stability of the results has been checked analytically. The PNC en-
hancement factor of one order of magnitude allows one to speak about qualitative halo effect
that should not be overlooked.

It is the matter of further studies to check the universality of the effect while going along
the table of exotic nuclei. One sees that other exotic nuclei with developed halo structure
manifest similar properties (see, e.g., [12]). Indeed, the effect of PNC enhancement shown
here results basically from the two facts:

(i) small energy separation between the mixed opposite parity states
(ii) considerably strong overlap between the mixed wave functions and the core density,

which saves part of suppression in the PNC weak matrix element.
The first of these points is rather common for nuclei with developed neutron halos.

Systematics of separation energies for single neutron [13] shows that the ground states of
halo nuclei can be distanced from the continuum by typical spacing εhalo ∼ (2mrhalo)

−1/2 ∼
few hundreds of keV. Even in the cases when no bound states with parity opposite to that of
the ground state occur, the PNC admixtures to the ground state wave functions must exist.
In these cases, the PNC admixtures can be evaluated by means of Green function method.

The second point (ii) is related to the wave function structure. It would be also interesting
to study the PNC effects in proton rich nuclei [20, 21, 22].

The results shown here are based on the single-particle approximation (one-body halo
model). In principle, the halo neutron can couple to excitations of the core (see, e.g., Ref.
[34]). In fact, such coupling can be responsible for the small energy separation between the
opposite parity levels in 11Be, which can be separated by few MeV otherwise (see, e.g., [23]).
These many-body effects may be important for precise evaluation of the PNC mixing. We
did not consider contribution from such effects here.

One of possible experimental manifestations of the discussed effect is related to anapole
moment (discussed in the next Section) [24, 25] which attracts much attention in current
literature [31] in view of new experimental results (detection of anapole moment in the
nucleus 133Cs [32]). Since the anapole moment is created by the toroidal electromagnetic
currents which results from PNC, its value grows as the size of the system increased [25]. In
the case of halo which we considered here, the value of the anapole moment can be therefore
enhanced due to extended halo cloud. We will discuss this feature in the next Section.

0.8 Anapole moment of an exotic nucleus

The nuclear anapole moment is one of the most interesting manifestations [24, 25, 35, 29,
30, 36, 37, 31, 32] of the spatial Parity Nonconservation (PNC) [1, 2] in atomic physics.
It arises from the PNC nuclear forces which create anomalous (toroidal) contributions to
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the electromagnetic current. The resulting PNC magnetic field can be experienced by an
external lepton (e.g., atomic electron or muon in mesic atom) and can be detected in hyperfine
structure atomic measurements. The effect of the anapole moment, which depends on the
nuclear spin, can be experimentally separated from other PNC contributions [37, 31, 32].
Few theoretical papers have been devoted to the problem of nuclear anapole moments [25,
35, 29, 30, 36]. The first calculation of the quantity in the single-particle approximation
has been done by Flambaum and Khriplovich [25]. Calculation of the anapole moment with
accounting for residual pion-mediated interaction has been made by Haxton, .Henley, and
Musolf [29], where an expression for the anapole moment operator has been derived, which
preserves the gauge invariance automatically. In Ref. [36] various many-body corrections
to the anapole moments (basically, the many-body contributions to the current) have been
taken into account. This field attracts much attention [36, 37, 31, 32, 7] as some experimental
results for the nuclear anapole in Cs are available [37, 32].

The studies of the anapole moment have been mostly confined to the case of normal
nuclei. Specific structure of exotic nuclei [11, 12, 13, 15, 16, 20, 21, 22, 34, 38, 39, 40, 41] can
offer new possibilities to probe those aspects of nuclear interactions which are not accessible
with normal nuclei. The problem of the PNC effects in exotic nuclei has been addressed
in the last sections [19] where it was shown that the PNC mixing in halo nuclei can be
considerably enhanced as compared to the case of normal nuclei. It is therefore interesting
to examine the anapole moments of the exotic nuclei.

