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0.1. INTRODUCTION

0.1 Introduction

Fragmentation reactions with secondary beams of radioactive nuclei have shown that not only
the reaction cross section but also the transverse momentum distribution of the fragments
are sensitive to the separation energy of the last neutrons and to the size of the density profile
in these nuclei [1]. These two quantities are linked since the “size” of the nucleus is roughly
proportional to the inverse of the square root of the separation energy. Using the Goldhaber
model for soft fragmentation, Tanihata and collaborators [1] were able to relate the widths
of the narrow peaks in the transverse momentum distributions with the separation energies
and sizes of the radioactive nuclei.

In Figure 1(a) we see the momentum distribution of 9Li fragments from the reaction
11Li [800 MeV/nucleon] + C −→9 Li + X, taken from Ref. [2]. It is observed that to fit
the experimental data one needs two Gaussian, or Lorentzian, functions. The broad peak is
thought to involve nucleons which are tightly bound, while the narrow peak involves valence,
weakly bound, nucleons.

0.2 Goldhaber model

A statistical model with minimal correlations was derived by Goldhaber [3] to explain the mo-
mentum distributions of projectile-fragments originating in peripheral collisions with heavy
ions. In these experiments [4] it was observed that the momentum distributions of the frag-
ments are well described by Gaussians, whose widths σ were found to follow a parabolic
dependence on the mass of the fragment. In the statistical model this dependence is ex-
plained in terms of a single quantity, namely the rms momentum of the nucleons in the
original projectile. Let us first recall the original Goldhaber derivation. In the statistical
model the momentum of the fragment with mass number F is obtained by picking at random
F nucleons from the projectile. In the frame of the projectile the average value (dispersion)
of the square of the fragments momentum is given by

σ2 =<

[
F∑
i

pi

]2

>= F < p2
i > +F (F − 1) < pi · pj >, (1)

provided all come from a common distribution.
The second term in the above equation can be estimated in terms of < p2

i > by using
the fact that the total momentum of the original nucleus is zero. This is in fact the only
correlation used in the statistical model [3]. One obtains

<

[
A∑
i

pi

]2

>= A < p2
i > +A(A− 1) < pi · pj >= 0, (2)
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0.2. GOLDHABER MODEL

Figure 1: (a) Momentum distribution of 9Li fragments from the reaction
11Li [800 MeV/nucleon]+C −→9 Li+X. (b) Left: cracking a normal nucleus yields fragments
with a momentum distribution well described by the Goldhaber formula. Right: cracking a
halo nucleus requires a special treatment of the surface nucleons.

where i 6= j.

These two equations yield for the momentum dispersion of a fragment F the Goldhaber
formula

σ2 =
F (A− F )

(A− 1)
< p2

i > . (3)

The quantity < p2
i > can be estimated by using shell-model wave functions, or the Fermi

gas model for the nucleons. For a Fermi gas < p2
i >= 3p2

F/5. Generally, only one Cartesian
component of the momentum distribution is measured. We then replace < p2

i > by σ2
0 =<

p2
i > /3 = p2

F/5 [3].

In experiments with 11Li projectiles, the narrow peak in the momentum distribution of
9Li fragments has a width of σ ∼ 19 MeV/c. This small momentum width reflects the weak
binding energy of the last two neutrons in 11Li. The wide peak with σ ∼ 95 MeV/c, reflects
the larger binding energy of the inner nucleons in 11Li.

The simple and elegant derivation, due to Goldhaber, also displays nicely the parabolic
dependence on the fragment mass F as observed in many experimental data [4]. From this
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0.2. GOLDHABER MODEL

derivation one sees that the averaging procedure does not make any extra assumption about
nucleon-nucleon correlations, other than that the total momentum of the initial distribution
is zero. Other kinds of correlations presumably would affect the value of < p2

i >, but not
of < pi · pj > when averaged over direction. However, Goldhaber’s formula would not be
well justified if, e.g. the spatial dependence of the fragmentation operator is so strong that
a different treatment for nucleons at the nuclear surface and in the nuclear interior has to be
considered separately [5]. In this regard we expect that the parallel momentum distributions
are less sensitive to the fragmentation operator than the transverse distributions are. This is
because transverse momentum distributions are more sensitive to the transverse geometry of
the participating nuclei as well as to the Coulomb deflection of the projectile and fragments
[7]. This was in fact observed experimentally [6]. When spatial dependence is relevant
it is important to consider Pauli correlations among the nucleons in the statistical model
[5], which would cause a reduction of the dispersion predicted by the Goldhaber model.
We expect that other correlations, e.g., short-range correlations due to the nucleon-nucleon
interaction, will also play an important role in such a case.

Supplement A

0.2.1 Extended Goldhaber model: a two-fluid statistical model

In general, the Goldhaber formula is quite successful, but some discrepancies with experiments
have been observed in the past. For example, in some cases it has been observed that the momen-
tum dispersion σ is about 30% smaller than predicted by the statistical model [8]. Experiments
with radioactive nuclei have also shown some discrepancies with the statistical model [1, 9, 6, 10].
Experimentally it was also observed that the momentum distributions of neutrons are narrower by
a factor of 2 than those for 9Li fragments. The momentum distributions in such a weakly bound
nucleus are presumably determined by their nuclear matter size [1]. However, while the momentum
distribution of 9Li suggests a halo size of 6-8 fm [6] in 11Li, the momentum distribution of neutrons
seems to suggest a factor two larger. A possible explanation can be given with a statistical model
for a system of two fluids of nucleons, as proposed by Bertulani and McVoy [11].

Let us now consider a nucleus composed of two ”fluids” of nucleons with mass numbers A1

and A2 (A = A1 + A2). An alpha-particle inside a larger nucleus, or a 9Li-core in 11Li, could
be an example. Since the two fluids have to interact in order to keep the nucleus bound, one
has to introduce another parameter K which is the relative momentum between the two fluids.
Momentum conservation implies

A1∑
i

p
(1)
i = K = −

A2∑
j

p
(2)
j . (4)
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0.2. GOLDHABER MODEL

Using this relation we obtain

< p
(1)
i · p

(2)
j >= −< K2 >

A1A2

and < pi · pj >N=
< K2 >

AN(AN − 1)
− < p2 >N

AN − 1
, i 6= j, (5)

where N = 1, 2 and <>N means average over nucleons in only one of the two fluids. The first
equation is an average over nucleons in different fluids. We also express the nucleon momenta with
respect to the center of mass of their respective fluids. The relationship between their averages is

< p2 >N=< p̃2 >N + < K2 > /A2
N . (6)

If we pick F nucleons from the projectile to make a fragment, the mean square momentum
involves the cross-products given by the above equations. Assuming that the fragment can be
composed of nucleons with equal probability from either of the two fluids, we can use Eq. 1 for
the dispersion of the momentum distribution. In this case the quantities < p2

i >≡< p2 > and
< pi.pj > are to be averaged over the two distributions. One finds

σ2 ≡<

[
F∑
i

pi

]2

>= F

[
A1

A
< p2 >1 +

A2

A
< p2 >2

]
+ F (F − 1)

[
2A1A2

A(A− 1)
< p · p(2)

j >

+
A1(A1 − 1)

A(A− 1)
< pi · pj >1 +

A2(A2 − 1)

A(A− 1)
< pi · pj >2

]
=

F (A− F )

A− 1

[
A1

A
< p̃2 >1 +

A2

A
< p̃2 >2 +

< K2 >

A1A2

]
(7)

where the subindexes mean averages over the respective fluids. For A1 = A (< K2 >= 0) this
equation reduces to Eq. 3.

Useful limits of Eq. 7 above can be obtained. E.g., when < K2 > and < p̃2 >1� < p̃2 >2

one gets (unless A1 � A2)

σ2 ' A2

A

F (A− F )

(A− 1)
< p̃2 >2 . (8)

In such a situation we come to the important conclusion that the momentum dispersion of the
fragments is reduced by a factor A2/A relative to that obtained by means of Eq. 3.

In the fragmentation of 11Li projectiles very narrow components were observed for the momen-
tum distributions of 9Li-fragments and of single neutrons [1, 9, 6, 10]. These widths (e.g., ∼ 19
MeV/c for 9Li-fragments [6]) cannot be explained by Eq. 8, unless an unrealistic value of the
mean square momentum in 9Li is assumed. To understand this we recall that Eqs. 7 and 8 are
only adequate if enough energy is given to the projectile so that a fragment could be formed with
nucleons from fluid A1 or A2 equally. But, in some situations [1] it has been observed that the
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0.2. GOLDHABER MODEL

energy transferred to the projectile is not enough to remove nucleons from the tightly-bound core,
say fluid A2. The statistical average has to be carried out using a different procedure, as we explain
next.

If one knows what fraction of nucleons in a given fragment come from one or the other nuclear
fluid then, instead of Eq. 7, one gets

σ2 = F1 < p2 >1 +F2 < p2 >2 +F1(F1 − 1) < pi · pj >1

+ F2(F2 − 1) < pi · pj >2 +2F1F2 < p
(1)
i · p

(2)
j >

=
F1(A1 − F1)

(A1 − 1)
< p̃2 >1 +

F2(A2 − F2)

(A2 − 1)
< p̃2 >2

+

[
F1(F1 − 1)

A1(A1 − 1)
+
F2(F2 − 1)

A2(A2 − 1)
− 2F1F2

A1A2

+
F1(A1 − F1)

A2
1(A1 − 1)

+
F2(A2 − F2)

A2
2(A2 − 1)

< K2 >

]
(9)

where F = F1 + F2, and FN comes from fluid N .
In the case of 9Li fragments from 11Li projectiles, one can identify the fragment as one of the

constituent fluids of the nucleus, i.e., F1 = 0, F2 = A2, and Eq. 9 becomes

σ2 =< K2 > . (10)

This is a trivial consequence of Eq. 4, if we use F2 = A2.
One observes that the nuclear potential holding the halo neutrons in 11Li has a range not greater

than 3 − 4 fm. However, due to their low binding energy these neutrons extend to a very large
distance from the core, with an empirical rms radius for the halo matter distribution of about 6
fm [6]. Thus, the halo is a manifestation of a quantum tunneling of the valence neutrons which
extend to a region where their momenta are imaginary. Their wavefunctions in this region depend
essentially on their binding energy. Therefore, it is more appropriate to equate | < K2 > | with
the separation energy < B > of the two-neutrons from the core. One finds

< B >=
2 | < K2 > |

mN

A

A1A2

. (11)

Using the momentum width of 19 MeV/c for 9Li fragments [6], one gets < B >= 0.44 MeV, which
is in fact very close to the separation energy of two neutrons in 11Li, i.e., B = 0.34± 0.05 MeV.

