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0.1. STANDARD STELLAR EVOLUTION

0.1 Standard stellar evolution

0.1.1 Hydrogen and CNO cycles

The energy production in the stars is a well known process. The initial energy which ignites
the process arises from the gravitational contraction of a mass of gas. The contraction
increases the pressure, temperature, and density, at the center of the star until values able
to start the thermonuclear reactions (see Supplement A), initiating the star lifetime. The
energy liberated in these reactions yield a pressure in the plasma, which opposes compression
due to gravitation. Thus, an equilibrium is reached for the energy which is produced, the
energy which is liberated by radiation, the temperature, and the pressure.

The Sun is a star in its initial phase of evolution. The temperature in its surface is 6000◦

C, while in its interior the temperature reaches 1.5×107 K, with a pressure given by 6×1011

atm and density 150 g/cm3. The present mass of the Sun is M� = 2× 1033 g and its main
composition is hydrogen (70%), helium (29%) and less than 1% of more heavy elements, like
carbon, oxygen, etc.

What are the nuclear processes which originate the huge thermonuclear energy of the
Sun, and that has last 4.6×109 years (the assumed age of the Sun)? It cannot be the simple
fusion of two protons, or of α-particles, or even the fusion of protons with α-particles, since
neither 2

2He, 8
4Be, or 5

3Li, are not stable. The only possibility is the proton-proton fusion in
the form

p + p −→ d + e+ + νe, (1)

which occurs via the β-decay, i.e., due to the weak-interaction. The cross section for this
reaction for protons of energy around 1 MeV is very small, of the order of 10−23 b. The
average lifetime of protons in the Sun due to the transformation to deuterons by means of
Eq. 1 is about 1010 y. This explains why the energy radiated from the Sun is approximately
constant in time, and not by means of an explosive process.

The deuteron produced in the above reaction is consumed almost immediately in the
process

d + p −→ 3
2He + γ. (2)

The resulting 3
2He reacts by means of

3
2He + 3

2He −→ 4
2He + 2p, (3)

which produces the stable nucleus 4
2He with a great energy gain, or by means of the reaction

3
2He + 4

2He −→ 7
4Be + γ. (4)

In the second case, a chain reaction follows as

7
4Be + e− −→ 7

3Li + νe,
7
3Li + p −→ 2

(
4
2He
)
, (5)
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0.1. STANDARD STELLAR EVOLUTION

Figure 1: The chain reaction (p-p cycle). The percentage for the several branches are
calculated in the center of the sun [1].

or
7
4Be + p −→ 8

5B + γ, 8
5B −→ 2

(
4
2He
)

+ e+ + νe. (6)

The chain reaction 1-6 is called the hydrogen cycle. The result of this cycle is the
transformation of four protons in an α-particle, with an energy gain of 26,7 MeV, about 20%
of which are carried away by the neutrinos (see Fig. 1).

If the gas which gives birth to the star contains heavier elements, another cycle can occur;
the carbon cycle, or CNO cycle. In this cycle the carbon, oxygen, and nitrogen nuclei are
catalyzers of nuclear processes, with the end product also in the form 4p−→ 4

2He. Fig. 2(a)
describes the CNO cycle. Due to the larger Coulomb repulsion between the carbon nuclei, it
occurs at higher temperatures (larger relative energy between the participant nuclei), up to
1.4× 107 K. In the Sun the hydrogen cycle prevails. But, in stars with larger temperatures
the CNO cycle is more important. Fig. 2(b) compares the energy production in stars for
the hydrogen and for the CNO cycle as a function of the temperature at their center. For
the Sun temperature, T�, we see that the pp cycle is more efficient.

After the protons are transformed into helium at the center of a star like our Sun, the
fusion reactions start to consume protons at the surface of the star. At this stage the star
starts to become a red giant. The energy generated by fusion increases the temperature and
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0.1. STANDARD STELLAR EVOLUTION

Figure 2: (a) The CNO cycle. (b) Comparison of the energy production in the pp and in
the CNO cycle as a function of the star temperature [2].

expands the surface of the star. The star luminosity increases. The red giant contracts again
after the hydrogen fuel is burned.

Other thermonuclear processes start. The first is the helium burning when the temper-
ature reaches 108 K and the density becomes 106 g.cm−3 Helium burning starts with the
triple capture reaction

3
(
4
2He
)
−→ 12

6C + 7.65 MeV, (7)

followed by the formation of oxygen via the reaction

12
6C + 4

2He −→ 16
8O + γ. (8)

For a star with the Sun mass, helium burning occurs in about 107 y. For a much heavier
star the temperature can reach 109 K. The compression process followed by the burning of
heavier elements can lead to the formation of iron. After that the thermonuclear reactions
are no more energetic and the star stops producing nuclear energy.

0.1.2 White dwarfs and neutron stars

If the thermonuclear processes in massive stars achieve the production of iron, there are the
following possibilities for the star evolution.
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0.1. STANDARD STELLAR EVOLUTION

(a) For stars with masses < 1, 2 M� the internal pressure of the degenerated electron
gas (i.e., when the electrons occupy all states allowed by the Pauli principle) does not allow
the star compression due to the gravitational attraction to continue indefinitely. For a free
electron gas at temperature T = 0 (lowest energy state), the electrons occupy all energy
states up to the Fermi energy. The total density of the star can be calculated adding up the
individual electronic energies. Since each phase-space cell d3p · V (where V is the volume
occupied by the electrons) contains d3p · V/(2π~)3 states, we get

E

V
= 2

∫ pF

0

d3p

(2π~)3
E(p) = 2

∫ pF

0

d3p

(2π~)3

√
p2c2 +m2

ec
4 = n0mec

2x3ε(x),

ε(x) =
3

8x3

{
x(1 + 2x2)(1 + x2)1/2 − log[x+ (1 + x)1/2]

}
, (9)

where the factor 2 is due to the electron spin, and

x =
pF c

mec2
=

(
n

n0

)1/3

=

(
ρ

ρ0

)1/3

, (10)

where

n0 =
me3c3

~3
and ρ0 =

mNn0

Ye
= 9, 79× 105 Y −1

e g/cm3. (11)

In the above relations pF is the Fermi momentum of the electrons, me (mN) is the electron
(nucleon) mass, n is the density of electrons, and ρ is the mass density in the star. Ye is the
number of electrons per nucleon.

The variable x characterizes the electron density in terms of

n0 = 5, 89× 1029 cm−3. (12)

At this density the Fermi momentum is equal to the inverse of the Compton wavelength of
the electron.

Using traditional methods of thermodynamics, the pressure is related to the energy vari-
ation by

P = −∂E
∂V

= −∂E
∂x

∂x

∂V
= −∂E

∂x

(
− x

3V

)
=

1

3
n0mec

2x4 dε

dx
. (13)

This model allows us to calculate the pressure in the electron gas in a very simple form. Since
the pressure increases with the electron density, which increases with the decreasing volume
of the star, we expect that the gravitational collapse stops when the electronic pressure
equals the gravitational pressure. When this occurs the star cools slowly and its luminosity
decreases. The star becomes a white dwarf and in some cases its diameter can become
smaller than that of the Moon.