Let us estimate the anapole moment of an exotic halo nucleus, focusing on the case of 11Be
which has been extensively studied both experimentally and theoretically [11, 12, 13, 15, 16].
We call the resulting anapole moment “anomalous” as it exceeds by fifteen times the average
anapole moment of a normal nucleus of the same mass and is bigger than the anapole moment
of any known neutron-odd nucleus. The value of the anapole moment is even twice bigger
than that of lead.

Supplement B

0.9 Nuclear spin dependent PNC interaction of a lep-

ton with nucleus via the anapole moment

The part of the Hamiltonian of the nucleus-lepton system in which we are interested in can be
written in the form

H = Hn
0 + V n

res +W n
PNC +Hn−e

PNC + hn−ePNC , (24)

where Hn
0 =

∑
i [p

2
i /2m+ US(ri)] is the single particle Hamiltonian of the nucleons with momen-

tum p and mass m in the single-particle potential US(r); V n
res is the residual strong interaction.
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The operator W n
PNC is the weak PNC nucleon-nucleon interaction [1]. The term Hn−e

PNC describes
the interaction of the lepton with the vector potential APNC created by the nucleus, in which we
save only the PNC part,

Hn−e
PNC = e(α ·APNC) = e(α·〈a〉)∆(r) (25)

where α denote the Dirac matrices [33] for the lepton and ∆(r) is a function sharply peaked in
the region of the nucleus (it reduces to the δ-function on the scale of the atomic electron spatial
motion), e is the proton charge, e2 = 1/137. The last term, hn−ePNC , is the part of the neutral
current interaction contributing to the PNC nucleus-lepton forces depending on nuclear spin,

hn−ePNC = κnc
G√

2

[1/2− (−1)j+l+1/2(j + 1/2)]

j(j + 1)
(j · α)∆(r), (26)

where κnc ≡ (5/8)(1− 4 sin2 θ) with θ the Weinberg angle.
The vector 〈a〉 is the expectation value of the anapole moment operator

a = −π
∫
d3r r2J (27)

in the nuclear ground state, where J is the nuclear electromagnetic current. Its is convenient to
define the “anapole moment”, κ, rewriting Eq. 25 according to [35]

Hn−e
PNC = e(α·〈a〉)∆(r) ≡ κ

G√
2

(−1)j+l+1/2(j + 1/2)

j(j + 1)
(j · α)∆(r), (28)

where j is the nuclear spin in the ground state which coincides with the angular momentum of
the external nucleon if one works in the single-particle approximation; where G = 10−5m−2 is the
Fermi constant and m is the nucleon mass. The factors depending on j and on the orbital angular
l of the external nucleon absorb the spin-angular dependence of the anapole expectation value 〈a〉,
and the anapole moment κ chosen in this way contains merely the nuclear structure information.

In the single-particle approximation, the most important part of the anapole moment operator
27 can be written [35, 29] as the sum of the spin-current term and an additional term δa

a =
πe

m

∑
i

µi (ri × σi) + δa, (29)

which includes other contributions. Here, σ are the spin Pauli matrices, µ are the nucleon mag-
netic moments (+2.79 for proton and −1.91 for neutron). The last term in Eq. 29 abbreviates
contribution from the orbital current and the corrections which come basically from the interaction
many-body contributions (e.g., from the weak forces) to the electromagnetic current [25, 29, 36].
They are proportional to the charge of the external nucleon, and in our case (external neutron) the
first term in Eq. 29 dominates in the single-particle approximation.
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The expectation value of 29 in any eigenstate of the nuclear Hamiltonian, Hn
0 + V n

res is zero
unless parity violating forces W n

PNC are taken into account. As a result of the PNC weak inter-
action W n

PNC in the Hamiltonian 24, a nuclear state of definite parity |ψ〉, acquires very small
admixtures of wrong parity configurations |ψ̄n〉. This can be accounted for by using the first order
of perturbation theory with respect to W n

PNC . Thus the expectation value of the anapole moment
operator a in the state |ψ̃〉 with energy E containing the PNC admixtures is