As for the momentum width of a single halo neutron from 11Li, if in Eq. 9 we use F2 = 0,
A1 = 2, F1 = 1,

σ2
n =

F1(A1 − F1)

(A1 − 1)
< p̃2 >1 +

F 2
1

A2
1

< K2 >=< p̃2 >1 +
1

4
< K2 > , (12)
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0.3. LONGITUDINAL × TRANSVERSE MOMENTUM DISTRIBUTIONS

which is the momentum width in the laboratory (as it should be, according to Eq. 7. Since the
radius of the halo is empirically about 6 fm, each neutron is confined within ∆x ' 12 fm, so
∆px ≥ 1

2
( 1

12 fm
) = 8 MeV/c. This is indeed in agreement with the measurements [10] and is about

half the momentum width for the 9Li fragment.

0.3 Longitudinal × transverse momentum distributions

A better measure of the interaction size of the radioactive projectile is obtained by the lon-
gitudinal momentum distribution of its fragments. Also, the Coulomb and nuclear fragmen-
tation amplitudes have longitudinal momentum distributions with very nearly equal widths.
This fact has indeed been verified in some experiments, see, e.g., [6]. On the other hand, the
transverse momentum distributions are substantially broadened by the size and diffuseness
of the region of overlap with the target and contain Coulomb and nuclear contributions with
different widths. The interpretation of the “wide” (core-neutron) component of the trans-
verse momentum distributions is therefore less straightforward than is for the longitudinal
ones. Figure 2 shows the momentum distribution of 9Li fragments from the reaction of 11Li
projectiles with Be (open triangles) [2] and C (closed circles) [6], at 70 MeV/nucleon and 800
MeV/nucleon, respectively. One clearly sees that the longitudinal momentum distributions
are narrower than the transverse ones. There seems to be no need of a two-component fit
of the experimental data in the first case. In other words, it seems that the longitudinal
momentum distributions are a better way to study the momentum content of the nuclear
halo, as shown in Ref. [7].

In what follows we will present a simple cluster description of the radioactive nuclei.
That is we will assume that a single particle describes the halo, even in the case of 11Li for
which the two neutrons maybe assumed to form a di-neutron cluster. The conclusions drawn
are however of general validity. The cluster model only serves as a guide to obtain a simpler
insight into the results. The systems studied experimentally involve reactions of the form

a + A → b + x + A∗ ≡ b+X . (13)

The starting point is a formula derived by Hussein and McVoy [12], but which has a
simple interpretation, as we discuss next. A spectator model of a ≡ (b+ x) gives the singles
spectra of the particle b as

dσ

dΩbdEb
= ρ(Eb)

2Ex
~va kx

∫
d2bx |φ̃a(qb, bx)|2

[
1− |SxA(bx)|2

]
, (14)

where

|φ̃a(qb, bx)|2 = |
∫
d3rb e

iqb.rb SbA(bb) φa(rb − rx)|2. (15)
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0.3. LONGITUDINAL × TRANSVERSE MOMENTUM DISTRIBUTIONS

Figure 2: (Comparison between the momentum distribution of 9Li fragments from the
reaction of 11Li projectiles with Be (open triangles) [2] and C (closed circles) [6], at 70
MeV/nucleon and 800 MeV/nucleon, respectively.

If we do not know, or do not want to know, what happens to fragment x, we simply
account for its absorption into X (A+ x). This is taken care by the factor [1− |SxA(bx)|2].
(The quantity SiA(bi) is the S-matrix for the scattering of cluster i (i = b, x) from the target
A.). But we also have to account for the transition probability for b to be removed from
a (from the initial wavefunction φa(rb − rx)) to the final free state eiqb.rb (the distortion of
this state by the interaction with the target is already included in SbA(bb)). This is taken
care by the overlap probability |φ̃a(qb, bx)|2. The factors in front of the integral are from
kinematic and phase-space considerations.

SiA(bi) can be obtained from a complex optical potential by means of the eikonal ap-
proximation. For the optical potential one can use the “tρρ” formalism, which is obtained
by folding the nuclear densities of the participant nuclei weighted by the nucleon-nucleon
scattering cross section, with medium correction effects. Bertulani and McVoy used this
approach to study reactions involving 11Li, 11Be, and 6He, and compare their results with
the measurements of the momentum distributions of the 9Li, 10Be, and 4He fragments, re-
spectively. Thus in the cases of 11Li and 6He, we are assuming the two removed neutrons
were assumed to behave in the projectile as a single cluster, which the collision removes as
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0.3. LONGITUDINAL × TRANSVERSE MOMENTUM DISTRIBUTIONS

a unit. The Hartree-Fock densities for these nuclei were taken from Ref. [14], except for the
6He, which was taken from Ref. [15]. The density distributions of the knocked-out neutrons
were taken as the difference between the neutron distributions of the original nuclei and of
the observed fragments.

In Eq. 15, φa represents the wavefunction for the incoming a = (b+ x) projectile. If one
assumes that the fragment b does not interact with the target, i.e., SbA(b) ≡ 1, one finds

dσ

dΩbdEb
= ρ(Eb) σ

R
xA |φa(qb)|2 , (16)

where σRxA is the total reaction cross section of fragment x with the target A, and φa(qb)
is the Fourier transform of φa(rb − rx) with respect to qb. The above result is known as
the Serber model limit [16]. It tells us that in this approximation the break-up mechanism
measures the momentum-space internal wavefunction of the projectile, so that the singles
spectrum of fragment b provides important information about the internal structure of the
projectile. This is especially useful for the study of extremely short-lived nuclei in secondary
beam reactions.

Unfortunately, the Serber model is only a rough approximation for most cases and the
elastic scattering (including absorption) of the fragment b on the target has to be included,
leading to an unavoidable broadening of the momentum distributions [17]. The physical ori-
gin of this broadening is simple diffraction (i.e., the uncertainty principle), as an examination
of Eq. 15 makes clear. For instance, if SbA ≡ 1, the Fourier transform given by this equation
would be exactly the Fraunhofer diffraction pattern (as a function of qb) of the “source dis-
tribution” φa(rb − rx). Including the factor SbA(bb), with |SbA(bb)| ≤ 1, effectively decreases
the transverse width of the source by eliminating the part that overlaps with the target A,
and this will of course broaden the transverse diffraction pattern. A second possible source
of transverse broadening is final-state Coulomb deflection, which is not included in Eq. 14.

This broadening makes it harder to extract the internal momentum structure of the
projectile. However, since for high energy collisions the S-matrix SbA does not depend on
the longitudinal coordinate, the longitudinal momentum distribution is expected to be much
less altered by the SbA absorption. This can be illustrated by using a separable wavefunction,
e.g. a Gaussian, in which case the longitudinal and transverse parts of the integral in Eq.
(14) factorize completely. That is, if we take for the projectile cluster wave function the
approximation φa ∝ exp {−(rb − rx)

2∆2} one finds

dσ

dq
(b)
//

= (2π)2 Ex
~va kx

C2
∆

∆2
exp

{
−

[q
(b)
// ]2

2∆2

}

×
∫
d2bx bx exp

{
−2 ∆2 b2

x

} [
1− |SxA(bx)|2

]
×

∫
dbb bb exp

{
−2∆2 b2

b

}
I0

(
4bxbb∆

2
)
|SbA(bb)|2 , (17)
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0.3. LONGITUDINAL × TRANSVERSE MOMENTUM DISTRIBUTIONS

where the C∆ is a normalization constant and I0 a Bessel function. Thus, the dependence
on q

(b)
// is given by a Gaussian function multiplied by a geometrical factor. Therefore, the

longitudinal momentum distribution measures the internal momentum function of the pro-
jectile and is insensitive to the details of the nuclear interaction. This result is exact for a
Gaussian wavefunction, and is expected to be approximately true in general simply because
SiA is independent of the longitudinal coordinate.

Due to their low separation energies, the projectiles near the β-instability line are also
easily Coulomb excited/fragmented [18]. For the moment we need some which will be jus-
tified a posteriori. The momentum distribution of the fragments will be determined by a
matrix element of the form

M(m)
if =

∫
r Y1m(r̂)φ∗f (r)φi(r)d3r . (18)

The Coulomb fragmentation cross section is given in terms of this matrix element by [18]

dσ

dΩx dΩb dEb
=

µbx
(2π)3~2

kx kb
ka

∑
m

|fm(q, Q)|2 , (19)

where

fm(q, Q) =

√
16π

3

1

2m/2
ZT e

~v

(
kaω

v

)
χm(Q, q)M(m)

if (20)

and

χm(Q, q) =

∫
Jm(Qb)Km(

ωb

v
)SaA(b) b db . (21)

In the equations above ka = kb + kx, q = (mxkb − mbkx)/ma, Q = k′a − ka and
~ω = B + ~2q2/2µbx, where B is the binding energy of the system b + x. To obtain the
momentum distributions of fragment b we integrate the above equations with the constraint
of energy conservation.

One can evaluate the Coulomb cross sections as well as the nuclear cross sections of Eq.
16 using an Yukawa wavefunction, φ ∝ e−ηr/r for the initial cluster. For the final-state
wavefunction one can use plane waves for the Coulomb breakup and Glauber for the nuclear
breakup, as described in Ref. [12].

In the Figure 3 we show the longitudinal momentum distribution of 9Li from the fragmen-
tation of 11Li projectiles with 70 MeV/nucleon. The data are from Ref. [6]. The data were
taken using light and heavy targets, thus probing the relative strengths of the nuclear and
the Coulomb interaction on the break-up. One can assume for simplicity that the momentum
distributions for Be and Nb targets are induced by the nuclear interaction only, while for
Ta targets the Coulomb interaction dominates. The distributions are then calculated by the
separate use of Eqs. (14) and (19), respectively. The results are shown in Figure 3, together
with the experimental data.
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0.3. LONGITUDINAL × TRANSVERSE MOMENTUM DISTRIBUTIONS

Figure 3: Longitudinal momentum distribution of 9Li from the fragmentation of 11Li projec-
tiles with 70 MeV/nucleon. The data are from ref. [6].

The calculations were repeated [11] using a Gaussian wavefunction and no significant
difference in the distributions was found if the Gaussian parameter was chosen to be ~∆ =
20 MeV/c.

We turn now to the investigation of the transverse momentum distributions. Figure 4
shows the transverse momentum distributions of 9Li, 10Be and 4He from the break-up of
11Li, 11Be and 6He projectiles, respectively, incident on carbon at 800 MeV/nucleon. For
this target only the nuclear contribution to the break-up needs to be considered. The data
are from Ref. [1]. The dotted curves are the result of the Serber model calculation following
Eq. 16. The momentum parameters η of the Yukawa were taken as 27.8 MeV/c, 29 MeV/c
and 49.2 MeV/c for 11Li, 11Be and 6He, respectively, corresponding to binding energies of
0.25 MeV, 0.5 MeV and 0.97 MeV, respectively. The dashed curves were obtained using the
more correct approach of Eq. 14, with the same values of η.

