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0.1. EIKONAL WAVEFUNCTION

0.1 Eikonal wavefunction

The free-particle wavefunction
ψ ∼ eik·r (1)

becomes “distorted” in the presence of a potential V (r ) . The distorted wave (DW) can be
calculated numerically by solving the Schrödinger equation

− ~2

2m
∇2ψ(r ) + V (r )ψ(r ) = E ψ(r ) (2)

with the condition that asymptotically ψ(r ) behaves as 1. This is done after a partial wave
decomposition of ψ(r ), since in most situations V (r ) ≡ V (r) is spherically symmetric. For
each partial wave the equation to be solved is[

d2

dr2
+ k2

` (r)

]
χ`(r) = 0 , (3)

where

k`(r) =

{
2m

~2

[
E − V (r)− `(`+ 1)~2

2m r2

]}1/2

. (4)

The asymptotic behavior of χ`(r) is

χ`(r) ∼ sin

(
kr − η ln 2kr − 1

2
π`+ δ`

)
, (5)

where δ` is the phase-shift and

k =
mv

~
, η =

Z1Z2e
2

~v
. (6)

The phase-shifts are found by solving Eq. 3 numerically and by matching the solution with
the asymptotic Eq. 5. Only for a pure Coulomb field is there an analytic solution, namely

δC` = arg Γ(`+ 1 + iη). (7)

The distorted wavefunction is composed of an incident plane wave and a scattered wave

ψ ∼= eik·r + f(θ)
eikr

r
, (8)

where is f(θ) called the scattering amplitude. The scattering amplitude can be expanded in
terms of partial waves:

f(θ) =
i

2k

∑
`

(2`+ 1)
[
1− e2i δ`

]
P`(cos θ). (9)
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0.1. EIKONAL WAVEFUNCTION

It is also convenient to write the scattering amplitude as

f(θ) = fC(θ) + fN(θ) (10)

where

fC(θ) =
i

2k

∑
`

(2`+ 1)
[
1− e2i δC

`

]
P`(cos θ)

= −a0

2

1

sin2 θ/2
exp

{
−iη ln

(
sin2 θ

2

)
+ 2iδC0

}
(11)

is the Coulomb scattering amplitude, and

fN(θ) =
i

2k

∑
`

(2`+ 1)e2iδ
c
`

[
1− e2i δN

`

]
P`(cos θ) (12)

is the nuclear scattering amplitude. In the equation above

δ` = δC` + δN` (13)

and

a0 =
Z1Z2 e

2

2E
. (14)

In this formalism, the total reaction cross section is given by

σR =
π

k2

∑
`

(2`+ 1)
[
1− exp

(
−2ImδN`

)]
. (15)

The quantity exp
{
−2Im δN`

}
is often called the transmission coefficient and is an attenua-

tion effect due to the imaginary part of the optical potential.
The solution of 3 (to obtain δ`) involves a great numerical effort, especially at large

bombarding energies E . Fortunately, at large energies E a very useful approximation is
valid when the excitation energies ∆E are much smaller than E and the nuclei (or nucleons)
move in forward directions, i.e., θ � 1 .

Calling r = (z,b ), where z is the coordinate along the beam direction, we can assume
that

ψ(r ) = eikz φ(z,b ), (16)

where φ is a slowly varying function of z and b , so that∣∣∇2φ
∣∣� k |∇φ| . (17)

Physics of Radioactive Beams - C.A. Bertulani 3



0.1. EIKONAL WAVEFUNCTION

In cylindrical coordinates 2 becomes

2ik eikz
∂φ

∂z
+ eikz

∂2φ

∂z2
+ eikz∇2

bφ−
2m

~2
V eikz φ = 0

or, neglecting the 2nd and 3rd terms because of 17,

∂φ

∂z
= − i

~v
V (r )φ (18)

whose solution is

φ = exp

{
− i

~v

∫ z

−∞
V (b, z′)dz′

}
. (19)

That is,
ψ(r) = exp {ikz + iχ(b, z)} , (20)

where

χ(b, z) = − 1

~v

∫ z

−∞
V (b, z′)dz′ (21)

is the eikonal phase. Given V (r ) one needs a single integral to determine the wavefunction:
a great simplification of the problem.

The eikonal approximation, in the same form as given by Eqs. 20, can be obtained from
the Klein-Gordon equation with a (scalar) potentialV . The proof can be found in some
textbooks, e.g., Ref. [2].