〈ψ̃|a|ψ̃〉 =
∑
n

(
〈ψ|WPNC |ψ̄n〉

E − En
〈ψ̄n|a|ψ〉 − 〈ψ|a|ψ̄n〉

〈ψ̄n|WPNC |ψ〉
En − E

)
(30)

where sum runs over the opposite parity states |ψ̄n〉. In a finite nucleus, a nucleon experiences the
combined action of the two-body PNC forces WPNC [1] from other nucleons, which can be modeled
[2] by the effective one-body PNC weak potential wPNC (see Eq. 8)

wPNC = g
G

2
√

2m
{(σ·p), ρ},

where the curly brackets denote anticommutator. The nuclear core density ρ =
∑
occ

|ψocc|2 in

6 reflects the coherent contribution from all the occupied nucleon orbitals. The dimensionless
constants g for proton and neutron are gp = 4.5±2, gn = 1±1.5. These widely used values [2, 25,
35, 26] correspond to the best values [1] of the microscopic parameters in the DDH Hamiltonian [1].
They are found in reasonable agreement with the bulk experimental data on PNC including the
compound nuclear experiments by TRIPLE group [3] and anapole moments of stable nuclei [32].

0.10 Weak interaction and the anapole moment in halo

nucleus

The basic specific properties of the halo nuclei are determined by the fact of existence of
loosely bound nucleon in addition to the core composed by the rest of the nucleons [13].

In one-body halo nuclei like 11Be, the ground state is particularly simple: it can be
represented as direct product of the single-particle wave function of the external neutron,
ψhalo, and the wave function of the core. The spin-saturated core does not contribute to 30.
The residual interaction V n

res in Eq. 24 can be neglected as the many-body effects related
to the core excitations are generically weak in such nuclei [34]. As a result of the relatively
heavy core for A ' 10, difference between the center of mass coordinate and the center of core
coordinate can also be neglected. The problem with the Hamiltonian 24 and 6 is reduced to
a single-particle problem for the external nucleon. For the nucleus with the external neutron,
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as is the case for the halo nucleus 11Be, the orbital part of the anapole operator 29 does not
contribute. Using the reduced matrix elements of the spin-angular part of the operator 29,

〈l′, j,m||r
r
× σ||l, j,m〉 = i(−1)j+l+1/2(j + 1/2)

√
2j + 1

j(j + 1)
, l′ = l ± 1,

the anapole moment can be expressed in terms of the radial wave functions Rnlj as follows:

κ = −2πµne
2gn

m2

∑
n′l′j

∞∫
0

r2dr Rn′l′j [ρ (dRnlj/dr + (l − j)(2l + 1− j)Rnlj/r)

+ (dρ/2dr)Rnlj]

∞∫
0

r3drRn′l′jRnlj / (Enlj − En′l′j) . (31)

In a halo nucleus like 11Be or 11Li, the energy spacing between the opposite parity weakly-
bound states can be small [11, 12, 13, 15, 16, 34]. The PNC effect in 31 can therefore
be considerably magnified [19]. The nucleus 11Be has the only bound excited state, 1p1/2,
above the ground state 2s1/2 [11, 12, 15, 16] (inversion of levels). As a result of the small
energy separation between these levels of opposite parities which is known experimentally,
Eq. 21, one can save the only 1p1/2 term in the expression 31 for the anapole moment κ
of the ground state 2s1/2. The form of the single-particle wave functions of halo states can
be deduced from their basic properties [16] and their quantum numbers [12]. The results of
the Hartree-Fock calculations which reproduce the main halo properties (e.g., mean square
radii) are also available [12]. We use the following ansatz [19, 9] for the model wave functions
of the 2s and the excited 1p halo states as given by Eq. 10. The core nucleon density ρc(r)
has been taken according to Eq. 15,as shown on Fig. 4(a). Evaluation of Eq. 31 with the
wave functions 10 and the core density 15 gives the expression for the anapole moment in
terms of the parameters of Eq. 16.