Physics of Radioactive Beams - C.A. Bertulani 11



0.3. LONGITUDINAL × TRANSVERSE MOMENTUM DISTRIBUTIONS

Figure 4: Transverse momentum distributions of 9Li, 10Be and 4He from the break-up of
11Li, 11Be and 6He projectiles, respectively, incident on carbon at 800 MeV/nucleon. The
data are from ref. [1].

In the case of 11Li the result of the Serber model agrees with the one obtained for the
longitudinal momentum distribution data, since the momentum distribution given by this
model is isotropic. The interaction of the fragments with the target broadens the peak,
and this is displayed by the dashed curves in this figure. However, it is also seen that the
wings of the momentum distributions cannot be reproduced by using a single Yukawa pa-
rameterization for the ground state wavefunction. This fact maybe due to the simple cluster
model picture. More realistic models are able to describe these wings (wide component) [19],
but the analysis is consistent with the idea that the narrow peak is closely related to the
separation energy of the halo fragments.

An attempt to explain the wings of the momentum distributions displayed in figure 4
(solid lines), can be made by assuming that also neutrons from the core of the projectile could

12 Physics of Radioactive Beams - C.A. Bertulani



0.4. GROUND STATE OF A LOOSELY-BOUND SYSTEM

be removed with appreciable probability [1]. One can assume that the cross sections for the
removal of the loosely-bound valence neutrons and the more tightly-bound from the core add
incoherently. The results are shown by the solid lines in figure 4. In this calculation one adds
[11] two results of the Eq. (14), for simplicity using Gaussian wave functions φ ∝ e−r

2/∆2

for the core and halo neutrons. The values of ~∆ for the halo neutrons were taken as 19.5
MeV/c, 20.6 MeV/c and 34.7 MeV/c and those for the core neutrons as 55 MeV/c, 92 MeV/c
and 79 MeV/c, for 11Li, 11Be and 6He, respectively. They correspond to the approximate
binding energies of valence and core nucleons, respectively. The Hartree-Fock densities for
the core nucleons were taken from Ref. [14, 15]. The momentum widths of the “wings” are
much wider than the ones cited earlier, and are related to the separation energies of the core
neutrons. The contributions of the two Gaussian simulation for the internal wavefunctions
were chosen so as to reproduce as well as possible the experimental data. The good agreement
with the experimental data (solid lines in Fig. 4) should therefore be approached with some
caution, since any two Gaussian fit can reproduce the transverse momentum data [1]. The
ratio between the two contributions presumably gives roughly the spectroscopic factors for
the removal of neutrons from the core and from the halo, respectively.

Another interesting feature shown in Fig.4 is a small shift of the peaks with respect to
the central position (qT = 0). This shift arises from the phase of the Si-matrices originating
in the real part of the potential, but is small and may be neglected.

Supplement B

0.4 Ground state of a loosely-bound system

The Schrödinger equation for a system of two-particles can be reduced to an equation of the relative
coordinates only (see Fig. 5(a)):

− ~2

2µ
∇2ψ(r ) + V (r )ψ(r ) = Eψ(r ) (22)

where µ = m1m2/ (m1 +m2).
For a spherically symmetric V , and l = 0 this equation reduces to

− ~2

2µ

d2u

dr2
+ V (r)u = Eu (23)

where ψ(r) = u(r)/r .

Physics of Radioactive Beams - C.A. Bertulani 13



0.4. GROUND STATE OF A LOOSELY-BOUND SYSTEM

For simplicity lets us assume a square-well potential, i.e.,

V =

{
−V0 for r < r0

0 for r > r0 .
(24)

The solutions of 23 are

u(r) =

{
A sin (kr) , r < r0

B e−ηr, r > 0
(25)

with the constraint that u is finite at r = ∞ . Matching the wavefunction and its derivative at
r = r0 , yields the transcendental equation

k cot k r0 = −η (26)

where

k =

√
2µ

~2
(V0 −B) ; η =

√
2µB

~2
(27)

with E = −B equal to the binding energy of the system.
The numerical solution of Eqs. 26 is given in Table 4.1, assuming m1 = m2 = 938 MeV and

B = 2.225 MeV, corresponding to the deuteron.

r0 (fm) V0 (MeV)
1 120

1.5 59
2 36

2.5 25
00 2.83

Table 4.1 - Range and depth of a square potential well which reproduces the binding energy of the
deuteron.

For the deuteron r0 ∼ 2 fm, corresponding to V0 ∼ 36 MeV. But, the size of the deuteron
is approximately given by 1/η ∼ 4.3 fm which is about twice that of the range of the potential
(see Fig. 5(b)). Thus, the deuteron is a loosely-bound system. The nucleons spend much of their
time in a region where their kinetic energy is imaginary (forbidden region), a phenomena known as
quantum-tunneling.

When V0 � B ,

cot (k r0) = −η
k
∼= −

√
B

V0
(28)

Thus, cos (k r0) ∼= 0 , or

k r0
∼=
π

2
,
3π
2
, · · · (29)
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0.5. WOUNDED WAVEFUNCTION MODEL

Figure 5: (a) Center of mass and relative coordinates of a two-body system. (b) Ground
state wavefunction of the deuteron.

or

V0r
2
0
∼=

~
mN

π2

4
,

~2

mN

(
9π2

4

)
, · · · (30)

Since u represents the ground-state, it cannot have a node. Thus, we only retain the 1st-term in
30. I.e., V0r

2
0
∼= π2~2/4mN .

0.5 Wounded wavefunction model

As we discussed in the previous Sections, the Serber mechanism seems to justify the assumption
that the momentum distribution of a fragmentation product will be that of the initial wave function.
In the following it will be shown that this does not hold in general, an argument due to P.G. Hansen
[20]. The essential point is that collisions with a nuclear target cannot explore all parts of the halo’s
spatial wave function with equal probability, as we saw in Section ??. The momentum components
transverse to the beam direction are known to carry the imprint of the reaction mechanism. For
the parallel momentum components we have seen that they can be shown to be independent of
the reaction mechanism for wave functions that factorize in cylindrical coordinates such as plane
waves and Gaussians. However, the external two–body wave functions appropriate for halo states
do not factorize, and the effect to be discussed arises from localization perpendicular to the beam
direction.

Let us restrict ourselves here to purely nuclear reactions of single–nucleon halo systems with
light targets. Good data exist for 11Be [21] and 8 B [22], for which the structure is well understood
[23, 24, 25] as predominantly an s–state halo neutron and a p–state halo proton, respectively. It
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0.5. WOUNDED WAVEFUNCTION MODEL

Figure 6: (a) The coordinate system is centered in the projectile core C relative to which
coordinate of the halo neutron is r. The impact parameter of the target A (moving along the
z-axis) is approximated by the two–dimensional vector b instead of the vector b0 connecting
to the center of mass. The target radii are the heavy–ion interaction radius RA and the
nucleon interaction radius Ra.

is a good first approximation to represent these by a single–particle product wave function ψ0 .
The high projectile energies allow a description in terms of a classical impact parameter b, see Fig.
6. The dissociation products 10Be or 7Be are formed at impact parameters greater than bmin =
RC + RA , where the energy–dependent core and target radii are chosen to reproduce measured
heavy-ion interaction cross sections [26]. There are two reaction channels: (i) nucleon stripping
(or absorption) in which the halo nucleon has interacted strongly with the target and disappears
from the beam, and (ii) diffraction dissociation in which the nucleon moves forward with essentially
beam velocity (see Supplement C). Collisions at impact parameters smaller than bmin are assumed
to lead to core fragmentation and hence will not contribute to the dissociation cross section.

The high beam energy also implies that the eikonal approximation is applicable. The target
trajectory (in the coordinate system used here) is a straight line, and the range of the interaction,
which does not have to be weak, is of the order of the effective target radius Ra . In this ap-
proximation (see Ref. [27]), the wave function of the halo state ψ0 remains unchanged throughout
all space except in a cylinder of radius Ra, where it is set to zero. This is the commonly used
black–disk model. Its most important limitation, the assumption of a sharp target surface, is of
little consequence in a discussion of the longitudinal momentum components.

Let the wave function originally contained in the reaction zone be denoted δψ0 , a function that
vanishes outside the interaction radius Ra , which can be chosen to reproduce the experimental
reaction and elastic cross sections for free nucleons. Finally, the sudden approximation is valid. At
the moment of impact, the nucleon stripping reaction selects the state of the system to be δψ0.
The normalization Pa of this state is the stripping probability for a given b, and the square of its
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0.5. WOUNDED WAVEFUNCTION MODEL

three–dimensional Fourier transform gives the momentum distribution, which must be that of the
core fragment since the halo nucleon is no longer present. For the same reason, the question of
final–state interactions does not arise. If the nucleon is not stripped, the new state represented
by the complement of the wave function ψ0− δψ0 is mainly the unchanged halo state. The (small)
probability that it decays by diffraction dissociation is obtained directly if it is assumed [28] that
the halo state ψ0 is the only bound state of the system, which can be projected out to give the wave
function of the decaying state ψd= Pa ψ0− δψ0 with normalization of P 2

a− Pa . It will be seen that
the first term in the wave function of the decaying state is a small correction, necessary to preserve
orthogonality. Hence the probabilities of stripping and diffraction dissociation are approximately
identical and equal to Pa . (This is related to the fact that the total cross section for fast neutrons
is approximately twice the geometrical value.)