(b) For stars with masses in the interval 1.2 - 1.6 M�, the electron pressure is not
sufficient to balance the gravitational attraction. The density increases to 2 × 1014g.cm−3
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0.1. STANDARD STELLAR EVOLUTION

and the matter ”neutronizes”. This occurs via the electron capture by the nuclei (inverse
beta decay), transforming protons into neutrons. The final product is a neutron star, with a
small radius. For example, if it were possible to form a neutron star from the Sun it would
have a radius given by(

M�
4π
3
ρ

)1/3

=

(
2× 1033 g

4π
3
× 2× 1014 g cm−3

)1/3

' 14 km.

The process of transformation of iron nuclei into neutron matter occurs as following: for
densities of the order of 1.15×109 g.cm−3 the Fermi energy of the electron gas is larger than
the upper energy of the energy spectrum for the β-decay of the isotope 56

25Mn. The decay of
this isotope can be inverted and two neutron-rich isotopes of 56

25Mn are formed, i.e.,

56
26Fe + e− −→ 56

25Mn + νe, (14)

These nuclei transform in 56
24Cr by means of the reaction

56
25Mn + e− −→ 56

24Cr + νe. (15)

With the increasing of the pressure more isotopes can be formed, until neutrons start
being emitted:

A
ZX + e− −→ A−1

Z−1X + n + νe. (16)

For 56
26Fe this reaction network starts to occur at an energy of 22 MeV, which corresponds

to a density of 4×1011 g·cm−3. With increasing density, the number of free neutrons increases
and, when the density reaches 2×1014 g·cm−3, the density of free neutrons is 100 times larger
than the density of the remaining electrons.

0.1.3 Synthesis of elements

In Figure 3(a) we show the relative distribution of elements in our galaxy. It has two distinct
regions: in the region A < 100 it decreases with A approximately like an exponential, whereas
for A > 100 it is approximately constant, except for the peaks in the region of the magic
numbers Z = 50 e N = 50, 82, 126.

The thermonuclear processes 1-8 can explain the relative abundance of 4
2He, 12

6C and
16
8O. The processes occurring after 4

2He burning mainly form isotopes of 20
10Ne, 24

12Mg and 28
14Si.

We can understand the small abundance of the elements Li, Be and B as due to the small
velocity with which they are formed via the reaction 4 and the first equation of 5, while they
are rapidly consumed by the second reaction in 5 and the first reaction in 6.

The synthesis of elements heavier than oxygen occur when, after the helium burn, a new
compression and heating of the star rises the temperature to values higher than 6× 108 K.
This situation ignites an intense carbon burning:

12
6C +12

6 C −→ 20
10Ne + 4

2He −→ 23
11Na + p −→ 23

12Mg + n −→ 24
12Mg + γ. (17)
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0.1. STANDARD STELLAR EVOLUTION

Figure 3: (a) Relative distribution of elements in our galaxy. (b) The “onion” structure of
a supernova.

Carbon and oxygen can also burn simultaneously:

12
6C + 16

8O −→ 24
12Mg + 4

2He, etc, 16
8O + 16

8O −→ 28
14Si + 4

2He, etc. (18)

For temperatures above 3 × 109 K more photo-nuclear processes appear. These yield
more nuclei to be burned and heavier nuclei are produced:

γ + 28
14Si −→ 24

12Mg + 4
2He, 4

2He + 28
14O −→ 32

16S + γ, etc. (19)

Due to the large number of free neutrons, many (n,γ)-reactions (radiative neutron cap-
ture) elements in the mass range A = 28, . . . , 57 are formed. This leads to a large abundance
of elements in the iron mass region, which have the largest binding energy per nucleon. For
elements heavier than iron the nuclear fusion processes do not generate energy.

For A > 100 the distribution of nuclei cannot be explained in terms of fusion reactions
with charged particles. They are formed by the successive capture of slow neutrons and of
β−-decay. The maxima of the element distribution in N = 50, 82, 126 are due to the small
capture cross sections corresponding to the magic numbers. This yields a trash of isotopes
at the observed element distribution.
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0.1. STANDARD STELLAR EVOLUTION

0.1.4 Supernovae explosions

It has long been observed that, occasionally, a new star appears in the sky, increases its
brightness to a maximum value, and decays afterwards until its visual disappearance. Such
stars were called by novae. Among the novae some stars present an exceptional variation in
their brightness and are called by supernovae.

Schematically a pre-supernova has the onion structure presented in figure 3(b). Starting
from the center of the star, we first find a core of iron, the remnant of silicon burning. After
that we pass by successive regions where 28Si, 16O, 12C, 4He, and 1H form the dominant
fraction. In the interfaces, the nuclear burning continues to happen.

The silicon burning exhausts the nuclear fuel. As we mentioned previously, the gravi-
tational collapse of the iron core cannot be hold by means of pressure heat from nuclear
reactions. However, Chandrasekhar [3] showed that a total collapse can be avoided by the
electronic pressure. In this situation, the core is stabilized due to the pressure of the de-
generated electron gas, P (r), and the inward gravitational pressure. This means that for a
given point inside the star,

−Gm(r)

r2
ρ(r) =

dP (r)

dr
=
dρ

dr

dP

dρ
,

dm

dr
= 4πr2ρ(r),

dP

dρ
= Ye

me

MN

x2

3
√

1 + x2
. (20)

where me and MN are defined following Eq. 9.
This model is appropriate for a non-rotating white dwarf. With the boundary conditions

m(r = 0) = 0 and ρ(r = 0) = ρc (the central density), these equations can be solved easily
[4]. For a given Ye, the model is totally determined by ρc. Figure 4 shows the mass density
of a white dwarf. We observe that the total mass of a white dwarf (of the order of a solar
mass, M� = 1.98×1033 g), increases with ρc. Nonetheless, and perhaps the most important,
it cannot exceed the finite value of

M ≤MCh ' 1.45 (2Ye)
2 M�, (21)

which is know as the Chandrasekhar mass [3]. Applying these results to the nucleus of a star
with any mass, we get from Eq. 20 that stars with mass M > MCh cannot be stable against
the gravitational collapse by the pressure of the degenerate electron gas. The collapse occurs
inevitably for a massive star, since the silicon burning adds more and more material to the
stellar core.

At the beginning of the collapse the temperature and density are of the order of T ∼ 1010

K and ρ ∼ 3 × 109 g/cm3. The core is made of 56Fe and of electrons. There are two
possibilities, both accelerating the collapse:
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0.1. STANDARD STELLAR EVOLUTION

Figure 4: Masses of white dwarfs calculated as a function of ρc, the central density. With
increasing ρc, the mass reaches a limiting value, the Chandrasekhar mass.

1. At conditions present in the collapse the strong reactions and the electromagnetic
reactions between the nuclei are in equilibrium with their inverse, i.e.,

γ + 56
26Fe⇐⇒ 13(4He) + 4n− 124 MeV. (22)

For example, with ρ = 3× 109 g/cm3 and T = 11× 109 K, half of 56Fe is dissociated.
This dissociation takes energy from the core and causes pressure loss. The collapse is
thus accelerated.

2. If the mass of the core exceeds MCh, electrons are captured by the nuclei to avoid the
violation of the Pauli principle:

e− + (Z,A) −→ (Z − 1, A) + νe. (23)

The neutrinos can escape the core, taking away energy. This is again accompanied by
a pressure loss due to the decrease of the free electrons (this also decreases MCh). The
collapse is again accelerated.