Supplement A

0.1.1 Green’s function

The solution of the Schrödinger equation for E > 0 (scattering states) is denoted by ψ+
k (r ) where

the plus sign indicates that the asymptotic behavior is that of an outgoing spherical wave. ψ−k (r )
is also a solution of the same Schrödinger equation but has the asymptotic behavior of an incoming
spherical wave. From time-reversal invariance

ψ−∗k (r ) = ψ+
−k(r ), (22)

which gives, from Eq. 8,

ψ−k (r ) −→
r→∞

eik·r + f ∗(π − θ)e
−ikr

r
. (23)

Thus, we concentrate on ψ+
k and if the sign is not given ψ+

k is understood. We denote
φk = eik·r .
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0.1. EIKONAL WAVEFUNCTION

The Schrödinger equation is

(E −H0)ψk(r ) = V (r )ψk(r ) (24)

where H0 is the kinetic energy operator. φk obeys the equation

(E −H0)φk = 0. (25)

It also obeys the equation
(E −H0)φk′ = (E − E ′)φk′ , (26)

the orthogonality condition ∫
φ∗k(r ′)φk′(r )d3r = (2π)3δ(k− k′), (27)

and the closure relation ∫
φ∗k(r ′)φk(r )d3k = (2π)3δ(r− r ′). (28)

It is useful to expand the scattering solution in terms of φk ,

ψk(r ) =

∫
a(k′)φk′(r )d3k′. (29)

Using this in Eq. 26, Eq. 24 becomes∫
a(k′)(E − E ′)φk′(r )d3k′ = V (r )ψk(r ). (30)

Multiplying by φ∗k(r ), integrating over r, and using 28 we get

(2π)3(E − E ′)a(k′) =

∫
φ∗k′(r )V (r )ψk(r )d3r. (31)

Putting this back into Eq. 29 we have

ψk(r ) =

∫
a(k′)φk′(r )d3k′ =

∫
G0(r, r

′)V (r ′)ψk(r ′)d3r′ (32)

where G0(r, r
′) is given by

G0(r, r
′) =

1

(2π)3

∫
φk′(r)φ∗k′(r

′)

E − E ′
d3k′. (33)

The general solution of Eq. 24 is obtained by adding any solution of the homogeneous Eq. 25
to Eq. 32. I.e.,

ψk(r ) = φk(r ) +

∫
G0(r, r

′)V (r ′)ψk(r ′)d3r′. (34)
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0.1. EIKONAL WAVEFUNCTION

Using 26 we obtain that G0(r, r
′) satisfies the equation

(E −H0)G0(r, r
′) =

1

(2π)3

∫
eik
′·(r−r ′)d3k = δ(r− r ′). (35)

Eq. 33 has poles in k = ±k′ . We can eliminate these poles by defining G0(r, r
′) as

G±0 (r, r ′) = lim
η→0±

1

(2π)3

2m

~2

∫
φk′(r )φ∗k′(r

′ )

k2 − k′2 ± iη
d3k′ (36)

where η is a small positive quantity which is allowed to go to zero after the integration is performed.
The integral in 36 is easily obtained by the residue technique. One gets

G±0 (r, r ′) = − m

2π~2

e±ik|r−r ′|

|r− r ′|
. (37)

The ± sign arises from the residues in the k′-plane at +η and −η , respectively. Assuming
that V (r ′) falls off rapidly with r ′ so that in the asymptotic region r � r′ , we can approximate

|r− r ′|−1 → 1

r

exp {±ik|r− r ′|} → exp {±i(kr − k′ · r ′)} (38)

where k′ = kr̂ .
Using 37, 38, and 34 we get

ψ±k (r ) −→
r→∞

eik·r − m

2π~2

e±ikr

r

∫
e∓ik

′·r ′V (r ′)ψ±k (r ′)d3r′. (39)

Thus the ± sign in G±0 is associated with the ± sign of ψk .
As a by-product we obtain for the scattering amplitude

f(θ) = − m

2π~2

∫
e−ik

′·r ′V (r ′)ψ+
k d

3r′. (40)

Multiplying 26 by (E −H0)
−1 we get

1

E −H0

(E −H0)φk′(r ) = (E − E ′) 1

E −H0

φk′(r )

from which we obtain
1

E −H0

φk′(r ) =
1

E − E ′
φk′(r ). (41)
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0.1. EIKONAL WAVEFUNCTION

Thus, φk′ are eigenfunctions of the operator (E − H0)
−1, with eigenvalues 1/(E − E ′) where

E ′ > 0 and E 6= E ′ . For E = E ′ the operator (E − H0)
−1 is not defined. Similarly, from

Eq. 24 we obtain
ψk(r ) = (E −H0)

−1 V (r )ψk(r ).