If final–state interactions are neglected, which seems to be a good approximation for 11Be
[28], the momentum distribution for diffraction dissociation is also given by the square of the
Fourier transform of δψ0, which is than all that needs to be calculated. To obtain the probability
distribution in momentum (written in terms of the wave vector k) along the z axis for a general
wave function ψ (r), the square of its Fourier transform is integrated over kx and ky. This fivefold
integral can be reduced to

dW

dkz
=

1
2π

∫ ∫ ∫ ∫
ψ∗
(
x, y, z′

)
ψ (x, y, z) exp

[
ikz
(
z − z′

)]
dxdydzdz′ (31)

a quantity that must now be evaluated with the wave function δψ0 introduced above. The differ-
ential cross section

dσ

dkz
=
∫ ∞
bmin

dW

dkz
dϕbdb (32)

emerges as an integral over impact parameter.
For a narrow reaction zone with radius Ra it is a good approximation to replace the wave func-

tion in the integrand in 31 by its value δψ0 (b, 0, z) along the target trajectory. The integral over x
and y now gives a factor πR2

a , which may be interpreted as the (free) nucleon reaction cross section.
The contribution from diffraction dissociation relates in the same way to the elastic nucleon–target
cross section. The sum of the two is obtained by replacing 2πR2

a with the experimental [18] total
cross section σT . If the integrand is symmetric about the z axis, Eq. 31 can be approximated as

dW

dkz
' σT

2π
|exp (−ikzz)ψ0 (b, 0, z) dz|2 (33)

since the two integrals over z and z′ factorize. For initial states with l equal to 1 or greater,
this expression must be averaged over initial m states in the usual way. It can easily be shown
that, when taken in the limit of bmin equal to zero, the integrals 33 followed by 32 give the true
momentum distribution of the complete wave function, obtained more directly by substituting ψ0

into Eq. 31. For the case of a halo neutron with l = 0, 1, it is easy to derive closed expressions for
Eqs. 32 and 32. As the reaction zone δψ0 is entirely outside the nuclear core, the exact external
wave function is the first spherical Hankel function

δψ0 (r) = Bk3/2hl (iηr)Ylm (θ, φ) (34)
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0.5. WOUNDED WAVEFUNCTION MODEL

written in terms of the reduced mass and neutron separation energy through the relation η =
(2µSn)1/2 /~. The dimensionless constant B, of order unity, is determined by joining the outer
and inner solutions to the Schrödinger equation. For an l = 0 state, a Yukawa wave function
corresponds to the choice B =

√
2 (sometimes [28] augmented by a finite–size correction), while a

Woods–Saxon calculation suggests B = 2.26 for 11Be. For a p state and a neutron binding energy
of 0.137 MeV (corresponding to that of the proton in 8B), one has B = 0.47. The integral 33 for
l = 0 is given in sect. 3.961 of [29],

dWl

dkz
=
σTB

2η

2π2
K2

0 (χ) , (35)

and partial differentiation of the two integrals given in the same reference with respect to the
impact parameter b leads to the expression for l = 1,

dWl

dkz
=
σTB

2

2π2η

[
k2
zK

2
0 (χ) +

(
k2
z + η2

)
K2

1 (χ)
]
, (36)

where the argument of the modified Bessel functions is χ = b
(
k2
z + η2

)1/2 . The two terms inside
the square bracket in Eq. 36 are the contributions from the m = 0 and m = ±1, respectively, the
latter being the most important. The differential cross sections can now be obtained by integrating
Eqs. 35 and 36 over b to give for l = 0

dσ0

dkz
=
σTB

2ηbmin

2π
[
K2

1 −K2
0

]
, (37)

and for l = 1

dσ1

dkz
=
σTB

2bmin

2πη

[
k2
z

(
K2

1 −K2
0

)
+
(
k2
z + η2

)(
K2

1 −K2
0 −

2
ξ
K0K1

)]
, (38)

where the argument of the modified Bessel (McDonald) functions is understood to be ξ = bmin

(
k2
z + η2

)1/2
. The single–nucleon stripping cross sections are obtained by integrating over kz. Results obtained
with Eqs. 35-38 are shown in Figs. 7 and 8.

Complete single–particle wave functions were calculated in a Woods–Saxon potential–well model
with radius and diffuseness parameters r0 = 1.25 fm (R = r0A

1/3 fm)and a = 0.7 fm and with
the well depth adjusted to reproduce the experimental separation energy. The results obtained for
neutrons when Eqs. 32 and 33 were evaluated numerically with these wave functions were identical
with the results of Eqs. 35-38 to within 1% as could be expected since, in this case, Eq. 34 is an
exact solution outside the range of the potential. For the 8B calculations, Fig. 33, the Coulomb
potential acting on the halo proton was taken as that of a uniformly charged sphere with the same
radius as the Woods–Saxon well. The results are insensitive to the choice of the Coulomb radius.
The approximation leading to Eq. 33 assumes that the effective radius Ra of the target is small.
(At 63 MeV/u it is of the order of 2.0 fm for 9Be as compared with a decay length of the 11Be halo
wave function of 6.75 fm.) This assumption can be tested in the other extreme limit, that of infinite
target radius, in which the reaction zone is bounded by a planar cutoff. Expressions for this case
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Figure 7: (a) Calculations for the 11Be s–state halo incident on a beryllium target and for
a beam energy of 63 MeV/u. (i) All parallel momentum distributions are normalized to
unity at the origin; the bar is the measured half width at half maximum, and the large
dots represent the differential cross section dσ/dpz . The full–drawn line is the distribution
dW/dpz of the total wave function. (ii) The four pairs of dashed curves correspond to the
quantity dW/dpz for fixed impact parameters of 5, 10, 20, and 40 fm with the long and
short dashes denoting the respective limits of small target radius (eq. 35) and infinite target
radius (planar cutoff).

have been given in Ref. [30]. The four pairs of dashed curves shown in Fig. 7 demonstrate that
the two extreme approximations give nearly identical results, and also that the parallel–momentum
distributions depend strongly on the impact parameter. The momentum distributions of the cross
section are shown as large dots in Figs. 7 and 8, and the widths and dissociation cross sections are
in good agreement [20] with the experimental results [21, 22, 28, 32]. The cross sections, roughly
one–third and one–tenth of the free–nucleon values, provide a valuable quantitative verification
of the simple model used. It is seen that the calculation, in agreement with that of Ref. [33],
satisfactorily explains the reduction of 8B width to roughly half of that of the total wave function,
153 MeV/c. This apparent discrepancy had originally led to the claim [22] that an interpretation
in terms of a complex many–particle wave function was required. As the effect of localization must
in any case be present, it should not be viewed as a possible alternative explanation. Two curves
in Fig. 8 demonstrate that a p–state neutron would behave similarly.

The interpretation given here has an important implication for the analysis of experimental
data. The longitudinal momentum distributions measured with a light target should, to lowest
order, not be affected by the transverse acceptance of the spectrometer. In the approximation
leading to Eq. 35 the radial momentum distribution becomes proportional to [J1 (krRa) /krRa]

2

, the usual diffraction pattern (see Supplement C), depending only on the radius of the target.
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Figure 8: (a) Calculations for the 8B p–state halo incident on a carbon target and for a
beam energy of 1471 MeV/u. The notation is the same as for fig. 7 (i). It is seen that the
localization effect reduces the width by a factor of 2, in agreement with experiment. The
other pair of curves, dashed and small dots, are calculated for no Coulomb (NC) interaction
in the halo state. The localization effect is, in this case, given by eq. 38 and illustrates the
case of a hypothetical p–state neutron with otherwise unchanged parameters.

Clearly, all information about the original momentum in the x-y plane has been destroyed by the
measurement. The corresponding radial broadening has been detected [30, 28] for neutrons. This
means that the wave function at the moment of the collision takes a form that factorizes (see earlier
comments), and the kz distribution will not be changed by an incomplete detection of the kx and
ky components.

Supplement C

0.5.1 Diffraction dissociation

The amplitude for the dissociation of a cluster projectile incident on a target nucleus, assumed to
stay in its ground state, is given in the eikonal approximation by

fd (q,Q) =
ik

2π

∫
d2b eiQ·b Γd (b) , (39)

where k is the center of mass momentum of the projectile, Q is the momentum change in the
scattering (Q = 2k sin (θ/2) ' kθ, where θ is the scattering angle in the center of mass), q is
the relative motion momentum of the outgoing fragments, and k1 and k2 are the momenta of
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the corresponding clusters with masses m1 and m2, respectively. In non-relativistic collisions
q = (m2k1 −m1k2) / (m1 +m2) while for high-energetic collisions q can be determined by the
invariant mass of the two fragments. Γd (b) is the profile function for the dissociation. For pro-
cesses dominated by nuclear scattering, and assuming a sharp boundary target, it can be written
as Γd (b) = ΓN (b), where ΓN (b) vanishes for b > R.

The total dissociation cross section is given by

dσ =
∣∣∣fd (q,Q)2

∣∣∣ dΩ d3q/ (2π)3 , (40)

where
dΩ '

(
2π/k2

)
Q dQ (41)

for high-energy collisions.
According to Eq. 25, the relative motion of the clusters within the projectile is described by

the wave function
ψi =

√
η/2πe−ηr/r , (42)

where η =
√

2µε/~2 is determined by the separation energy ε of the clusters (1+2) and µ is
the reduced mass of the system (1+2). The relative motion of the clusters released after the
disintegration of projectile is described by the wavefunction

ψi (r) = eiq·r +
1

iq − η
e−iqr

r
. (43)

These wavefunctions correspond to the assumption of zero-range nuclear forces between the clusters
in the projectile. They are very useful because most of the following calculations can be performed
analytically. An extension to the use of more realistic wavefunctions is straight-forward. They form
a complete set of orthogonal functions satisfying the relation

ψi (r)ψ∗i (r′) +
1

(2π)3

∫
ψf (r)ψ∗f (r′) d3q = δ (r− r′) . (44)

The use of the above wavefunctions presupposes a simple model, where the Coulomb repulsion
between the clusters are not taken into account. The Coulomb repulsion between the clusters
must lose its importance for high relative motion after their dissociation. By using the energy and
momentum conservation laws, we can also express Eq. 40 in terms of coincidence cross sections
which are of interest in inclusive experiments. One finds

d3σ

dΩ1 dΩ2 dE2
=

µ

(2π)3 ~2

k1k2

k
|fd (q,Q)|2 , (45)

where Ω1 and Ω2 are the solid angles of emission of the two fragments, and E2 is the energy of one
of them.
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The amplitudes for diffraction dissociation of deuterons by a black nucleus were calculated in
Ref. [34]. The extension to the dissociation of other weakly bound nuclei [18] gives

fN (q,Q) = ikR

{
J1 (QR)

Q
[F (−β2Q, q) + F (β1Q, q)]

− ikR
2

2π

∫
d2Q′J1 (Q′R)

Q′
J1 (|Q−Q′|R)

Q−Q′
F (β1Q−Q′, q)

}
, (46)

where β2 = m2/ (m1 +m2), β2 = m1/ (m1 +m2), R = 1.2A1/3
T fm is the radius of the target

nucleus, and

F (Q,q) =
∫
d3rψ∗f (r) eiQ·rψi (r)

=
√

8πη
{

1
η2 + (Q− q)2 +

1
2Q (iη − q)

ln
[
q +Q+ iη

q −Q+ iη

]}
. (47)

The first term in Eq. 46 corresponds to the impulse approximation, i.e., the independent scattering
of separate clusters by the target. The second term corresponds to the simultaneous scattering of
the clusters, also called by “eclipse”, or “shadowing”, term. In order to describe the differential
cross sections, we can use only the impulse approximation, which gives reasonable results for small
scattering angles. But, in order to obtain the total diffraction cross sections we have to include
the shadowing term, since it decreases more slowly with increasing Q, and becomes the dominant
contribution to the scattering amplitude 46) for larger values of Q.