The results for the densities are shown in Fig.4(a). One sees good agreement with the
Hartree-Fock calculations [12]. The values of the halo radii given by 13,

√
〈r2

2s〉 = 5.9 fm

and
√
〈r2

1p〉 = 4.9 fm are close to the values of Ref.[12] 6.5 fm and 5.9 fm which agree with

experimental matter radii.
With the above values of the parameters, one obtains from 31 the resulting value of the

anapole moment κ

κ
(
11Be

)
= 0.17gn = 0.17 (for gn ' 1). (32)

It is few times bigger than the contribution from neutral current −κnc = −0.05. Thus the
nuclear spin-dependent PNC interaction of a lepton with the halo nucleus is dominated by
the anapole moment contribution, as in heavy nuclei.
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Figure 4: (a) Densities R2(r) for the halo states 2s and 1p as function of r and the core
density ρc(r) calculated from Eqs. (10,15) (solid lines). The Hartree-Fock results for the
same quantities [12] are given by the dashed line, the dotted line and the dotted-dashed line,
respectively. (b) “Halo anomaly” in 11Be: the value κ (11Be) (circle) as compared to the
absolute values of the anapole moments of normal neutron-odd nuclei (solid curve) and the
neutral current contribution κnc = 0.05 (dashed curve).

To appreciate how big the value κ (11Be) is, one can compare 32 to the anapole moment
of the normal spherical nucleus with odd neutron which is given by [35]:

κnorm =
9

10

gne
2µn

mr0
A2/3, (33)

where r0 = 1.2 fm is the nucleon radius. Resulting from the PNC toroidal electromagnetic
currents, the anapole moment grows fast (∝ A2/3) as the size of the system increases [25, 35].
For this reason, the anapole moments of normal light nuclei give only a small correction to
the neutral current lepton-nucleus PNC interaction (see Fig. 4(b)). From 32 and 33, we find
the ratio of the anapole moment to its value in a nucleus with the same A ( enhancement
factor):

Rhalo =
κ(11Be)

κnorm
= 15. (34)

In fact, the anapole moment 32 exceeds few times the anapole moments of any known odd
nucleus, as seen in Fig.4(a). For example, the κ(11Be) is two times bigger than the anapole
moment of nucleus as heavy as lead [35],

κ(207Pb) = −0.08gn.
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The remarkable enhancement factor 34 in 32 comes from the two features of the halo
structure: a) enhancement of the PNC mixing in the halo ground state [the first factor in
Eq. 35] and b) enhancement of the matrix elements of the anapole operator in halo states:

Rhalo ∼ ω

∆E

(
whalo
wnorm

)(
rhalo
rnorm

)
, (35)

where the second factor is the ratio of the halo weak matrix element whalo, Eq. 6, to the
normal one, wnorm, which is less than unity. The parity violating effect originates from
the weak interaction of the external halo neutron with the core nucleons in the nuclear
interior. As a result, the neutron halo cloud surrounding the nucleus acquires the wrong
parity admixtures. Those give rise to the PNC toroidal currents in the nuclear exterior (the
halo region) which results in additional enhancement of the anapole moment [the last factor
in 35].

0.11 Many-body corrections to the anapole moment

We discuss now the stability of the results against possible distortions of the wave functions
10. Table 10.2 shows the values of the anapole moment calculated for various values of the
parameters r0 and r1 in the wave functions 10. As is seen from the Table, the results are
stable with respect to variation of the details of the halo structure.

r0 = 1.35 r0 = 1.40 r0 = 1.45 r0 = 1.50 r0 = 1.55
r1 = 1.70 1.26 1.15 1.05 0.96 0.87
r1 = 1.75 1.23 1.12 1.03 0.94 0.85
r1 = 1.80 1.19 1.09 1.00 0.91 0.83
r1 = 1.85 1.16 1.06 0.97 0.89 0.81
r1 = 1.90 1.12 1.03 0.95 0.87 0.80

Table 10.2 - Dependence of κ (11Be) on the halo parameters r0 and r1 in Eq.16; the ratios of
κ to the result 19 are given. The central entry in the table corresponds to the optimal values used
in 19. It is seen that variations in r0 and r1 do not appreciably affect 19.

We consider now the influence of possible many-body contributions (see, e.g., [39, 40])
to the halo wave functions 10 on the present results based on single-particle picture.