Removing the divergence by inserting a small quantity η and adding the solution of the homoge-
neous equation we get the formal solution

ψ±k (r ) = φk(r ) + (E −H0 ± iη)−1V (r)ψk(r ). (42)

This is a solution of the Schrödinger equation only when η → 0 .
Comparing 34 with 42 we see that formally the Green’s function is given by

G±0 =
1

E −H0 ± iη
. (43)

We can check this by using Eq. 41 which can be written in the more general form

1

E −H + iη
|m〉 =

1

E − Em + iη
|m〉

where H is any Hamiltonian and |m〉 are the corresponding eigenfunctions. Multiplying on the
right by 〈m| , summing over m and using closure (

∑
m |m〉〈m| = 1) we get

1

E −H + iη
=
∑
m

1

E − Em + iη
|m〉〈m| (44)

where
∑

m implies summation over discrete eigenstates and integration over continuous eigenstates.
If H is replaced by the kinetic energy operator H0 and |m〉 are replaced by the continuous
eigenstates (2π)−3/2 |k 〉 equation 44 reduces to

1

E −H0 + iη
=

1

(2π)3

∫
d3k′

|k′〉〈k′|
E − E ′ + iη

(45)

which is identical with Eq. 36, G0(r, r
′) = 〈r|G0|r ′〉 . Eq. 42 can also be written formally as

|ψ±〉 = |φ〉+G±0 V |ψ±〉. (46)

Eq. 46 is know as the Lipmann-Schwinger equation. It can be solved by iteration, first replacing
|ψ±〉 by |φ〉 on its r.h.s., then replacing by |φ〉+G±0 V |φ〉, and so on. This is yields the Lipmann-
Schwinger series.
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0.2. ELASTIC SCATTERING OF SPINLESS PARTICLES

0.2 Elastic scattering of spinless particles

The “outgoing” wavefunction of a particle scattered by a potential V (r ) is given by Eq. 34,
i.e.,

ψ+(r ) = eik·r − m

2π~2

∫
eik|r−r ′|

|r− r ′|
V (r ′)ψ+(r ′)d3r′, (47)

where m is the particle mass.
For r � r′ , we expand |r− r′ | ' r − r · r ′/r and obtain

ψ+(r ) = eik·r − f(θ)
e+ikr

r
(48)

where f(θ) is given by 40.
Using the eikonal wavefunction 20 for ψ+(r ) in Eq. 40, we obtain

f(θ) = − m

2π~2

∫
d2b ei(k−k ′)·b

∫ ∞
−∞

dz ei(k−k ′).k̂ z

× V (r ) exp

{
− i

~v

∫ z

−∞
V (r ′)dz′

}
. (49)

But, for θ � 1 , (k− k ′) · k ∼= 0, and∫ ∞
−∞

dz V (r ) exp

{
− i

~v

∫ z

−∞
V (r ′)dz′

}
= i~v exp

{
− i

~v

∫ z

−∞
V (r ′)dz′

}∣∣∣∣∞
−∞

= i~v
{
eiχ(b) − 1

}
where

χ(b ) ≡ χ(b,∞) = − 1

~v

∫ ∞
−∞

V (b, z′) dz′ (50)

is the total eikonal phase.
Denoting

q ≡ ∆k = k− k ′, q = 2k sin θ/2 (51)

we get

f(θ) = − ik
2π

∫
d2b eiq·b

[
eiχ(b ) − 1

]
. (52)

If the potential is spherically symmetric, χ(b) is a function of the absolute value of b
only and using ∫ 2π

0

dφ eiqb cosφ = 2π J0(qb) ,
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0.2. ELASTIC SCATTERING OF SPINLESS PARTICLES

we obtain,

f(θ) = −ik
∫
db b J0(qb)

[
eiχ(b) − 1

]
. (53)

Thus in the eikonal approximation the elastic scattering amplitude f(θ) is obtained from
two simple integrals: Eqs. 50 and 53.

The elastic scattering cross section is given by

dσel
dθ

= |f(θ)|2 (54)

Supplement B

0.2.1 Coulomb amplitude and Coulomb eikonal phase

In general, the scattering potential is given by

V (r ) = Uopt
N (r) + UC(r) (55)

where Uopt
N is the nuclear optical potential and UC(r) = Z1Z2e

2/r is the Coulomb potential
between the nuclei.