The gravitational contraction increases the temperature and density of the core. An
important change in the physics of the collapse occurs when the density reaches ρtrap '
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0.1. STANDARD STELLAR EVOLUTION

4× 1011 g/cm3. The neutrinos become essentially confined to the core, since their diffusion
time in the core is larger than the collapse time. After the neutrino confinement no energy
is taken out of the core. Also, all reactions are in equilibrium, including the capture process
23. The degeneracy of the neutrino Fermi gas avoids a complete neutronization, directing
the reaction 23 to the left. As a consequence, Ye remains large during the collapse (Ye ≈
0.3-0.4 [5]). To equilibrate the charge, the number of protons must also be large. To reach
Z/A = Ye ≈ 0,3-0,4, the protons must be inside heavy nuclei which will therefore survive
the collapse.

Two consequence follows:

1. The pressure is given by the degenerate electron gas that controls the whole collapse;
the collapse is thus adiabatic, with the important consequence that the collapse of the
most internal part of the core is homologous, i.e., the position r(t) and the velocity v(t)
of a given element of mass of the core are related by

r(t) = α(t)r0; v(t) =
α̇

α
r(t), (24)

where r0 is the initial position.

2. Since the nuclei remain in the core of the star, the collapse has a reasonably large order
and the entropy remains small during the collapse [5] (S ≈ 1.5 k per nucleon, where k
is the Boltzmann constant).

The collapse continues homologously until nuclear densities of the order of ρN ≈ 1014

g/cm3 are reached, when the matter can be thought as approximately a degenerate Fermi
gas of nucleons. Since the nuclear matter has a finite compressibility, the homologous core
deccelerate and starts to increase again as a response to the increase of the nuclear matter.
This eventually leads to a shock wave which propagates to the external core (i.e., the iron core
outside the homologous core) which, during the collapse time, continued to contract reaching
the supersonic velocity. The collapse break followed by the shock wave is the mechanism
which breads the supernova explosion. Nonetheless, several ingredients of this scenario are
still unknown, including the equation of state of the nuclear matter. The compressibility
influences the available energy for the shock wave, which must be of the order of 1051 erg.

The exact mechanism for the explosion of a supernova is still controversial.

1. In the direct mechanism, the shock wave is not only strong enough to stop the collapse,
but also to explode the exterior stellar shells.

2. If the energy in the shock wave is insufficient for a direct explosion, the wave will
deposit its energy in the exterior of the core, e.g., by excitation of the nuclei, what is
frequently followed by electronic capture and emission of neutrinos (neutrino eruption).
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0.2. THERMONUCLEAR RATES AND REACTION NETWORKS

Additionally, neutrinos of the all three species are generated by the production of pairs
in the hot environment. A new shock wave can be generated by the outward diffusion of
neutrinos, what indeed carries the most part of the energy liberated in the gravitational
collapse of the core (≈ 1053 erg). If about 1% of the energy of the neutrinos is converted
into kinetic energy due to the coherent neutrino-nucleus scattering, a new shock wave
arises. This will be strong enough to explode the star. This process is know as the
retarded mechanism for supernova explosion.

To know which of the above mechanism is responsible for the supernova explosion one
needs to know the rate of electron capture, the nuclear compressibility, and the way neutrinos
are transported. The iron core, remnant of the explosion (the homologous core and part of
the external core) will not explode and will become either a neutron star, and possibly later
a pulsar (rotating neutron star), or a black-hole, as in the case of more massive stars, with
M ≥ 25− 35M�.

Type-II supernovae are defined as those showing H-lines in their spectra. It is likely
that most, if not all, of the exploding massive stars still have some H-envelope left, and thus
exhibit such a feature. In contrast, Type-I supernovae lack H in their ejecta.

Supplement A

0.2 Thermonuclear rates and reaction networks

0.2.1 Cross sections and reaction rates

The nuclear cross section for a reaction between target j and projectile k is defined by

σ =
number of reactions target−1sec−1

flux of incoming projectiles
=
r/nj
nkv

. (25)

where the target number density is given by nj , the projectile number density is given by nk , and
v is the relative velocity between target and projectile nuclei. Then r, the number of reactions per
cm3 and sec, can be expressed as r = σvnjnk, or, more generally,

rj,k=

∫
σ|vj−vk|d

3njd
3nk. (26)

The evaluation of this integral depends on the type of particles and distributions which are
involved. For nuclei j and k in an astrophysical plasma, obeying a Maxwell-Boltzmann distribution,

d3nj = nj(
mj

2πkT
)3/2exp(−

m2
jvj

2kT
)d3
jvj, (27)

Physics of Radioactive Beams - C.A. Bertulani 11



0.2. THERMONUCLEAR RATES AND REACTION NETWORKS

Eq. 26 simplifies to rj,k =< σv > njnk, where < σv > is the average of σv over the temperature
distribution in 27. More specifically,

rj,k = < σv >j,k njnk (28)

< j, k > ≡ < σv >j,k= (
8

µπ
)1/2(kT )−3/2

∫ ∞
0

Eσ(E)exp(−E/kT )dE. (29)

Here µ denotes the reduced mass of the target-projectile system. In astrophysical plasmas with
high densities and/or low temperatures, effects of electron screening become highly important.
This means that the reacting nuclei, due to the background of electrons and nuclei, feel a different
Coulomb repulsion than in the case of bare nuclei. Under most conditions (with non-vanishing
temperatures) the generalized reaction rate integral can be separated into the traditional expression
without screening 28 and a screening factor [6]

< j, k >∗= f scr(Zj, Zk, ρ, T, Y i) < j, k > . (30)

This screening factor is dependent on the charge of the involved particles, the density, tem-
perature, and the composition of the plasma. Here Yi denotes the abundance of nucleus i defined
by Yi = ni/(ρNA), where ni is the number density of nuclei per unit volume and NA Avogadro’s
number. At high densities and low temperatures screening factors can enhance reactions by many
orders of magnitude and lead to pycnonuclear ignition.

When in Eq. 26 particle k is a photon, the relative velocity is always c and quantities in
the integral are not dependent on d3nj . Thus it simplifies to rj = λj,γnj and λj,γ results from
an integration of the photodisintegration cross section over a Planck distribution for photons of
temperature T

d3nγ =
1

π2(c~)3

E2
γ

exp(Eγ/kT )− 1
dEγ (31)

rj = λj,γ(T )nj =
1

π2(c~)3

∫
d3nj

∫ ∞
0

cσ(Eγ)E
2
γ

exp(Eγ/kT )− 1
dEγ. (32)

There is, however, no direct need to evaluate photodisintegration cross sections, because, due
to detailed balance, they can be expressed by the capture cross sections for the inverse reaction
l +m→ j + γ [7]

λj,γ(T ) = (
GlGm

Gj

)(
AlAm
Aj

)3/2(
mukT

2π~2
)3/2 < l,m > exp(−Qlm/kT ). (33)

This expression depends on the reaction Q-value Qlm, the temperature T , the inverse reaction rate
< l,m >, the partition functions G(T ) =

∑
i(2Ji + 1) exp(−Ei/kT ) and the mass numbers A

of the participating nuclei in a thermal bath of temperature T .
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0.2. THERMONUCLEAR RATES AND REACTION NETWORKS