Inserting 46 into Eq. 40 and using the orthonormality conditions of the wavefunctions, the
integration over q can be easily performed in the impulse approximation. One gets

dσ

dQ
=

2πR2

Q
J2

1 (QR)
{∫

d3r |ψi (r)|2
∣∣∣eiβ1Q·r + e−iβ2Q·r

∣∣∣2
−
∣∣∣∣∫ d3r |ψi (r)|2

[
eiβ1Q·r + e−iβ2Q·r

]∣∣∣∣2
}
, (48)

which gives

dσ

dQ
=

2πR2

Q
J2

1 (QR)
{

1 +
2η
Q

arctan
(
q

2η

)
−2η2

Q2

[
1
β1

arctan
(
β1Q

2η

)
+

1
β2

arctan
(
β2Q

2η

)]}
(49)

Using Eq. 49 we find that for η −→∞, corresponding to infinite binding energy of the clusters,
dσN/dQ −→ 0. For η −→ 0, corresponding to very loosely bound nuclei,

dσ

dQ
−→4πR2

Q
J2

1 (QR) , (50)
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which means that in this case the total nuclear dissociation cross section will be just the sum of
the elastic diffraction cross section for each cluster separately. Both limits is what one expects from
the simple arguments of the diffraction dissociation method. But, for large values of Q the impulse
approximation is not more reasonable: the second term of Eq. 40 will increase in importance for
Q & η. Therefore, to obtain the contribution of the diffraction dissociation to the total dissociation
cross section, one has to integrate 40 numerically, using 46 and 47.

0.6 Elastic and inelastic break-up of halo nuclei

One of the major differences between exotic neutron-rich or proton-rich nuclei and normal nuclei
is the larger probability in the former of breaking up owing to the smaller binding energy of the
halo cluster. This results in two different processes: the elastic breakup of the projectile which
leaves the target intact in its ground state with the two (or more) fragments flying apart, and the
inelastic breakup, when one of the fragments interact strongly with the target while the other,
usually the observed one, passes by only feeling the optical distortion of the target. The former is
also called “diffractive breakup” while the latter “stripping”. Here we shall use the previous names:
elastic breakup and inelastic breakup. There are in principle other processes which may contribute,
especially at lower energies, such as the gradual loss of energy of the projectile in the entrance
channel before the breakup occurs.

An important feature of inelastic breakup is its potential use to extract spectroscopy information
of the orbital form which the interacting fragment has originated. All the models of elastic and
inelastic breakup rely on the use of the Glauber models [35, 36, 37, 38, 39, 40] or a time dependent
variance of it developed by Bonaccorso and Brink [41, 42, 43]. In the next Sections we shall
present first the Glauber theory for elastic and inelastic breakup and supply a reaction theoretical
foundation for it which was earlier derived by Hussein and McVoy (HM) [12]. We should mention
that most of the theoretical development is this area were done in the 70’s and 80’s for deuteron
break up [44, 45, 59, 46].

The reaction we desire to describe is

a+A = (b+ c) +A→ c+ b+A→ c+ (b+A)→ b+ (c+A) (51)

where the projectile a is considered to be formed by a core, c, and a halo particle, b. In cases
of two-neutron halo, b should be considered on composed of two neutrons: the dynamics becomes
more complicated as sequential processes may occur in general (both for Borromean an will as
non-Borromean halo nuclei).

In the eikonal approximation, the phase shift is linear in the interaction. Then, according to
Glauber, the scattering of a composite object from a structure particle (since we consider events
where the target is presumed to remain in the ground state), the S-matrix for a+A can be written
as

Ŝa = ŜbŜc (52)
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where the Ŝ is still an operator since it refers to a particle inside the projectile and this depends
on parameters that have to be averaged over by the ground state wave function of projectile, φ0.
The elastic breakup cross section can be easily calculated (the observed particle is c)

σel.bup =
∑
k

∣∣∣〈φk

∣∣∣ŜbŜc∣∣∣φ0

〉∣∣∣2 (53)

where φk is wave function that represents the continuum of b and c. Since
∫ ∫
|φk〉 〈φk|

dk + |φ0〉 〈φ0| = 1, the above expression can be simplified

σel.bup =
∫ ∫ 〈

φ0

∣∣∣Ŝ∗b Ŝ∗c ∣∣∣φk

〉〈
φk

∣∣∣ŜbŜc∣∣∣φ0

〉
dk

=
〈
φ0

∣∣∣∣∣∣∣Ŝb∣∣∣2 ∣∣∣Ŝc∣∣∣2∣∣∣∣φ0

〉
−
∣∣∣〈φ0

∣∣∣ŜbŜc∣∣∣φ0

〉∣∣∣2 (54)

The above expression has been used by several authors to obtain the elastic breakup contribution
to the cross-section, as we have shown in previous Sections.

In so far as the inelastic break up is concerned, one realizes that the detected particle must
reach the detector intact and thus one must use a survival probability to guarantee this. This

survival probability is
∣∣∣Ŝc∣∣∣2. On the other hand the interacting fragment b is removed (stripped)

and the probability for this to happen is
(

1−
∣∣∣Ŝb∣∣∣2). Identifying the transmission coefficient Tb

with 1−
∣∣∣Ŝb∣∣∣2, we can write for the inelastic break up the following expression

σin.bup =
π

k2
a

∑∑〈
φ0

∣∣∣(1− T̂c
)
T̂b

∣∣∣φ0

〉
(55)

The above cross-section is also called the b removal cross-section with the notation σ−b. Of
course one may have the removal of the core (less probable owing to the Coulomb barrier between
the charged core and the target)

σ−c =
π

k2
a

∑∑〈
φ0

∣∣∣(1− T̂b
)
T̂c

∣∣∣φ0

〉
(56)

the sum of σ−b and σ−c gives

σ−b + σ−c =
π

k2

∑∑〈
φ0

∣∣∣T̂c + T̂b − 2T̂bT̂c
∣∣∣φ0

〉
(57)

summing the above with the total fusion of a, described here by σ−a ≡ σfusion = (π/k2)
∑∑〈

φ0

∣∣∣T̂bT̂c∣∣∣φ0

〉
,

gives

σ−b + σ−cσ−a =
π

k2

∑∑〈
φ0

∣∣∣T̂c + T̂b − T̂bT̂c
∣∣∣φ0

〉
=

π

k2

∑∑〈
φ0

∣∣∣(1− |Sb|2 |Sv|2
)∣∣∣φ0

〉
= σreaction , (58)
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which confirms unitarity.
The expressions for σel.bup, Eq. 54, and σin.bup, Eq. 55, have been used by several authors to

analyze the data on halo nuclei. It has been common to call σel.bup, the diffractive break-up cross
section and σin.up the stripping cross section [35, 36, 37, 38, 39, 40].

Supplement D

0.7 Reaction theory of elastic and inelastic break-up

In this Supplement we give a formal reaction theory background for the discussion in the previous
section. We rely on the work of Austern et al [44], and Hussein & McVoy [12].

The full Schrödinger equation that describes the reaction in 51, can be obtained from the
Hamiltonian:

H = (Hb +Hc +HA + Vbc + VcA + VbA +Kb +Kc +KA) , (59)

where Hi is the intrinsic Hamiltonian of nucleon i, Vij is the full interaction (real) between i and j
and Ki is the kinetic energy operator.

We shall now make several approximations:

H |Ξ〉 = E |Ξ〉 (60)

i) HA = 0 (heavy target);
ii) VcA = Uc, the complex optical potential of the core: the spectator model;
iii) Hb = Hc = 0, both core and participating particle are structureless.
Now we calculate the inclusive break-up cross-section (elastic + inelastic break up). The de-

tected particle is the core c,

d2σ

dΩcdEc
=

2π
}va

ρ (Ec)
∑
i

∣∣∣〈χ(−)
c Ψ(i)

bA |Vcb|Ξ
(+)
〉∣∣∣2 δ (E − Ec − Ei) (61)

In the above Ψ(i)
bA is the exact wave function of the b+A system(

Ei −HA −Kb − VbA
)

Ψ(i)
bA = 0 (62)

and χ
(−)
c is the distorted wave of the observed particle

(Ec −Kc − Uc)
∣∣∣χ(−)
c

〉
= 0 (63)

Note that VbA is a fully microscopic interaction,
A∑
k=1

Vbk, where Vbk is the real interaction of b

(structureless with nucleon k in the target. Finally ρ (Ec) is the appropriate momentum phase-space
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density of the observed particle (core)

ρ (Ec) =
µckc

(2π)3 }2
. (64)

Notice that the sum over i is a short hand notation for the sum of all unobserved momenta and
states.

Since the argument of the delta function contains Ei, the eigen-value of the Schrödinger Eq.
for Ψ(i)

bA, Eq. 62, we can replace the delta function by an operator∣∣∣Ψ(i)
bA

〉
δ
(
E − Ec − Ei

) 〈
Ψ(i)
bA

∣∣∣ =
∣∣∣Ψ(i)

bA

〉
δ (E − Eo −HA −Kb − VbA)

〈
Ψ(i)
bA

∣∣∣
=

1
π
Im

∣∣∣Ψ(i)
bA

〉 1
E − Ec −HA −Kb −BbA + iε

〈
Ψ(i)
bA

∣∣∣ =
1
π
Im

∣∣∣Ψ(i)
bA

〉
G

(+)
bA

〈
Ψ(i)
bA

∣∣∣ (65)

where G(+)
bA is the many-body Green’s function of the b+A system. With the above the cross-section

can be written as

d2σ

dΩcdEc
=

2
}va

ρ (Ec) Im
∑∑

i

〈
Ξ |Vcb|χ(−)

c Ψi
bA

〉
G

(+)
bA

〈
χ(−)
c Ψ(+)

bA |Vcb|Ξ
〉

(66)

The sum over the complete set Ψi
bA can now be performed (closure) to obtain

d2σ

dΩcdEc
=

2
}va

ρ (Ec) Im
[〈

Ξ |Vcb|χ(−)
c

〉
G

(+)
bA

〈
χ(−)
c |Vcb|Ξ

〉]
(67)

The cross-section becomes

d2σ

dΩcdEc
=

2
}va

ρ (Ec)
[〈

Ψ0 |Vcb|χ(−)
c

〉(
ImG(+)

b

)〈
χ(−)
c |Vcb|Ψ0

〉]
(68)

The above expression is an exact three-body form for the inclusive singles spectrum of parti-
cle c which contains both elastic and inelastic break up. It is convenient to separate these two
components. For this purpose we use the following expression for ImG(+)

b

ImG(+)
b = π

∫
dkb

(2π)3

∣∣∣χ(−)
b

〉〈
χ

(−)
b

∣∣∣ [δ (E − Ec − Eb)−G
(+)†

b (−Wb)G
(+)
b

]
(69)

where −Wb is the imaginary part of Ub and represents the loss of the b flux owing to its interaction
with the target.