Since Uopt
N (generally complex) is well localized in space, the eikonal phase for the nuclear part

of 55 is obtained by a well convergent integral Eq. 50. However, the integral diverges logarithmically
for the Coulomb potential. This is due to the use of the approximation 17 which is not valid for the
(long range) Coulomb potential. But this does not pose a real problem since an analytical formula
can be given for the Coulomb eikonal phase which reproduces the exact Coulomb amplitude, Eq.
11. The total eikonal phase is

χ(b) = − 1

~v

∫ ∞
−∞

Uopt
N (b, z′)dz′ + χC(b) (56)

where

χC(b) =
2Z1Z2e

2

~v
ln(kb) (57)

We now show that the Coulomb phase, as given by the above formula, reproduces the Coulomb
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0.2. ELASTIC SCATTERING OF SPINLESS PARTICLES

amplitude in the eikonal approximation. We have

fC(θ) = ik

∫ ∞
0

J0(qb)
[
eiχC(b) − 1

]
bdb

=
ik

q2

∫ ∞
0

J0(x)

[(
kx

q

)i2η
− 1

]
xdx

=
ik

q2

{(
k

q

)i2η ∫ ∞
0

J0(x)xi2η+1dx−
∫ ∞

0

J0(x)xdx

}
where

η =
Z1Z2e

2

~v
; k =

mv

~
; q = 2k sin (θ/2) . (58)

Integrating by parts and using ∫
xJ0(x)dx = x J1(x)

one gets

f(θ) =
ik

q2

(
k

q

)i2η
xi2η+1J1(x)

∣∣∞
0
− i2η

(
k

q

)i2η ∫ ∞
0

xi2ηJ1(x)dx− xJ1(x)

∣∣∣∣∞
0

=
ik

q2

{
xJ1(x)

[
ei2η ln(kx/q) − 1

]∣∣0
∞ − 2iη

(
k

q

)i2η
· 2i2η Γ (1 + iη)

Γ (1− iη)

}

where we have used the integral Eq. 6.561.14 of the book of Gradshteyn and Rhyzik [3] in the last
step.

The first term in the equation above can be neglected and we get

fC(θ) =
2kη

q2

(
2k

q

)i2η
Γ (1 + iη)

Γ (1− iη)

But

Γ (1± iη) = ±iηΓ (±iη) = ±iη |Γ (iη)|
{
eiφ0

e−i(φ0+π)

where
φ0 = arg Γ (1 + iη) (59)

Therefore,

fC(θ) = − Z1Z2e
2

2mv2 sin2 θ
2

exp

{
−iη ln

(
sin2 θ

2

)
+ i2φ0

}
(60)

which is the exact Coulomb amplitude, Eq. 11 (with φ0 ≡ δC0 ).
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0.2. ELASTIC SCATTERING OF SPINLESS PARTICLES

The phase 59 can also be written as

φ0 = −ηγ +
∞∑
k=0

(
η

k + 1
− arctan

η

k + 1

)
(61)

where γ = 0.57721 . . . is the Euler’s constant.
For numerical evaluation it is appropriate to rewrite Eq. 53 as

f(θ) = ik

∫ ∞
0

J0(qb) e
iχC(b)

[
1− eiχN (b)

]
bdb+ fC(θ) (62)

which can be easily obtained by adding and subtracting fC to 53 and combining terms. This is
because 1− exp [iχN(b)] drops to zero rapidly for b > R1 +R2 since Uopt

N goes to zero there. In
Eq. 62 we use 60 for fC(θ). χN(b) is given by the first term of Eq. 56 and χC(b) is given by 57.

A few modifications of the Coulomb eikonal phase are need to account for the extended nature
of the nuclear charge distributions. For light nuclei, one can assume Gaussian nuclear densities,
and the Coulomb phase is given by

χC(b) = 2
Z1Z2e

2

~v

[
ln(kb) +

1

2
E1

(
b2

R2
G

)]
, (63)

with R
(i)
G equal to the size parameter of Gaussian matter densities of nucleus 1 and nucleus 2,

respectively, R2
G = [R

(1)
G ]2 + [R

(2)
G ]2, and

E1(x) =

∫ ∞
x

e−t

t
dt . (64)

The first term in Eq. (63) is the contribution to the Coulomb phase of a point-like charge distri-
bution. It reproduces the elastic Coulomb amplitude when introduced into the eikonal expression
for the elastic scattering amplitude, as we have shown above. The second term in Eq. (63) is a
correction due to the extended Gaussian charge distribution. It eliminates the divergence of the
Coulomb phase at b = 0, so that

ψC(0) = 2
Z1Z2e

2

~v
[ln(kRG)− γ] (65)

where γ is the Euler’s constant.
For heavy nuclei a “black-sphere” absorption model is more appropriate. Assuming an absorp-

tion radius R0, the Coulomb phase is given by

χC(b) = 2
Z1Z2e

2

~v

{
Θ(b−R0) ln(kb) + Θ(R0 − b)