A procedure similar to Eq. 32 is used for electron captures by nuclei. Because the electron
is about 2000 times less massive than a nucleon, the velocity of the nucleus j is negligible in the
center of mass system in comparison to the electron velocity (|vj−ve| ≈ |ve|). The electron capture
cross section has to be integrated over a Boltzmann, partially degenerate, or Fermi distribution of
electrons, dependent on the astrophysical conditions. The electron capture rates are a function of
T and ne = YeρNA, the electron number density [8]. In a neutral, completely ionized plasma, the
electron abundance is equal to the total proton abundance in nuclei Ye =

∑
i ZiYi and

rj= λj,e(T, ρY e)nj. (34a)

This treatment can be generalized for the capture of positrons, which are in a thermal equi-
librium with photons, electrons, and nuclei. At high densities (ρ > 1012gcm−3) the size of the
neutrino scattering cross section on nuclei and electrons ensures that enough scattering events
occur to thermalize a neutrino distribution. Then also the inverse process to electron capture (neu-
trino capture) can occur and the neutrino capture rate can be expressed similarly to Eqs. 32 or
34a, integrating over the neutrino distribution. Also inelastic neutrino scattering on nuclei can be
expressed in this form. Finally, for normal decays, like beta or alpha decays with half-life τ1/2, we
obtain an equation similar to Eqs.32 or 34a with a decay constant λj = ln 2/τ1/2 and

rj = λjnj. (35)

The nuclear cross section for charged particles is strongly suppressed at low energies due to the
Coulomb barrier. For particles having energies less than the height of the Coulomb barrier, the
product of the penetration factor and the MB distribution function at a given temperature results
in the so-called Gamow peak, in which most of the reactions will take place. Location and width
of the Gamow peak depend on the charges of projectile and target, and on the temperature of the
interacting plasma (see Fig. 5).

Experimentally, it is more convenient to work with the astrophysical S factor

S(E) = σ(E)E exp(2πη), (36)

with η being the Sommerfeld parameter, describing the s-wave barrier penetration η = Z1Z2e
2/~v.

In this case, the steep increase of the cross section is transformed in a rather flat energy dependent
function (see Fig. 6). One can easily see the two contributions of the velocity distribution and the
penetrability in the integral

< σv >=

(
8

πµ

)1/2
1

(kT )3/2

∫ ∞
0

S(E) exp

[
− E

kT
− b

E1/2

]
, (37)

where the quantity b = 2πηE1/2 = (2µ)1/2πe2ZjZk/~ arises from the barrier penetrability. Ex-
perimentally it is very difficult to take direct measurements of fusion reactions involving charged
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0.2. THERMONUCLEAR RATES AND REACTION NETWORKS

Figure 5: (a) Schematic representation of the nuclear+Coulomb potential for fusion of
charged particles. (b) The integrand of eq. 29 is the product of an exponentially falling
distribution with a fastly growing cross section in energy.

particles at very small energies. The experimental data can be guided by a theoretical model for
the cross section, which can then be extrapolated to the Gamow energy, as displayed in Fig. 6(b).
The dots symbolize the experimental data points. The solid curve is a theoretical prediction, which
supposedly describes the data. Its extrapolation to lower energies yields the desired value of the
S-factor (and of σ) at the energy E0. The extrapolation can be inadequate due to the presence of
resonances and of subthreshold resonances, as shown schematically in the figure.

Taking the first derivative of the integrand in Eq. 37 yields the location E0 of the Gamow peak,
and the effective width ∆ of the energy window can be derived accordingly

E0 =

(
bkT

2

)2/3

= 1.22(Z2
jZ

2
kAT

2
6 )1/3 keV,

∆ =
16E0kT

3

1/2

= 0.749(Z2
jZ

2
kAT

5
6 )1/6 keV, (38)

as shown in [10], carrying the dependence on the charges Zj , Zk, the reduced mass A of the
involved nuclei in units of mu, and the temperature T6 given in 106 K. In Supplement A we show
how one can get extended analytical results for the effective S-factor for non-resonant reactions.

In the case of neutron-induced reactions the effective energy window has to be derived in a
slightly different way. For s-wave neutrons (l = 0) the energy window is simply given by the location
and width of the peak of the MB distribution function. For higher partial waves the penetrability of
the centrifugal barrier shifts the effective energy E0 to higher energies. For neutrons with energies
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0.2. THERMONUCLEAR RATES AND REACTION NETWORKS

Figure 6: a) Schematic representation of the energy dependence of a fusion reaction involving
charged particles. (b) The astrophysical S-factor as defined by eq. 36.

less than the height of the centrifugal barrier this was approximated by [9]

E0 ≈ 0.172T9

(
l +

1

2

)
MeV, ∆ ≈ 0.194T9

(
l +

1

2

)1/2

MeV. keV, (39)

The energy E0 will always be comparatively close to the neutron separation energy.

0.2.2 Reaction networks

The time derivative of the number densities of each of the species in an astrophysical plasma (at
constant density) is governed by the different expressions for r, the number of reactions per cm3 and
sec, as discussed above for the different reaction mechanisms which can change nuclear abundances

(
∂ni
∂t

)ρ=const=
∑
j

N i
jrj+

∑
j,k

N i
j,krj,k+

∑
j,k,l

N i
j,k,lrj,k,l. (40)

The reactions listed on the right hand side of the equation belong to the three categories of
reactions: (1) decays, photodisintegrations, electron and positron captures and neutrino induced
reactions (rj = λjnj), (2) two-particle reactions (rj,k =< j, k > njnk), and (3) three-particle
reactions (rj,k,l =< j, k, l > njnknl) like the triple-alpha process (α + α + α −→12 C + γ), which
can be interpreted as successive captures with an intermediate unstable target (α +8 Be∗ −→12

C + γ). The individual N i’s are given by: N i
j = Ni, N i

j,k = Ni/
∏nm

m=1 |Njm|!, and N i
j,k,l =

Ni/
∏nm

m=1 |Njm|!. The N ′is can be positive or negative numbers and specify how many particles
of species i are created or destroyed in a reaction. The denominators, including factorials, run
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0.3. THERMONUCLEAR REACTION RATES: MODELS

over the nm different species destroyed in the reaction and avoid double counting of the number of
reactions when identical particles react with each other (for example in the 12C+12C or the triple-
alpha reaction) [7]. In order to exclude changes in the number densities ṅi, which are only due
to expansion or contraction of the gas, the nuclear abundances Yi = ni/(ρNA) were introduced.
For a nucleus with atomic weight Ai, AiYi represents the mass fraction of this nucleus, therefore∑
AiYi = 1. In terms of nuclear abundances Yi, a reaction network is described by the following

set of differential equations

Ẏi =
∑
j

N i
jλjYj +

∑
j,k

N i
j,kρNA < j, k > YjYk +

∑
j,k,l

N i
j,k,lρ

2N2
A < j, k, l > YjYkYl. (41)

Eq. 41 derives directly from Eq. 40 when the definition for the, Y ′i s is introduced. This set
of differential equations is solved numerically. They can be rewritten as difference equations of the
form ∆Yi/∆t = fi(Yj(t+ ∆t)), where Yi(t+ ∆t) = Yi(t) + ∆Yi. In this treatment, all quantities
on the right hand side are evaluated at time t+∆t. This results in a set of non-linear equations for
the new abundances Yi(t + ∆t), which can be solved using a multi-dimensional Newton-Raphson
iteration procedure. The total energy generation per gram, due to nuclear reactions in a time step
∆t which changed the abundances by ∆Yi, is expressed in terms of the mass excess Mex,ic

2 of the
participating nuclei

∆ε = −
∑
i

∆Y iNAMex,ic
2, ε̇ = −

∑
i

ẎiNAMex,ic
2. (42a)

Therefore, the important ingredients to nucleosynthesis calculations are decay half-lives, elec-
tron and positron capture rates, photodisintegrations, neutrino induced reaction rates, and strong
interaction cross sections.