The generalized wave function of the halo ground state, |s), can be written as a sum

|s) = (1− x2
s)|ssp〉+ xs|Smb〉,

where |ssp〉 is the purely single-particle s-state in Eqs. 30 and 10, and |Smb〉 denotes the
many-body contributions due to core polarization, deformations etc., which have not been
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considered yet. The coefficient xs (0 ≤ xs ≤ 1) is the amplitude of the many-body contri-
bution which is assumed to be properly normalized, 〈Smb|Smb〉 = 1. The anapole moment
can be evaluated in the same way as above, using Eqs. 29, 30 and 6 and substituting the
state |s) instead of |ssp〉. Both the anapole moment operator 29, the weak potential 6 are
the single-particle operators, so they can not connect the single-particle wave function |psp〉
10 with the many-body component |Smb〉. Thus

〈Smb|a|psp〉 = 0 and 〈Smb|wPNC |psp〉 = 0. (36)

The anapole moment κ̃ in the state |s) is now given by the simple renormalization of the
result obtained above,

κ̃ = (1− x2
s)κ,

where κ is the single-particle result 31, 16 and 32. Similarly to Eq. 36, one can take into
account many-body contributions |Pmb〉 to the excited p-state |psp〉 (10) with the amplitude
xp, |p) = (1−x2

p)|psp〉+xp|Pmb〉. In this case, the modified result for the anapole moment is:

κ̃ = κ
[
(1− x2

s)(1− x2
p) + xsxp

√
(1− x2

s)(1− x2
p)(u+ v) + xsxpuv

]
, (37)

where u = 〈Smb|a|Pmb〉/〈smb|a|pmb〉 and v = 〈Smb|wPNC |Pmb〉/〈smb|wPNC |pmb〉 denote the
ratios of the matrix elements of the anapole (weak interaction) between the many-body
components Smb and Pmb to their values for the single-particle states. One can note that the
matrix elements of the single-particle operators between the many-body wave functions are
generically suppressed as compared to those between the single-particle states, so that the
factors u and v can be neglected for the sake of estimate.

According to experimental results [41], the many-body contributions to the halo ground
state in 11Be are rather small, ≈ 16%. Assuming the many-body corrections to the excited
states of the same magnitude, xp ' xs, one can conclude from Eq. 37 that the results
obtained in the single-particle approximation could hardly be reduced by more than 30 per
cent.

The corrections due to the many-body admixtures in the halo states are therefore about
the same order of magnitude as the many-body corrections to the operators 29 and 6. They
can be taken into account in more refined calculations using detailed information on the
wave function structure.

The curious “halo anomaly” illustrated in Fig. 4(b) can be quite interesting in a number
of respects. First, the search for sources of enhancement in anapole moments has been always
important from the experimental viewpoint. Possibilities offered by the normal nuclei are
rather limited here. The most promising case of deformed nuclei, where one can find close
levels of opposite parity near the ground state, does not offer any enhancement because of
the suppression in the matrix elements of a [35]. In this respect, the anomalies in anapole
moments of exotic nuclei like 11Be seem to give unexpected opportunity. Secondly, the
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anapole moment of neutron-rich nuclei is determined by the neutron weak constant gn only.
Usually, the sensitivity of experiments to the value of this constant is “spoiled” by relatively
large value of the proton weak constant gp, in Eq.6. The large enhancement of the anapole
moment in neutron halo nuclei provides therefore an unique opportunity to test the isospin
structure of the weak potential 6 which is of great interest [7].

One should note that the nucleus 11 Be has a rather long life-time (13.81 sec). This makes
therefore possible, at least in principle, the atomic measurements of the hyperfine structure
effects in traps planned for the ISOL facility where the anapole moment can be detected.

It would be also interesting to consider mesic atoms with exotic nuclei, where the effect
can be further enhanced, as the heavy lepton orbits are closer to nucleus than in usual atoms.
The case of proton rich nuclei where the effect must be more pronounced due to numerical
value of the constant gp, is also of separate interest.
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