[
ln(kR0)

+ ln
[
1 + (1− b2/R2

0)1/2
]
− (1− b2/R2

0)1/2 − 1

3
(1− b2/R2

0)3/2
]}

. (66)

Again, the first term inside the curly brackets is the Coulomb eikonal phase for pointlike charge
distributions. The second term accounts for the finite extension of the charge distributions.
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0.3. SPIN PARTICLES

0.3 Spin particles

In the scattering of a spin-
1

2
particle by a nucleus, e.g., proton-nucleus scattering, the optical

potential contains a spin-orbit term, i.e.,

Uopt
N = UN(r) + US(r)σ · L (67)

where

L =
1

~
(r× p ), s =

1

2
σ, (68)

and the Dirac matrices σ = (σ1, σ2, σ3) obey the commutation rule

σiσj + σjσi = 2δij. (69)

As in the spinless case, the distorted wavefunction can be written as

ψr(r ) ∼= eik·r ϕ(r )ui(k ) (70)

where ui(k ) is a spinor wavefunction. One obtains

ϕ(r ) ∼= exp

{
− i

~v

∫ z

−∞
dz′
{
UN(b, z′) + US(b, z′)σ · (b× k̂)k

}}
(71)

since z = zk̂ .
The eikonal amplitude is

f(θ) =
k

2πi

∫
eiq·b

{
eiχN (b)+iχS(b)σ·(b×k̂)k − 1

}
d2b (72)

where

χN(b) = − 1

~v

∫ ∞
−∞

UN(b, z)dz, χS(b) = − 1

~v

∫ ∞
−∞

US(b, z)dz . (73)

Using 69

exp
{
iχS(b)σ · (b× k̂ )k

}
=
∑
n

1

n!

[
iχS(b)σ · (b× k̂ )k

]n
=

∑
n=odd

1

n!
(kb)n [iχS(b)]n σ · (b̂× k̂ ) +

∑
n=even

1

n!
(kb)n [iχS(b)]n

= iσ · (b̂× k̂ ) sin [kbχS(b)] + cos [kbχS(b)] . (74)

Including the Coulomb amplitude as in 62 we obtain

f(θ) =
ik

2π

∫
d2b eiq·b eiχC(b)

[
1− eiχN (b)+iχS(b)σ·(b×k )

]
+ fC(θ) (75)
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0.4. TOTAL REACTION CROSS SECTIONS

which, by using 74 becomes

f(θ) =
ik

2π

∫
d2b eiq·b

{
Γ0(b) + iσ · (b̂× k̂)Γ1(b)

}
+ fC(θ) (76)

where the profile functions Γ0(b) and Γ1(b) are defined as

Γ0(b) = eiχC(b)
{

1− eiχN (b) cos [kbχS(b)]
}
,

Γ1(b) = −eiχC(b)+iχN (b) sin [kbχS(b)] . (77)

It is more convenient to rewrite 76 as

f(θ) = F (θ) + (σ · n̂)G(θ) (78)

where n̂ =
k× k ′

|k× k ′|
. The azimuthal integrals in 76 can be easily performed,1

F (θ) = fC(θ) + ik

∫ ∞
0

J0(qb)Γ0(b)bdb

G(θ) = −ik
∫ ∞

0

J1(qb)Γ1(b)bdb. (79)

Since J1(x = 0) = 0, G(θ = 0) = 0 , which is a consequence of the conservation of angular
momentum + spin.

For unpolarized beams

dσel

dΩ
=

1

2

∑
spins

|f(θ)|2 = |F (θ)|2 + |G(θ)|2. (80)

0.4 Total reaction cross sections

According to the unitary theorem (see [4]) the total scattering cross section is given by

σtot =
4π

k
Imf(θ = 0o). (81)

Using 52 we obtain

σtot = 2

∫ [
1− Re eiχ(b )

]
d2b. (82)

1σ · (b × k̂) = (σ · n̂)b|| , where b|| is the component of b parallel to k ′. So, σ · (b × k̂) =
(σ · n̂)b cos θ . The component of b perpendicular to k× k ′ defines another term, proportional to
(σ · ξ) , which is unnecessary by symmetry arguments.
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0.5. THE “Tρρ” APPROXIMATION

We can also verify 82 by an integration of 54 over angles, using the eikonal amplitude
f(θ), 52, ∫

|f(θ)|2dΩk =

(
k

2π

)2 ∫
ei(k−k ′)·(b−b ′)