0.3 Thermonuclear reaction rates: Models

Explosive nuclear burning in astrophysical environments produces unstable nuclei, which
again can be targets for subsequent reactions. In addition, it involves a very large number of
stable nuclei, which are not fully explored by experiments. Thus, it is necessary to be able
to predict reaction cross sections and thermonuclear rates with the aid of theoretical models.
Especially during the hydrostatic burning stages of stars, charged-particle induced reactions
proceed at such low energies that a direct cross-section measurement is often not possible with
existing techniques. Hence extrapolations down to the stellar energies of the cross sections
measured at the lowest possible energies in the laboratory are the usual procedures to apply.
To be trustworthy, such extrapolations should have as strong a theoretical foundation as
possible. Theory is even more mandatory when excited nuclei are involved in the entrance
channel, or when unstable very neutron-rich or neutron-deficient nuclides (many of them
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0.3. THERMONUCLEAR REACTION RATES: MODELS

being even impossible to produce with present-day experimental techniques) have to be
considered. Such situations are often encountered in the modelling of explosive astrophysical
scenarios.

Various models have been developed in order to complement the experimental informa-
tion.

(a) Microscopic models. In this model, the nucleons are grouped into clusters. Keeping
the internal cluster degrees of freedom fixed, the totally antisymmetrized relative wave func-
tions between the various clusters are determined by solving the Schrödinger equation for
a many-body Hamiltonian with an effective nucleon-nucleon interaction. When compared
with most others, this approach has the major advantage of providing a consistent, unified
and successful description of the bound, resonant, and scattering states of a nuclear system.
Various improvements of the model have been made ([11]).

The microscopic model has been applied to many important reactions involving light sys-
tems, and in particular to the various p-p chain reactions ([13]). The available experimental
data can generally be well reproduced. The microscopic cluster model or its variant (the
microscopic potential model) has also made an important contribution to the understanding
of the key 12C(α, γ)16O reaction rate ( [12]).

(b) The potential and DWBA models. The potential model has been known for a long
time to be a useful tool in the description of radiative capture reactions. It assumes that the
physically important degrees of freedom are the relative motion between the (structureless)
fragment nuclei in the entrance and exit channels, and that the fragments themselves are
just accounted for approximately by the introduction of spectroscopic factors and strength
factors in the optical potential. The associated drawbacks are that the nucleus-nucleus
potentials adopted for calculating the initial and final wave functions from the Schrödinger
equation cannot be unambiguously defined, and that the spectroscopic factors cannot be
derived from first principles. They have instead to be obtained from more or less rough
“educated guesses.”

The potential model has been applied, for example, to the p-p chain 3He (α, γ)
7Be reaction [11], to the 7Be (p, γ)8B [14], and to the 8Li (n, γ)9 Li [15] reactions.

(c) Parameter fits. Reaction rates dominated by the contributions from a few resonant
or bound states are often extrapolated in terms of R- or K-matrix fits, which rely on quite
similar strategies. The appeal of these methods rests on the fact that analytical expressions
which allow for a rather simple parametrization of the data can be derived from underlying
formal reaction theories. However, the link between the parameters of the R-matrix model
and the experimental data (resonance energies and widths) is only quite indirect. The K-
matrix formalism solves this problem, but suffers from other drawbacks ([16]).

The R- and K-matrix models have been applied to a variety of reactions, and in particular
to the analysis of the 12C (α, γ)16O reaction rate ([17]).

(d) The statistical models. Many astrophysical scenarios involve a wealth of reactions on
intermediate-mass or heavy nuclei. This concerns the non-explosive or explosive burning of
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0.3. THERMONUCLEAR REACTION RATES: MODELS

C, Ne, O and Si, as well as the s-, r- and p-process nucleosynthesis. Fortunately, a large
fraction of the reactions of interest proceed through compound systems that exhibit high
enough level densities for statistical methods to provide a reliable description of the reaction
mechanism. In this respect, the Hauser-Feshbach (HF) model has been widely used with
considerable success. Explosive burning in supernovae involves in general intermediate mass
and heavy nuclei. Due to a large nucleon number they have intrinsically a high density of
excited states. A high level density in the compound nucleus at the appropriate excitation
energy allows to make use of the statistical model approach for compound nuclear reactions
[18] which averages over resonances.

A high level density in the compound nucleus permits to use averaged transmission
coefficients T , which do not reflect a resonance behavior, but rather describe absorption via
an imaginary part in the (optical) nucleon-nucleus potential as described in Ref. [19]. This
leads to the well known expression

σµνi (j, o;Eij) =
π~2/(2µijEij)

(2Jµi + 1)(2Jj + 1)
(43)

×
∑
J,π

(2J + 1)
T µj (E, J, π, Eµ

i , J
µ
i , π

µ
i )T νo (E, J, π, Eν

m, J
ν
m, π

ν
m)

Ttot(E, J, π)

for the reaction iµ(j, o)mν from the target state iµ to the excited state mν of the final
nucleus, with a center of mass energy Eij and reduced mass µij. J denotes the spin, E the
corresponding excitation energy in the compound nucleus, and π the parity of excited states.
When these properties are used without subscripts they describe the compound nucleus,
subscripts refer to states of the participating nuclei in the reaction iµ(j, o)mν and superscripts
indicate the specific excited states. Experiments measure

∑
ν σ

0ν
i (j, o;Eij), summed over all

excited states of the final nucleus, with the target in the ground state. Target states µ in an
astrophysical plasma are thermally populated and the astrophysical cross section σ∗i (j, o) is
given by

σ∗i (j, o;Eij) =

∑
µ(2Jµi + 1) exp(−Eµ

i /kT )
∑

ν σ
µν
i (j, o;Eij)∑

µ(2Jµi + 1) exp(−Eµ
i /kT )

. (44)

The summation over ν replaces T νo (E, J, π) in Eq.43 by the total transmission coefficient

To(E, J, π) =
νm∑
ν=0

T νo (E, J, π, Eν
m, J

ν
m, π

ν
m)

+

E−Sm,o∫
Eνmm

∑
Jm,πm

To(E, J, π, Em, Jm, πm)ρ(Em, Jm, πm)dEm. (45)

Here Sm,o is the channel separation energy, and the summation over excited states above the
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highest experimentally known state νm is changed to an integration over the level density ρ.
The summation over target states µ in Eq. 44 has to be generalized accordingly.

The important ingredients of statistical model calculations as indicated in the above
equations are the particle and gamma-transmission coefficients T and the level density of
excited states ρ. Therefore, the reliability of such calculations is determined by the accuracy
with which these components can be evaluated (often for unstable nuclei).