Thus
d2σ

dΩcdEc
=
d2σel.bup
dΩcdEc

+
d2σine.bup
dΩcdEc

, (70)

where

d2σel.bup
dΩcdEc

=
2πρ (Ec)

}va

∫ ∫
dkb

(2π)3

∣∣∣〈χ(−)
b χ(−)

c |Vxb|Ψ
(+)
0

〉∣∣∣2 δ (E − Ec − Eb − ε0) (71)
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and
d2σine.bup
dΩcdEc

=
−2ρ (Ec)

}va

∫ ∫ 〈
Ψ0

∣∣∣VcbG(+)†

b

∣∣∣χ(−)
c

〉
Wb (rb)

〈
χ(−)
c

∣∣∣G(+)
b Vcb

∣∣∣Ψ0

〉
drb (72)

Now
(E − Ub − Uc − Vbc −Kb −Kc) Ψ0 = 0 (73)

Thus

Ψ0Vbc = Ψ0 (E − Ub − Uc −Kb −Kc)〈
Ψ0

∣∣∣VcbG†
b

∣∣∣χ(−)
c

〉
= 〈Ψ0|

(
E −Kc − U

†
c −Kb − U

†
c

)
G

(+)†

b (Uc +Kc)χ(−)
c =

〈
Ψ0 | χ(−)

c

)
(74)

Thus, we obtain the three-body expression of the inelastic break up cross-section

d2σ

dΩcdEc
=
−2ρ (Ec)

}va

∫ ∫
drb
〈

Ψo | χ(−)
c

)
(rb)

(
χ(−)
c | Ψo

〉
(rb) (75)

The partial overlap
(
χ

(−)
c | Ψ0

〉
is a source function for the removed particle, b. We call this

source function ρ
(+)
kc

(rb).

If the three-body wave function Ψ0 is replaced by χ(+)
b χ

(+)
c φa (distorted wave approximation),

we get the Hussein-McVoy (HM) source function ρ
(HM)
kc

(rb) ≡(
χ

(−)
c | χ(+)

c χ
(+)
b φa

〉
and the corresponding HM expression for the inelastic break up cross-section
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c
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〈
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∣∣∣∣(∣∣∣〈χ(−)
c

∣∣∣χ(+)
c
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(+)
b

〉)∣∣∣∣φ〉 (76)

From the general form of the total reaction cross-section

σ(b)
reac =

kb
Eb

〈
χ

(+)
b |Wb|χ

(+)
b

〉
(77)

where the energy available for the b-particle is E − Ec + |ε0|, with ε0 being the binding energy
of b + c, we can, after identifying

〈
χ

(−)
c

∣∣∣χ(+)
c

〉
with the elastic S-matrix of the observed particle,

Sk,
ckc , write for (HM) cross-section

d2σ(HM)

dΩcdEc
=

2kcµcEb
(2π)3 }3vakb

〈
φa

∣∣∣|Sk,
ckc |

2 σ
(b)
Reac

∣∣∣φa〉 (78)

The above expression is a precursor to the eikonal one given in the previous section. The
Bonaccorso-Brink [41, 42, 43] model is a time-dependent version of the above.
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0.8 Nuclear break-up reactions of halo nuclei

The cross sections for Coulomb dissociation of halo nuclei are remarkably large, up to several barns.
However, reactions with light targets also show large cross sections and narrow momentum distri-
butions. The first such case was the observation [1] of a narrow transverse momentum distribution
of 9Li fragments from the reaction of 11Li on a carbon target.

Nuclear reactions at intermediate and high energies may conveniently be treated in the eikonal
approximation, which is valid if the energy is high and the scattering angle small. The form known as
Glauber theory has been widely used for calculating nucleon-nucleus and nucleus-nucleus reactions
at high energies. At the same time the collision time is short, so that it becomes permissible to treat
the evolution of the final states in the sudden approximation. The paper by Bertsch, Brown and
Sagawa [14] and subsequent work [36, 47] has applied these techniques to halo interactions with light
targets. From the eikonal model it also follows that the outgoing fragment’s longitudinal momentum
distribution reflects the momentum content of the wave function in the volume sampled by the
projectile’s interaction with the target [48, 49]. The cross sections and momentum distributions are
thus very sensitive to the angular momentum and separation energy of the nucleon in the initial
state.

In the following we use the notation of Tostevin [40]. It is assumed that the nucleon is described
by a normalized single-particle wave function with quantum numbers (nlj) moving with respect to
the core of remaining nucleons in state c ≡ Iπ. Such configurations are written |φcJM 〉, where J
is the magnitude and M the projection of the projectile’s ground-state total angular momentum,
J = I + j. In the most frequent type of experiment, in which only the heavy residue is detected
and not the neutrons, the single-particle cross sections are a sum of two contributions. These are
usually referred to as elastic breakup (diffraction dissociation) and absorption (stripping) [12], so
that we have σsp = σdiffsp + σstrsp . In the former, the nucleon and the heavy residue emerge from the
reaction with essentially beam velocity. In the latter, the nucleon is scattered inelastically. These
two contributions are computed separately, as integrals over the projectile’s center of mass impact
parameter, using a simple generalization of Eqs. 54 and 55.

σdiffsp =
1

2J + 1

∫
db

∑
M

〈φcJM ||(1− ScSn)|2|φcJM 〉 −
∑
M,M ′

|〈φcJM ′ |(1− ScSn)|φcJM 〉|2
 (79)

and
σstrsp =

1
2J + 1

∫
db
∑
M

〈φcJM |(1− |Sn|2)|Sc|2|φcJM 〉. (80)

Here the quantities Sc and Sn are the elastic S-matrices, or profile functions [50, 51], for the
core-target and removed neutron-target systems, expressed as functions of their individual impact
parameters. These are calculated using the optical limit of Glauber theory [53]. The neutron-
core relative motion wave functions |φcJM 〉 are usually calculated in a Woods-Saxon potential with
the depth of the potential adjusted to reproduce the separation energy of the nucleon. For high
energies, for high l values, and for deeply bound states, the contribution from Eq. 80 is the largest,
typically by a factor 2-3.
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Figure 9: (a) The experimental longitudinal momentum distribution [21] for the
9Be(11Be,10Begs)X reaction at an incident energy of 60 MeV/nucleon. The experimental data
have been corrected for a 22% contribution from reactions leading to 10Be excited levels. The
errors are smaller than the point size. The full-drawn lines are calculations for l=0,1,2 in an
eikonal approximation [21] and the heavy dashed line is the time-dependent treatment by
Bonaccorso and Brink [41]. The calculations have been adjusted to the maximum height of
the data (in arbitrary units). (b) Measured [54] exclusive angular distribution in the labo-
ratory system of neutrons from the reaction 9Be(11Be,10Be+n)X at an incident energy of 41
MeV/nucleon. The theoretical total (full drawn line) is made up of three components. The
main contribution arises from diffractive scattering of the neutron [41]. The excess at small
angles is due to a combination [55] of shakeoff and Coulomb dissociation, which contribute
a total of 16 mb. Inclusion of a finite-size correction (see [49]) would increase this by about
11 mb and would improve the agreement with experiment somewhat.

Equation 80 allows a simple interpretation. It is the integral over impact parameter and average
over M substates of the joint probability of the core being left intact by the reaction (given by
the quantity |Sc|2) and of the nucleon being absorbed (given by the quantity (1 − |Sn|2)). The
diffractive cross section, Eq. 80, is derived within the HM theory, which use the spectator core
plus nucleon model and employ closure to eliminate the necessary integral over all continuum final
states of the dissociated core and nucleon [12]. The use of closure for obtaining the continuum
contribution is clearly an excellent approximation for halos, where the ground state often is the
only bound state.

Theoretical calculations of the longitudinal momentum distributions of the core fragments may
without significant loss of accuracy be made in a simpler model, based on the black-disc approxi-
mation [49, 50]. In this, Sc and Sn are assumed to be unity outside of a cutoff impact parameter
and zero inside [21]. A good choice for core impact parameter cutoffs is to define them to repro-

Physics of Radioactive Beams - C.A. Bertulani 29



0.8. NUCLEAR BREAK-UP REACTIONS OF HALO NUCLEI

duce core-target reaction cross sections [52], respectively the free-neutron reaction cross section
(approximately 290 mb on a beryllium target at 60 MeV/nucleon). The widths of the momentum
distributions are quite insensitive to the precise choice of the target radius and even the absolute
cross sections agree well with more accurate approximations. As an example, Fig. 9(a) from the work
of Aumann et al. [53] shows the longitudinal momentum distributions from the 9Be(11Be,10Begs)X
reaction. As we know today, the original experiment [9] that found the narrow distribution on
a light target included a 22% contribution of reactions leading to excited states. This has been
subtracted in the data of Fig. 9(a), which shows good agreement with the calculation assuming l=0
and definitely excludes l=1,2. There are small but distinct deviations, a slightly larger width and
also an excess of events (a “tail”) on the low-momentum side. One believes that these effects arise
in the diffractive channel. They are linked to energy conservation and can be accounted for in a
fully quantum-mechanical calculation based on the discretised continuum coupled-channels method
[56].

The results of Ref. [41, 42, 43] have also been applied to the longitudinal momentum distri-
butions of neutrons from the breakup of halo states . They use a semi-classical (constant velocity,
straight line) approximation for the relative motion of the core and target, with a lower impact pa-
rameter cutoff, but a (nonsudden) quantum-mechanical treatment of the interaction of the neutron
with the target. The treatment deals with the diffractive and the stripping parts in a consistent
way, and for the longitudinal momentum distribution shown in Fig. 9(b) it gives results that are
very close to those obtained in the eikonal theory.

Only a few experiments have provided direct experimental evidence separating the diffractive
breakup of the halo from the stripping reaction. This normally requires detection of the diffracted
neutrons in coincidence with the charged residue. The characteristic signature [9] is a broad neutron
angular distribution with an opening angle at half maximum of the order of θ1/2 = 1.6/(kRT ), where
k is the neutron wave vector and RT the target radius (see Supplement C). The result obtained by
Anne et al. [52] for the case of 11Be, shown in Fig. 9(b), is in good agreement with this qualitative
estimate. According to theory, the angular distribution of the neutrons has three contributions.
The dominant one, calculated by Bonaccorso and Brink [41, 42, 43], is diffraction dissociation
contributing 260 mb, in good agreement with the experimental value of 240±50 mb. The excess of
intensity at small angles is attributed [56] to Coulomb dissociation (9 mb) and to shakeoff (18 mb
if a correction for the finite-size effect is included).