{
eiχ(b ) − 1

}
×
{
e−iχ(b ′) − 1

}
d2b d2b′ dΩk′ . (83)

But

dΩk′ = sin θdθdφ =
k2 sin θdθdφ

k2
∼=

(kθdθ) (kdφ)

k2
valid for θ � 1

∼=
kdφdk

k2
=
d2k′

k2
. (84)

Furthermore, using ∫
e(k−k ′)·(b−b ′)d2k′ = (2π)2 δ(2)(b− b ′) (85)

where δ(2)(b− b ′) is a two-dimensional delta-function, we find

σscatt =

∫ ∣∣eiχ(b ) − 1
∣∣2 d2b. (86)

For χ(b ) real (real optical potential), 86 reduces to 82.
However, when χ(b ) is complex (optical potential has an imaginary part). 86 is not

equal to 82. The difference is equal to the reaction cross section. That is,

σR = σtot − σscatt =

∫ [
1−

∣∣eiχ(b )
∣∣2] d2b =

∫
[1− T (b)] d2b (87)

where T (b) =
∣∣eiχ(b )

∣∣2 = e−2Imχ(b ) is known as the transparency function.

Supplement C

0.5 The “tρρ” approximation

The theory of multiple scattering has been studied by many other authors, besides Glauber. Par-
ticularly useful for our purposes are the results obtained by Kerman, McManus and Thaler [5].
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For a review of the theory we refer to Ref. [6]. The basic idea is that the nucleus-nucleus
potential at a separation distance R is proportional to a folding of the nucleon densities. The
proportionality constant is the t-matrix for nucleon-nucleon scattering at forward angles, namely
tNN(θ = 0o, E) = − (2π~2/µ) fNN(θ = 0o, E),where µ = m/2. In other words

Uopt
N (R ) ∼= tNN(θ = 0o, E)

∫
d3rρ1(r )ρ2(R + r )

= −2π~2

µ
fNN(θ = 0o)

∫
d3rρ1(r )ρ2(R + r ). (88)

This approximation assumes that only binary collisions between the nucleons occur and that
each nucleon interacts once only. Multiple nucleon-nucleon collisions lead to corrections to 88 and
involve nucleon-nucleon correlation distances in matter (see [6]).

From the optical theorem, Imf(θ = 0o) = (k/4π)σNN , and defining

α =
RefNN(θ = 0o)

ImfNN(θ = 0o)
(89)

we can rewrite 88 as

Uopt
N (R ) = −σNN

~v
2

(α + i)

∫
d3r ρ1(r)ρ2(R + r ). (90)

The value of the nucleon-nucleon cross section, σNN , which enters Eq. 90 is somewhat modified
by the Pauli-blocking (for a study of the effect see Ref. [6]). But, since the elastic and inelastic cross
sections are mainly dependent on the peripheral collisions between the nuclei, with poor nuclear
overlap, σNN is not appreciably modified there, at least for highly energetic collisions. Thus,
to construct the “tρρ” optical potential only needs the values of σNN , α , and the ground state
densities ρi(r ).

Good parametrization of the ground state nuclear densities are given by Gaussian distributions
for light nuclei (e.g., α′s and 12C) or by Fermi functions for heavy nuclei (e.g. 40C and 208Pb).

R a c
Nucleus Model (fm) (fm) (fm)

4He Gaussian 1.37
12C MF 2.335 0.522 −0.149
16O MF 2.608 0.513 −0.051
20Ne MF 2.740 0.569 0
28Si MF 3.300 0.545 − 0.18
40Ca MF 3.725 0.591 − 0.169
42Ca MF 3.627 0.594 −0.102
58Ni MF 4.309 0.517 −0.131
90Zr MG 4.522 2.522 0.245

208Pb MF 6.624 0.549 0

Physics of Radioactive Beams - C.A. Bertulani 15



0.5. THE “Tρρ” APPROXIMATION

Table 2.1 - Data for parameters used in Gaussian, Modified Fermi (MF), and Modified Gaussian
(MG) fits of the density matter distribution of some nuclei (from Refs. [7] and [8]).

For a better description slight modifications of the Gaussian or Fermi distributions might be
needed. In Table 2.1. we give examples of ground state nuclear densities for some nuclei, where we
use

ρ(r) = ρ(0) e−r
2/R2

, (Gaussian)

= ρ(0)

(
1 +

cr2

R2

)
{1 + exp [(r −R) /a]}−1 (modified Fermi (MF))

= ρ(0)

(
1 +

cr2

R2

){
1 + exp

[(
r2 −R2

)
/a2
]}−1

(modified Gaussian (MG)).