The gamma-transmission coefficients have to include the dominant gamma-transitions
(E1 and M1) in the calculation of the total photon width. The smaller, and therefore less
important, M1 transitions have usually been treated with the simple single particle approach
T ∝ E3 of [20]. The E1 transitions are usually calculated on the basis of the Lorentzian
representation of the Giant Dipole Resonance (see Supplement E). Within this model, the
E1 transmission coefficient for the transition emitting a photon of energy Eγ in a nucleus
A
NZ is given by

TE1(Eγ) =
8

3

NZ

A

e2

~c
1 + χ

mc2

2∑
i=1

i

3

ΓG,iE
4
γ

(E2
γ − E2

G,i)
2 + Γ2

G,iE
2
γ

. (46)

Here χ(= 0.2) accounts for the neutron-proton exchange contribution, and the summation
over i includes two terms which correspond to the split of the GDR in statically deformed
nuclei, with oscillations along (i=1) and perpendicular (i=2) to the axis of rotational sym-
metry.

Supplement B

0.4 The effective S–factor for a non-resonant reaction

In this supplement we show derivation of the effective S–factors Seff for non-resonant reactions.

0.4.1 Reaction rate and astrophysical S−factor

The reaction rate in the mixed gas of nuclei 1 and 2 is given by

R12 =
1

1 + δ12

N1N2 < σ(E)v >, (47)

where Ni, σ(E) and v are the number density of nucleus i ( i = 1, 2 ), the reaction cross section
for the collision between nuclei 1 and 2 at the bombarding energy ( in the center of mass ) of E
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and the relative velocity between the nuclei 1 and 2, respectively. < A > is the average value over
the Maxwell–Boltzmann distribution

< A >=

(
µ

2πkBT

)3/2 ∫
d3v A exp [−µv2/2kBT ], (48)

where µ, kB and T are the reduced mass M1M2/(M1 + M2), Boltzmann’s constant and the
temperature of the mixed gas, respectively. δ12 avoids double-counting for the case of identical
particles. Transforming the variable in Eq. 47 from v to E using a relationship E = µv2/2, one
obtains

R12 =
N1N2

1 + δ12

(
8

πµ

)1/2(
1

kBT

)3/2 ∫ ∞
0

dE S(E) exp

[
−
(

E

kBT
+ 2πη(E)

)]
, (49)

where η(E) is the Sommerfeld parameter given by η(E) = Z1Z2e
2/~v ,where Zi is the atomic

number of the nucleus i. On deriving Eq. 49 we employed the astrophysical S−factor, which is
defined as in Eq. 36. In nuclear collisions at energies much lower than the Coulomb barrier, main
energy dependences are 1/E and exp[−2πη(E)]. They are attributed to the geometrical cross
section of a nucleus and the penetrability through the Coulomb barrier, respectively. Thus the
energy dependence of the astrophysical S−factor results from the nuclear structure effects and for
non-resonant reactions has a very weak energy-dependence.

In general, the nuclear reaction cross section at energies corresponding to the stellar interior
temperature ( e.g., temperature in the central region of the Sun is about a few keV ≈ 107 K. )
is too small to measure using accelerators. One needs to extrapolate from data at high energies
( ∼ a few 102 keV ) to such a low energy region. In some cases the energy dependence of the
astrophysical S−factor can be important to calculate the thermonuclear reaction rate.

Furthermore, due to developments of experimental techniques, experimental data with much
better accuracy are now provided. At the same time one starts to consider that the weak dependence
of S−factor on the energy should be taken into account. Formulae derived in this supplement are
useful for such cases.

Using new variable x = E/kBT and parameter

a =

[
π
√

2µ
Z1Z2e

2

~

]
1√
kBT

=
b√
kBT

( > 0 ), (50)

Eq. 49 is rewritten as

R12 =
N1N2

1 + δ12

(
8

πµkBT

)1/2 ∫ ∞
0

dx S(xkBT ) exp

[
−
(
x+

a√
x

)]
. (51)

In the next subsection we evaluate the integral 51 by using a conventional stationary phase approx-
imation.

20 Physics of Radioactive Beams - C.A. Bertulani



0.4. THE EFFECTIVE S–FACTOR FOR A NON-RESONANT REACTION

0.4.2 Gamow peak energy

On evaluation of Eq. 51, it is useful to introduce the Gamow peak energy E0 and τ = 3E0/kBT .
They are calculated in the conventional stationary phase approximation.

The phase of exponential in Eq. 51,

g(x) = x+
a√
x
, (52)

behaves like a parabolic function with a positive curvature. Based on the concept of the stationary
phase approximation, we suppose that only a narrow range around the stationary phase position∣∣∣∣dg(x)

dx

∣∣∣∣
x=x0

= 1− a

2
x
−3/2
0 = 0

x0 =
(a

2

)2/3

(53)

contributes to the integration 51. g(x) may be able to be expanded as a Taylor power series in x
around x0 up to the second order (Since g(x) behaves like a quadratic function)

g(x) ≈ g(x0) +
1

2
g′′(x0)(x− x0)

2 , (54)

where g′′(x) is the second derivative of g(x) with respect to x. Eq. 51 is then approximated to

R12 ≈
N1N2

1 + δ12

(
8

πµkBT

)1/2

S(x0kBT )

∫ ∞
0

exp

[
−
(
g(x0) +

g′′(x0)

2
(x− x0)

2

)]
dx

=
N1N2

1 + δ12

(
8

πµkBT

)1/2

S(x0kBT ) exp [−g(x0)]

{
2π

g′′(x0)

}1/2

. (55)

The Gamow peak energy E0 corresponds to the stationary phase position x0 through

E0 = x0kBT . (56)

g(x0) and g′′(x0) are given by

g(x0) = x0 +
a
√
x0

=
(a

2

)2/3

+
(

2 · a
2

)(a
2

)−1/3

= 3
(a

2

)2/3

= 3x0 =
3E0

kBT
= τ

g′′(x0) =
3a

4
x
−5/2
0 =

3

2

(a
2

)
·
(a

2

)−5/3

=
3

2x0

=
9

2τ
, (57)

respectively, where we used Eq. 53. We reach an expression of the conventional formula of the
thermonuclear reaction rate

R12 ≈
1

1 + δ12

N1N2

(
8

πµkBT

)1/2

S(E0)
2

3
(πτ)1/2e−τ , (58)
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where the Gamow peak energy corresponds to the stationary phase position ( the position of the
minimum for g(x) ) and is given by

E0 = x0kBT =

(
bkBT

2

) 2
3

. (59)

On the other hand, τ is the minimum value of g(x) and is given by

τ =
3E0

kBT
= 3

(
b

2

) 2
3

· (kBT )−
1
3 . (60)

Concerning the reaction rate expressed in Eq. 58, three corrections are and will be needed
to treat future experimental data of nuclear reactions with great accuracy. One is for a weak but
significant energy variation of the astrophysical S−factor. Another is for a significant error resulting
from substituting a Gaussian form for the sharply peaked exponential in Eq. 54. The other is for
effects of electron screening (See Ref. [26], for example). We consider only the first two corrections.