There is considerable experimental evidence showing the existence of proton halos. Reaction
cross section data for 8B indicate that it has a significantly extended wave function [57]. Smedberg
et al. [55] have observed a narrow longitudinal momentum distribution for 7Be fragments from
proton removal from 8B. Similar results were found by Kelley et al.[58]. This is a particularly
interesting case since the 8B wave function has a strong influence on proton capture in the Sun,
which is the source of the high energy neutrinos detected by most solar neutrino detectors on the
Earth.

Much effort has been dedicated to the problem of the two-neutron halo, especially to the cases
of 11Li and 6He. These are examples of three-body systems with the Borromean property, a term
coined by Zhukov et al. [60] to denote systems for which the two-body sub-systems are unbound.
The fact that, say, 11Li is bound only through the combined effect of the 9Li+n and the n+n
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interactions led to the expectation that the central-field approximation will fail and that the wave
function will show correlations reminiscent of the classic problem of the helium atom in atomic
physics. The effects, indeed, turn out to be much more important in the nuclear case.

A central issue has been the angular-momentum components in the two-neutron wave function
of 11Li. Measurements of β-decay provided the first evidence for a mixed s2 + p2 structure.

Studies of the two-neutron halo by nuclear reactions were at first difficult because the direct
experimental observables in Coulomb and nuclear reactions all are complicated by contributions
from the reaction mechanism that we have only slowly learned to disentangle. An important step in
this direction was done by Barranco et al. [37] showing how the transverse momentum distributions
are influenced by diffractive and Coulomb effects and by final-state interactions. It is for these
reasons that the longitudinal momentum distributions have come to play such an important role
in the elucidation of the one-neutron halo, see Fig. 9(a). These are relatively free from diffractive
and Coulomb effects and final-state interactions are absent or very small.

Simon et al. [61] suggest a new way of attacking the problem of the two-neutron halo. Basically,
as applied to 11Li, the idea is to reconstruct the combined momentum of the 9Li+n residue in a
stripping reaction on a light target. This directly relates to the momentum distribution of the
stripped neutron in the same way as that of the core recoil from stripping of a single-neutron
halo. The shape can only be fitted with a superposition of s2 + p2 components with about 50%
of each. (For comparison, the p2 contribution to the ground state of the helium atom is only
0.5%, see Slater [62] An additional observable, not studied previously, is the relative phase between
the components of the wave function. It was, for the first time, determined directly in the same
experiment by observing the angular distribution of the decay products from the recoiling 10Li.
The strong forward-backward asymmetry demonstrates the interference of the l=0,1 final states in
the single-neutron removal reaction. Similar experiments have been carried out for 6,8He [63].

0.9 Spectroscopic information from break-up (knock-

out) reactions

It was pointed out early by Sagawa and Yazaki [64] that the observed inclusive momentum distri-
bution of residues from the (11Be,10Be) reaction on a light target will contain broad contributions
from core knockouts leading to bound excited levels in 10Be. For this it is necessary that the halo
neutron will remain attached to the residue. Estimates show that the shakeoff probability is low
(less than 10%).

The methods based on Glauber theory developed for halo states have a wider applicability. A
number of experiments involving both halo and more bound “normal” states have been carried out.
For the analysis of these experiments it is assumed [40] that the partial cross section σth(Iπ) for
populating a given final state Iπ of the residue can be written

σth(Iπ) =
∑
j

C2S(Iπ, nlj)σsp(Sn, nlj), (81)

where C2S is the spectroscopic factor for removal of a nucleon with given single-particle quantum
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Figure 10: (a) Momentum distributions for the 9Be(27P,26Si)X reaction to the ground state
(large circles) and all excited states (small circles). The corresponding theoretical curves
in arbitrary normalization are calculated in the eikonal theory. The full-drawn line corre-
sponds to l=0 and the dashed one to l=2. (From [67]). (b) Comparison of experimental and
calculated spectroscopic factors for reactions at approximately 60 MeV/nucleon leading to
individual final levels in the nuclei 25,26,26Si, 10,11Be, 13B, and 14,15,16,18C [67, 40, 53, 69]. Cir-
cles, triangles and squares correspond to l=0,1,2, respectively. The dashed line corresponds
to F=1.

numbers (nlj). This quantity has been taken from many-body shell-model calculations by Brown
and his collaborators [65, 66], and it expresses the parentage of the initial state with respect to a
specific final state. The sum in Eq. 81 is taken over all configurations which have a nonvanishing
parentage. The σsp are the single-particle removal cross sections, which are strongly dependent on
the orbital angular momentum l and the nucleon separation energy Sn. The calculation of these
quantities in an extension of Glauber theory has been discussed by Tostevin in [40, 54], and the
basic expressions were given in equations 79 and 80.

As an example, we take a study of the proton-rich isotopes of phosphorus [67] which are in-
teresting candidates for ground-state proton halos [69]. The isotopes 26,27,28P are expected to
have a dominant contribution of the 1s1/2 proton orbital, and their proton separation energies of
0.14 ± 0.20, 0.897 ± 0.035 and 2.066 ± 0.004 MeV, respectively, are low. The results [67] for the
case of 27P are shown in Fig. 10(a). The low counting statistics for the gamma spectrum made it
necessary to resort to a gamma-ray tagging technique which divides the fragment data into two sets
corresponding to coincidences and anti-coincidences with gamma rays. This requires knowledge of
the average detection efficiency, 54± 5%, estimated from the theoretical level scheme. The spectra
also had evidence for a structureless continuum distribution with an intensity of 10±5% above 0.25
MeV integral bias. This is attributed to neutrons, charged particles and γ rays produced in the
target and to their secondary interactions with construction materials and the scintillator. (Later
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work [68, 69] has given more accurate estimates of this component but confirms the analysis in [67].
The measured gamma branching ratio of 30 ± 10% to the ground state corresponds to a partial
cross section of 22 ± 8 mb, which translates into a 1s1/2 spectroscopic factor of 0.46 in excellent
agreement with the theoretical spectroscopic factor obtained in the shell-model calculation. From
the figure it is clear that the cross section to the 26Si ground state is l=0 thus proving that the
ground state of 27P has spin and parity 1/2+. The figure also shows that the cross sections to the
26Si excited levels are predominantly l=2 in agreement with theory. Similar results were found for
other light phosphorus isotopes.

The results obtained by the knockout method are, so far, very promising. However, there is no
reason to expect exact agreement between experiment and equation 81, which is a heuristic link
between two unconnected theories. In order to test this relation experimentally, we define a scale
factor F as the ratio between the experimental and the theoretical cross section. The scatter in F
is then a test of the overall validity of this approach, while the average of F conveys information
about possible empirical renormalizations. This would be analogous to the effective charges and
effective coupling constants discussed for the sd shell by Brown and Wildenthal [65].

The nuclear-structure part of the theory has been eminently successful for nuclei up to mass
40, and we have much confidence in its predictions. Still, it is useful to recall that it is in some way
a caricature of a real nucleus. It defines the spectroscopic factors in a severely truncated Hilbert
space with nucleons assumed to be the fundamental building blocks. These are subject to effective
interactions with strengths chosen to compensate for the neglected degrees of freedom. The reaction
theory is less well proven experimentally. It starts from a picture of quasi-free nucleons, generally
believed to be valid at considerably higher energies, and with key input parameters taken to be
nucleon densities and (free) nucleon-nucleon scattering cross sections. Tostevin [40, 70, 54] has
performed calculations based on other reaction models and has provided a substantial theoretical
underpinning of the theoretical single-particle cross sections, which may be accurate to ±20%. All
results cited here are based on common, pre-existing parameter sets and individual adjustments
have been avoided.

Two sets of data are, at the present time, available for comparisons. The experiments have
measured l values and spectroscopic factors for 24 individual partial cross sections for proton and
neutron removal reactions in the p and sd shells. The comparison of experimental and theoretical
spectroscopic factors given in Fig. 10(b) suggests an good overall agreement. Leaving out 5 cases
with theoretical spectroscopic factors smaller than 0.4, one can calculate the average scale factor
〈F 〉 separately for each l value. For the nine l=0 partial cross sections we obtain 〈F0〉 = 0.99±0.07
with a χ2 per degree of freedom of 1.1. Seven cases with l=1 give 〈F1〉 = 0.61 ± 0.10 where
the (compound) experimental error has been scaled with the square root of the χ2 per degree of
freedom of 3.4. Finally, three l=2 partial cross sections give 〈F2〉 = 1.1±0.3 with a a χ2 per degree
of freedom of 1.6. The low value for l=1 may reflect contributions from high-lying 0−, 1− levels
situated close to the neutron threshold in even-even nuclei.

At the present point in time, the majority of the data favor a scale factor close to unity. However,
one expects to encounter major discrepancies in cases where the fundamental assumptions fail. This
can happen if the dominant mechanism is not a direct reaction. The analysis of the 11Be experiment
[21] introduced small corrections for the competition from collective excitations caused by Coulomb
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and nuclear interactions. Two-step interactions must also play a role in certain reactions and small
cross sections are, as always, suspect. There are also open experimental questions, especially for
more deeply bound states, for which the cross section for diffraction dissociation, see Eq. 79, still
needs to be tested experimentally. Nuclei nearer stability also have more complex spectra, and since
the cross sections emerge from an input-output balance of γ-ray intensities, any substantial missed
intensity can lead to systematic errors. Fortunately, this problem is smaller near the neutron drip
line, where the nuclei have just a few bound levels. In the following we describe a theory for the
angular distribution of inclusive break-up (stripping).

Supplement E

0.10 Angular distribution in inclusive break-up of halo

nuclei

The cross section which describes a typical process

a+A ≡ (b+ x) +A→ b+ (x+A)∗ (82)

is written in the formalism of Hussein and McVoy [12, 71] as

d2σ

dΩbdEb
=

2
}υa

ρ (Eb)
〈
ψ̂(+)
x |−WxA (Ei +Ba −Bb)| Ψ̂(+)

x

〉
, (83)

where ρ (Eb) is the density of states of the b-particle, ρ (Eb) = µbkb (2π)3 }2 ·−WxA is the imaginary
part of the x+A system and ψ

(+)
x is the “negative energy” x-particle wave function [12, 71]

ψ̂(+)
x (rx) =

〈
χ

(−)
b (rb) |ϕa (rb−rx)χ(+)

a (rb, rx)
〉
, (84)

where the χ’s are distorted waves and ϕa is the intrinsic wave function.
Using the notation of Ref. [12], we write the following general decomposition of the break-up

cross section
d2 σIB

dΩb dEb
=

d2 σIBdir
dΩb dEb

+
d2 σIBfl
dΩb dEb

, (85)

the direct term describes what is called the direct inelastic break-up process while the fluctuation
part accounts for incomplete fusion, the corresponding diagrams are shown in Fig. 11(I).