(91)

For σNN and αNN , the values in Table 2.2 were compiled [9, 10].

E/A σNN . αNN
(fm2) .

30 19.6 0.87
38 14.6 0.89
40 13.5 0.9
49 10.4 0.94
85 6.1 1
94 5.5 1.07
120 4.5 0.7
200 3.2 0.6
342.5 2.84 0.26
550 3.6 0.04
1000 4.22 −0.2
2200 4.35 −0.3

Table 2.2 - Nucleon-nucleon cross sections. E/A is the laboratory energy per nucleon.

From Table 2.2 we observe that at very high energies (& 500 MeV/nucleon) the real part of
the “tρρ” potential vanishes, i.e.,

Uopt
N (R ) = −iσNN

~ν
2

∫
ρ1(r)ρ2(R + r)d3r [& 500 MeV ] . (92)

But at Elab/nucleon & 1 GeV the real part of the potential becomes repulsive (see Table 2.2).
In any case, we can write

σR =

∫
[1− T (b )]d2b (93)
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where

T (b ) = exp

[
−σNN

∫ ∞
−∞

dz

∫
ρ1(r)ρ2(R + r )d3r

]
. (94)

Eq. 94 has a simple interpretation. The mean free path for a nucleon-nucleon collision is

given by λNN(R) =

(
σNN

∫
ρ1(r) ρ2(R + r)d3r

)−1

. Thus, the probability that the nuclei

“survive” without a nucleon-nucleon collision is given by exp

[
−
∫ dz

λNN(R )

]
which is a product

of the probabilities that the nuclei survive after moving through each path element dz along the
trajectory (assumed to be a straight-line). This probabilistic interpretation is consistent with the
concepts introduced in Chapter 1.

Thus T (b ) is known as the transparency function for a collision with impact parameter b . Of
course, 1 − T (b ) is the probability that the nuclei interact at that impact parameter. Eq. 93 is
then the result of two-body collisions in nucleus-nucleus collisions.

0.6 Inelastic scattering

The eikonal approximation is also very useful to calculate the excitation of a nucleus in
a grazing collision with another one. When the excitation amplitude is small so that the
Distorted wave Born approximation can be used (see Chapter 8), we can write

Tif =
〈
ψ

(−)
k′ (r )φf (r ′)|V (r, r ′)|ψ(+)

k (r)φi(r
′)
〉

(95)

where ψ
(±)
k′,k are the (outgoing/ingoing) distorted scattered waves for the c.m. motion of

the two nuclei and φi,f (r
′) are the initial and final wavefunctions for the internal nuclear

motion, respectively. We will now describe a method appropriate for inelastic scattering in
high energy collisions, described in Ref. [11]. In the eikonal approximation

ψ
(−)∗
k ′ (r )ψ

(+)
k (r ) = exp {−iq · r + iχ(b )} (96)

where q = k ′−k, b = |r× k̂| .
In 95 V (r, r ′) is the interaction potential between the two nuclei. It can be taken as

the interaction potential between a nucleon in nucleus 1 at position r1 , with a nucleon in
nucleus 2 at position r2 (see Fig. 1). Thus,

Tif =

∫
d3R

〈
φ

(1)
f (r1)φ

(2)
f (r2)

∣∣V (r) e−iq·R+iχ(b )
∣∣φ(1)

i (r1)φ
(2)
i (r2)

〉
(97)

where
r = R + r2 − r1. (98)
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0.6. INELASTIC SCATTERING

Figure 1: Coordinates used in text.

Using the Fourier transform

V (r ) =
1

(2π)3

∫
d3q V (p )eip·r (99)

the expression 95 becomes

Tif =
1

(2π)3

∫
d3p d3Re−iq·R+ip·R+iχ(b ) M(q ) (100)

where

M(q ) =
〈
φ

(1)
F (r1)φ

(2)
f (r2)

∣∣e−ip·r1V (q ) eip·r2
∣∣φ(1)

i (r1)φ
(2)
i (r2)

〉
. (101)

The z-integral can be done immediately, resulting in

Tif =
1

(2π)2

∫
d2b e−iq·b+iχ(b )

∫
d2pt e

ipt·bM(p ) (102)

where p is now given by p = pt + qzẑ . The indices t and z refer to the direction perpen-
dicular and parallel to the collision axis, respectively.