Now let us introduce the effective S–factor. From Eqs. 49 and 58, S(E0) is expressed as

S(E0) ≈
{

2

3
(πτ)1/2e−τ

}−1
1

kBT

∫ ∞
0

dE S(E) exp

[
−
(

E

kBT
+ 2πη(E)

)]
=

√
τ

4π

eτ

E0

∫ ∞
0

dE S(E) exp

[
−
(

E

kBT
+ 2πη(E)

)]
. (61)

The r.h.s. of Eq. 61 is defined as the effective S–factor.

0.4.3 Evaluation of integration by uniform expansion

In this subsection we evaluate the effective S–factor

Seff ≡
√

τ

4π

eτ

E0

∫ ∞
0

dE S(E) exp

[
−
(

E

kBT
+ 2πη(E)

)]
=

{
2

3
(πτ)1/2e−τ

}−1 ∫ ∞
0

dx S(xkBT ) exp

[
−
(
x+

a√
x

)]
(62)

taking into account a weak dependence of the astrophysical S−factor on the energy. Assuming that
S(E) is an analytic function of E, one can expand it as a Taylor power series in E around E = 0
and E = E0

S(E) =
∞∑
n=0

1

n!

(
dnS

dEn

∣∣∣∣
E=0

)
En =

∞∑
n=0

1

n!

(
dnS

dEn

∣∣∣∣
E=E0

)
(E − E0)

n

=
∞∑
n=0

1

n!

(
dnS

dEn

∣∣∣∣
E=E0

)
n∑
r=0

(−)r
(
n
r

)
Er

0 E
n−r, (63)
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respectively. Using the power series 63, one can write Eq. 62 in the form

Seff−MT =

{
2

3
(πτ)1/2e−τ

}−1 ∞∑
n=0

(kBT )n

n!

(
dnS

dEn

∣∣∣∣
E=0

)
fn(a) (64)

Seff−MS =

{
2

3
(πτ)1/2e−τ

}−1 ∞∑
n=0

(kBT )n

n!

(
dnS

dEn

∣∣∣∣
E=0

) n∑
r=0

(−)r
(
n
r

)
xr0fn−r(a),

respectively, where

fn(a) =

∫ ∞
0

dx xn exp

[
−
(
x+

a√
x

)]
. (65)

Using a new variable u ≡ xn+1, Eq. 65 is transformed to

fn(a) =
1

n+ 1

∫ ∞
0

du e−Hn(a,u) with Hn(a, u) = u
1

n+1 + au−
1

2(n+1) . (66)

In order to evaluate the integration 66, we employ the uniform approximation. Since the phase in
Eq. 66, Hn(a, u), behaves like a parabolic function with a positive curvature, we may be able to
perform a mapping u→ t which satisfies

Hn (a, u(t)) = t2 + A(a) (67)

u(t = −∞) = 0 , u(t =∞) =∞ ,
du

dt
> 0. (68)

The integration 66 thus reduces to

fn(a) =
1

n+ 1
e−A

∫ ∞
−∞

dt

(
du

dt

)
e−t

2

. (69)

du/dt can be also expanded as a Taylor power series in t around the stationary phase position for
t2 + A(a), i.e. t = 0, and is written as

du

dt
=
∞∑
k=0

tk

k!

(
dk+1u

dtk+1

∣∣∣∣
t=0

)
. (70)

The integration 69 is then described by

fn(a) =
e−A

n+ 1

∞∑
k=0

1

k!

(
dk+1u

dtk+1

∣∣∣∣
t=0

)∫ ∞
−∞

dt tk e−t
2

=
2e−A

n+ 1

∞∑
k=0

1

(2k)!

(
d2k+1u

dt2k+1

∣∣∣∣
t=0

)∫ ∞
0

dt t2k e−t
2

=

√
πe−A

n+ 1

∞∑
k=0

1

22k

1

k!

(
d2k+1u

dt2k+1

∣∣∣∣
t=0

)
, (71)

Physics of Radioactive Beams - C.A. Bertulani 23



0.4. THE EFFECTIVE S–FACTOR FOR A NON-RESONANT REACTION

where we used the formula ∫ ∞
0

dx e−ax
2

x2n =
(2n− 1)!!

2n+1

√
π

a2n+1
. (72)

We calculate the stationary phase position defined as

∂Hn(a, u)

∂u

∣∣∣∣
u=un

= 0, (73)

to begin with. The kth-order derivative of Hn(a, u) with respect to u is written in the form

H(k)
n (a, u) =

∂kHn(a, u)

∂uk

= u
1

n+1
−k
{
Ck(n) + a(−)kDk(n) u−

3
2(n+2)

}
( k ≥ 1 ) (74)

Ck(n) =
k∏
j=1

(
1

n+ 1
− (j − 1)

)
( k ≥ 1 ) (75)

Dk(n) =
k∏
j=1

(
1

2(n+ 1)
+ (j − 1)

)
( k ≥ 1 ). (76)

Using Eqs. 74 − 76, H(1)
n (a, u) is given by

H(1)
n (a, u) = u−

n
n+1

{
1

n+ 1
− a

2(n+ 1)
u−

3
2(n+1)

}
= u−

n
n+1

1

n+ 1

{
1− a

2
u−

3
2(n+1)

}
. (77)

The stationary phase position un is then given by

un =
(a

2

) 2(n+1)
3

=
(τ

3

)n+1

. (78)

One can also obtain the following relationship from Eq. 78

a = 2
(τ

3

) 3
2
. (79)

Since un = u(t = 0)( the property of the mapping u→ t ), A(a) in Eq. 71 is calculated by

A = Hn(a, u(t = 0)) = Hn(a, un). (80)
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Substituting Eqs. 78 and 79 into Eq. 80, one can write A(a) as

A(a) = Hn(a, un) =
(
u

1
n+1

)
+ 2

(τ
3

) 3
2
(
u

1
n+1

)−1/2

=
(τ

3

)
+ 2

(τ
3

) 3
2( τ3 )−1/2

= τ. (81)

Substituting Eqs. 78 and 79 into Eq. 74, one obtains the following expression

Hk = H(k)
n (a, un) =

(τ
3

)1−k(n+1) {
Ck(n) + 2(−)kDk(n)

}
. (82)

Using Eq. 82, H(2)
n (a, un) is expressed by

H2 = H(2)
n (a, un) =

(τ
3

)−(2n+1)
{

1

n+ 1

(
1

n+ 1
− 1

)
+

1

(n+ 1)

(
1

2(n+ 1)
+ 1

)}
=

(τ
3

)−(2n+1) 3

2(n+ 1)2
. (83)

We here rewrite Eq. 71 so as to have similar a structure of Eq. 55

fn(a) =
1

n+ 1

{
2π

H
(2)
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where

Q2k(un[τ ]) =
1

22k

1
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. (85)
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0.4.4 Calculation of Q2k(un[τ ])

In this subsection we will show how to calculate Q2k(un), i.e. how to derive the kth-order derivative
of u(t) at t = 0. However, it is so elaborated that we will present the derivation of only the first
term of Q2k(un).