The expressions for the direct and the fluctuation components of d2σIB/dΩbdEb have been
derived and discussed in Ref. [12]. The sum of the contributions of Fig. 11(I-a) (elastic break-
up) and Fig. 11(I-b) inclusive (direct inelastic break-up) corresponds to the direct piece of the
inclusive break-up cross section. Calling W dir

xA the direct reaction part of WxA, which accounts for
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Figure 11: (I) Schematic diagrams representing the different processes that contribute to
d2σlB/dΩbdEb. (II) Calculated (full line) inclusive spectrum of α particles at θ = 20◦ in the
reaction 159Tb(14N,α ) at ELAB = 95 MeV. The dashed curve is the result of the calculation
of Ref. [45]. The data points were also taken from Ref. [45].

the contribution of Fig. 11(I-b), we have for the direct component of the inclusive break-up cross
section of Ref. [12]

d2 σIBdir
dΩb dEb

=
2

}υa

〈
ψ̂(+)
x

∣∣∣−W dir
xA (Ei +Ba −Bb)

∣∣∣ ψ̂(+)
x

〉
. (86)

The difference, WxA = W dir
xA ≡ wfusxA , represents the fusion (compound nucleus) component of

the absorptive piece of the xA optical potential. It appears in the expression for d2σIBfl /dΩbdEb
similarly to W dir

xA in d2σIBdir/dΩbdEb, namely

d2 σIBfl
dΩb dEb

=
2

}υa

〈
ψ̂(+)
x

∣∣∣−W fus
xA (Ei +Ba −Bb)

∣∣∣ ψ̂(+)
x

〉
. (87)

Eq. 87 represents the summed contribution of Figs. 11(I-c) and 11(I-d). Physically, it corre-
sponds to the break-up of the projectile followed by the formation of the compound xA nucleus,
both without (Fig. 11(I-c)) and with (Fig. 11(I-d)) concomitant inelastic excitation of the target
nucleus.

At this point we remark that the numerical results obtained by Udagawa et al. [45], represent
the contribution of diagram 11(I-c), namely elastic break-up fusion. We further remark that the
principal result of Ref. [12] namely Eq. 83, represents a DWBA version of a more general expression
for d2σIB/dΩbdEb, derived in Ref. [44], in which the initial distorted product wave function is
replaced by the exact Fadeev wave function of the interacting xbA system [44].
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We next turn to more formal features of Eq. 87. We first rewrite this equation in the following
form

d2 σIB

dΩb dEb
=

2
}υa

ρ (Eb)
〈
ψ̂(+)
x |−WxA (Ei +Ba −Bb)| ψ̂(+)

x

〉
≡ ρ (Eb)σxAreac (Ωb, Eb) (88)

where we have introduced, in the above, a new cross section which we call off-angle-and off-energy-
shell total reaction cross section of the xA subsystem. We should stress that Eqs. 82, 83 and 84
do not contain the pure elastic break-up cross section.

The cross section that appears in Eq. 88 is related to the total xA reaction cross section when
its angle variation is ignored and the system is allowed to be on the energy shell. In fact, this cross
section does reduce to the usual reaction cross section times a Fermi-motion factor which contains
the angle dependence when the distortion of the b particle (the spectator) and of the projectile is
completely ignored . In this limit, one recovers the well known Serber cross section [12].

Since, here, the b-particle is allowed to optically scatter from the target (though without inflict-
ing any non-elastic transition in the target), we have to discuss σxAreac (Ωb,Eb) in all its generality,
namely as an absorption cross section of a sub-system (x+A) which, accordingly, depends on the
kinematical variable of the rest of the system (b). Several features of this cross section can be easily
analyzed once the recognition is made that a very similar quantity to σxAreac (Ωb,Eb), measures the
deviation from unitarity of the two-body optical S-matrix [72].

In Ref. [72], the following equation was derived,

〈
k′
∣∣S−1

∣∣k〉 =
〈
k′
∣∣S+

∣∣k〉+ 2πδ (Ek − Ek′)
∫

dk′′

(2π)3

2Ek′′

k′′
〈
k′
∣∣S−1

∣∣k′′〉σreac (k, k′′) . (89)

When σreac
(
k · k′′, |k| , |k′′|

)
is set equal to zero one recovers the unitarity condition of the S-matrix

“cross section” σreac
(
k · k′′, |k| , |k′′|

)
becomes just the total reaction cross section |k| = |k′′| (which

is the case in the above equation) and k · k′′ = 1.
The same quantity , σreac

(
k · k′′, |k| , |k′′|

)
appears also in the equation which gives the or-

thonormality condition of the optical wave function
∣∣∣ψ(+)
k

〉
,

〈
ψ

(+)
k′ |ψ

(+)
k

〉
=
(
2π3
)
δ
(
k− k′

)
− 2i

√
EkEk′
kk′

σreac
(
k,k′

)
Ek − Ek′ + iεε

, (90)

When expanded in partial waves, σreac
(
k · k′′, |k| , |k′′|

)
takes the following form

σreac
(
k,k′

)
=

π

kk′

∞∑
l=0

(2l + 1)Tl
(
k, k′

)
Pl

(
k̂ · k̂′

)
, (91)

where

Tl
(
k, k′

)
=

8µ
√
kk′

}2

∫ ∞
0

dr ψ∗l
(
k′, r

)
W (r)ψl (k, r) . (92)
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Tl (|k| , |k′|) on-the-energy shell (|k| = |k′|) becomes just the optical transmission coefficients, Tl (|k|),
which is related to the modulus of the optical partial wave S-amplitude,

Tl (|k|) = 1− |Sl (k)|2 . (93)

On the energy-shell (|k| = |k′|), σreac, becomes, in the sharp-cut-off limit (Tl (|k|) = Θ (lg − l),
where lg is the grazing angular momentum)

σreac

(
k2, k̂ · k̂′′

)
=

π

k2

[
P ′lg+1

(
k̂ · k̂′

)
+ P ′lg

(
k̂ · k̂′

)]
, (94)

where Pl (x) is the Lengendre polynomial and P ′l (x) = dPl (x) /dx. Eq. 94 shows that σreac exhibits
oscillations as a function of k̂ · k̂′. These oscillations become more rapid as lg increases.

We now turn to the effects arising from the dependence of σreac on the off-shell variable ξ ≡
|k′|− |k|. To simplify the discussion we take ξ to be small enough that a Taylor series expansion of
ψl (k′r) can be contemplated. It is then clear that higher order terms in ξ bring about terms in σreac
which contain higher order Bessel functions. The alternating orders of these incoherently summed
Bessel functions would thus bring about a damping of the θ-oscillations seen in the on-shell σreac.
Then we may conclude that the larger ξ is the smooth σreac (θ) is expected. Similar features would
be expected to be present in the inclusive break-up cross section σxAreac (Ωb, Eb), Eq. 88.

Now

χ
(+)
k (r) = eik·r exp

(
i

∫ z

−∞
∆k
(
z′, b

)
dz′
)

, (95)

where ∆k (z′, b) is given by

∆k
(
z′, b

)
= − k

2E
U∆k

(
z′, b

)
. (96)

Here U (z, b) is the complex optical potential. Using the above form for all wave functions appearing
in Eq. 84, we obtain for ψ(+)

x ,

ψ̂(+)
x (rx, q) = eikx·rx exp

(
i

∫ zx

−∞
∆kx

(
z′, bx

)
dz′
)

×
∫
d3rb e

iq·rbS′bA (bb)ϕa (rb−rx) . (97)

kx is the relative momentum of the x-particle in the xA system, where q = kb−k′b, the average
momentum transfer from b to A by elastic scattering.

With the above form for ψ(+)
x , we have for the inclusive cross section the following simple

expression

d2σlR

dΩb dEb
= ρ (Eb)

∑
lx

P (q, lx)σxAreac (lx) , (98)

P (q, lx) =
1

2π

∫ 2π

0
dφ |ϕ̂a,b (q, lx/kx)|2 , (99)
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where ϕa,b (q, lx/kx) describes the zero-point relative motion (“Fermi motion”) of x and b within
the projectile, which is broadened in the transverse direction by absorption of the spectator, namely

ϕ̂a,b (q, bx) = e−iqlzx

∫
d3rbe

iq·rbSbA (bb)ϕa (rb−rx) . (100)

in Eq. 100 is the bA elastic scattering matrix. Finally σxAreac is the lx partial reaction cross section
of the xA system.

We have evaluated Eq. 98 for the systems 158Tb
(

14N, α
)

and 181Tb
(

14N, α
)

at ELAB+95 MeV
and 115 MeV, respectively. We have used for the real parts of the ba and xA optical potentials
VbA, VxA, the double folding interaction [73] and merely multiplied these potentials by factors of
the form (1 + iξ1b), respectively, where ξ1’s are adjustable imaginary strengths. As for the wave
function φa (r). we used a Gaussian form, with a width σ, given by

ϕa (r) = e−(σ2/2)r2 ,

σ =
kF√

5

√
AF (Ap −AF )

Ap − 1
, (101)

where AF and Ap are the spectator (observed fragment) and projectile mass numbers, respectively,
and kF is the nuclear Fermi momentum of ≈ 1.36 fm−1. For the system 159Tb

(
14N, α

)
we get

σ = 2.1 fm−1.
The result of such a calculation for the α-inclusive spectrum at 20◦ in 159Tb

(
14N, α

)
at 95

MeV is shown in Fig. 11(II). The values of the parameter ξ1b and ξ1x are, respectively 0.01 and
0.5. The agreement with the data is quite good. Also shown are the results of Udagawa et al.
[45] which greatly underestimate the cross section at the lower end of the spectrum. The reason is
quite clearly the fact that Ref. [45] uses a model where only the elastic break-up fusion process,
figure 11(I-c), is considered and in this order, whereas we include all processes shown in Fig. 11(I).
Loosely speaking, the function ψ(+)

x of Udagawa contains an xA elastic propagator G(+)
x (Ex) which

clearly damps the cross section at low Eb’s (high Ex) as it behaves, roughly, like E−1
x . Incidentally,

the total reaction cross section of the participant-target system, 10B +159 Tb, extracted from this
calculation, comes out within 20% of that extracted from the data of similar systems. This is
reasonable in view of the usually large size of the error bars in σR.

Of course, we do not expect that this model to work as well at larger angles because of the
Glauber approximation which is valid for small deflection angles. In fact, the angular distribution
one obtains, has a much steeper slope than the data. Similar results were obtained for the angular
distribution of the α, s from the 181Ta

(
14N, α

)
reaction at ELAB = 112 MeV, Ref. [45].
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