For a spherically symmetric optical potential, χ(b ) ≡ χ(b) and the azimuthal integrals
in Eq. 95 can be easily performed, resulting in

Tif =
1

2π

∞∑
ν=−∞

eiνφ
∫ ∞

0

db b Jν(qtb)e
iχ(b)

∫ ∞
0

dpt pt Jν(qtb)

∫ 2π

0

dφp e
−iνφpM(p ). (103)
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For small energy transfers, and in inter intermediate or high-energy collisions, the mo-
mentum transfer p is predominantly transverse. Thus,

Tif =
1

2π

∞∑
ν=−∞

eiνφ
∫ ∞

0

db b Jν(qtb)M(ν, b) eiχ(b) (104)

where

M(ν, b) =

∫ ∞
0

dpt ptJν(ptb)

∫ 2π

0

dφp e
−iνφpM(pt). (105a)

The differential cross section for inelastic scattering is obtained by an average of initial
spins and sum over final spins, i.e.,

dσ

dΩ
=
k′

k

( µ

2π~2

)2 1

(2j1 + 1)(2j2 + 1)

∑
spins

|Tif |2 (106)

where µ is the reduced mass of projectile + target. Performing the azimuthal integration,

dσ

dΩ
=

k′

k

( µ

4π2~2

)2

(2j1 + 1)−1 (2j2 + 1)−1

×
∑
ν

∑
spins

∣∣∣∣ ∫ ∞
0

db b Jν(qtb)M(ν, b) eiχ(b)

∣∣∣∣2 . (107)

In high-energy collisions (see Eq. 84) dΩ ∼= 2π qt dqt/k
2 . Using∫

Jν(qtb) Jν(qtb
′)qtdqt =

1

b
δ(b− b′) (108)

we can write the total cross section as

σ = 2π

∫ ∞
0

db b Pif (b) (109)

where Pif is interpreted as the probability for inelastic excitation in a collision at impact
parameter b :

Pif (b) =
k′

k

(
1

4π2~v

)2

(2j1 + 1)−1 (2j2 + 1)−1

× exp {−2Imχ(b)}
∑
ν

∑
spins

|M(ν, b)|2 . (110)

The differential and total inelastic cross sections probe the structure of the nuclei through
the matrix elements 101 and 105a. For some simple cases (see e.g. Ref. [11]) these matrix
elements can be easily calculated.
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0.7 Glauber theory of multiple scattering

The conditions of validity of the eikonal approximation are that the momentum and energy
transfers in high energy collisions are much smaller than the bombarding energy. However,
the eikonal-Born approximation described in last Section assumes that the transition |i >→
|f > occurs in one step.

Glauber [1] has shown how to treat the general problem of multi-step collisions using the
eikonal approximation. The derivation is quite similar to the one leading to Eq. 53 and we

only present the result here. The inelastic amplitudes (note that f inel = − µ

2π~2
Tif )

f inel(θ) =
k

2πi

∫
d2b eiq·b

∫
d3r′ψ∗f (r

′)
[
eiχ(b−s ) − 1

]
ψi(r

′) (111)

where ψi (ψf ) denote the initial (final) internal wavefunctions of the projectile, or target (or
both) and

s = r ′ − k̂ (k̂ · r ′) ≡ ρ ′ (112)

is the component of r ′ perpendicular to the propagation direction k̂ .

One can easily show that 95 is a limit of 111 when χ � 1 , if the potential V in 95
is assumed to be the same as the one entering in the calculation of χ . However, in some
situations one can make a clear distinction between the potential which induces the excitation
and the one which leads to elastic scattering. An example of this is π-exchange in peripheral
nuclear collisions [11]. In this case V = Vπ−exch in 95, while the nuclei are scattered by a
Uopt
n + Uc . Then 95 is valid even for χ� 1 .

The advantage of using the Glauber amplitude 111 is to treat multiple collisions between
the constituents of the nuclei. Then the amplitude is calculated from a single fundamental
interaction, namely the nucleon-nucleon potential. Fortunately, as we shall see later, this
interaction is not needed and in most situations the only inputs needed are the nucleon-
nucleon cross sections and nuclear ground-state densities, which are well known.

For an explicitly many-particle system we replace the single particle wavefunction ψ(r )
in 111 by the many-particle wavefunction

ψ(r )→ ψ (r1, r2, · · · , rn)

and the single-particle phase shift function χ(b ) by the phase shift in the projectile wave-
function due to multiple collisions with the target nucleons. That is,

χ(b− s )→
n∑
j=1

χj(b− sj)
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Thus, 111 becomes

f inel (θ) =
k

2πi

∫
eiq·bd2b

∫
ψ∗f (r1, . . . , rn)

×
[
ei

Pn
j=1 χj(b−sj) − 1

]
ψi(r1, . . . , rn)

∏
j

d3rj. (113)

which is the well-known Glauber formula for high energy collisions between composite par-
ticles.
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