Firstly, one differentiates Eq. 67 with respect to t. Noted that we don’t write the parameter a
in Hn explicitly in the following.

dHn(u(t))

dt
=
dHn(u)

du
· du
dt

= 2t. (86)

If one substitutes un and t = 0 into Eq. 86, both r.h.s and l.h.s in Eq. 86 vanish so that one cannot
obtain du(t = 0)/dt. Thus, differentiating furthermore Eq. 86 with respect to t, one obtains

d2Hn
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(
du

dt

)2

+
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)
= 2 (87)

and (
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=
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2
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(2)
n (un)

. (88)

From Eqs. 85 and 88, one can find easily

Q0(un) = 1. (89)

Repeating such differentiations, dku(t = 0)/dtk is expressed by a multinomial of H(k)
n (un). Fortu-

nately, Ref. [27] provides the multinomial for Qk(un) up to k = 10. We here show them in case
of k = 2, 4 and 6
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where
Hk = H(k)

n (un). (91)
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Using Eqs. 82, 75 and 76, one can reduce the above expressions to the following simple ones [28]

Q0(un(τ)) = 1
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P2k(n), (92)

where P2k(n) are polynomials of n. We can finally obtain the reaction rate formula for the non-
resonant reaction
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and two expressions of the effective S–factor
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(95)

with

P0(n) = 1

P2(n) = 12n2 + 18n+ 5

P4(n) = 144n4 + 336n3 + 84n2 − 144n− 35

P6(n) = 1728n6 + 4320n5 − 4320n4 − 13320n3 − 288n2 + 6210n+ 665

P2k(n) = · · · · · · · · · · · · (96)

High nth-derivative of S(E) and high-k terms involving τ−k can be negligible practically so that
one can set the maximum numbers of n and k, nM and kN , respectively. For example, if one
chooses nM = 2 and kM = 1, one can obtain the same expression of Eq. (5) in Refs. [29] and [26].

An example of Eq. 94 in case of nM = 5 and kM = 3 is given in Ref. [28].
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0.5 Role of exotic nuclei in nuclear astrophysics

0.5.1 Masses

Nuclear masses (equivalently, binding or separation energies) enter all chapters of nuclear as-
trophysics. Their knowledge is indispensable in order to evaluate the rate and the energetics
of any nuclear transformation.

Figure ?? displays the approximately 2500 nuclides that have been identified by now
in the laboratory. Among them, 286 are naturally occurring, the remaining ones being
artificially produced. As extended as it is, this data set does not quite meet the astrophysics
requirements. This is especially true when dealing with the r-process nucleosynthesis, which
involves a large number of nuclei unidentified in the laboratory.

The development of radioactive beam facilities allows an increasing variety of proton-
or neutron-rich nuclei to be studied, and this tendency will certainly develop further. The
accuracy of the measurements is also significantly improving, and may now reach the 10 keV
level, even for nuclei relatively far from the line of stability. Roughly speaking, these experi-
ments involve high-precision direct mass measurements using high-resolution spectrometers,
or indirect measurements based on the study of the energetics of a nuclear transformation
from which an unknown mass can be deduced from the knowledge of the other participating
nuclei. Despite the experimental advances, many masses remain to be measured in order to
meet the astrophysics needs, so that recourse has to be made to theory.

0.5.2 Nuclei at high temperatures

The existence in a stellar plasma of nuclei in their ground as well as excited states has
an important bearing on various decay modes or nuclear transmutations, and consequently
on different nucleosynthesis processes. In many cases, therefore, the determination of the
ground state mass is insufficient and the evaluation of “nuclear partition functions,” i.e.
sums of the equilibrium populations of the states of a nucleus, has to be carried out. This
is typically the case when abundances have to be evaluated in conditions where reactions
and their reverses equilibrate. An extreme case of this situation is the “nuclear statistical
equilibrium (NSE)” regime.

The fact that nuclear excited states enter various nuclear astrophysics calculations obvi-
ously makes indispensable the knowledge of nuclear spins and energies of these states. Such
information is often missing experimentally, especially when dealing with “exotic” nuclei far
from stability, or even with stable nuclei when high temperatures have to be considered. In
such cases, relatively high-energy levels may indeed be significantly populated.
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0.5.3 Nuclear decays and reactions via weak interaction

Weak interaction processes play a decisive role in a wide variety of astrophysical questions.
A very specific example of the importance of weak interaction concerns the starting trans-
mutation H + H → 2He + e+ + νe of the p-p chain of reactions, which is the essential
H-burning mode in the very large galactic population of stars with masses M . 1 M�. In
more advanced stages of evolution, various sorts of weak interaction processes occur, some
of which are unknown in the laboratory, just as the H + H reaction.

Aside from the capture of continuum electrons on protons (and on iron-group nuclides),
various weak-interaction processes involving neutrinos also have an important bearing on
Type-II supernovae. The probabilities of production of all sorts of (anti-)neutrinos at the
centre of a nascent (hot) neutron star, certain reaction cross sections that determine their
transport rate to the neutron star surface, and the interactions of the emerging neutrinos
with neutrons and protons near that surface are expected to be essential ingredients of the
Type-II supernova models [30].

The excited levels and ground state of a nucleus are very often populated in thermal
equilibrium, possible exceptions being certain isomeric states. These various levels may thus
contribute to the decay of a nucleus, so that its effective β-decay half-life may strongly depart
from the laboratory value.

The development of radioactive beam facilities and of highly efficient detectors has been
quite beneficial. This is exemplified by the determination of the half-lives of the magic or
near-magic nuclei 130Cd, 79Cu, and of their neighbors taking part in the r-process [31]. The
use of a very fast in-flight separation technique has led to the measurement of the β-decay
properties of 44S and 45−47Cl [32], which are of astrophysical interest. The β-decay half-lives
of neutron-rich Fe, Co, Ni and Cu isotopes of r-process relevance have also been obtained
following their production by neutron-induced fission [33]. Measurements concerned with
very neutron-rich nuclei have also been performed following their production in relativistic
projectile fission [34] or in fragmentation reactions [35]. On the proton-rich side, experiments
conducted at several facilities have helped clarifying the location of the proton drip line, and
have provided an ensemble of β-decay rates of relevance to the rp- or αp-processes [36].

0.5.4 Nuclear decays and reactions via electromagnetic interac-
tion

Nuclei immersed in a high-temperature stellar photon bath may be subjected to photodisin-
tegrations of the (γ,n), (γ,p) or (γ,α) types. Because of the experimental (and theoretical)
difficulties raised by the direct determination of photodisintegration rates, especially under
the constraint that the photons obey a Planck distribution law, use is usually made of the
detailed balance theorem applied to the reverse radiative captures of nucleons or α-particles.
This procedure makes clear that the photodisintegration rates depend on temperature T
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and on the reaction Q-value as exp(-Q/kT ). The Coulomb dissociation method [?] with
radioactive beams, to be discussed ahead, is an alternative method to probe some of the
reactions needed.

0.5.5 Charged-particle induced reactions

Direct methods have been, and still are, widely utilized in the case of stable targets, all
efforts being directed towards the development of techniques permitting to reach smaller
and smaller cross sections and/or higher and higher accuracies. Typically, use is made of
a dedicated accelerator delivering for several weeks low-energy ion beams of high intensity
(1 mA) on a target that is able to withstand the heavy beam load (hundreds of watts),
and that is also of high chemical and isotopic purity. A few per mil atoms of impurity can
indeed be responsible for a noise exceeding the expected signal. In the case of the commonly
used inverse kinematics geometry, a heavy-ion accelerator is often used in conjunction with
a windowless gas target of the static or supersonic jet type. New generations of detector
systems and pulse-processing electronics that have primarily been developed for nuclear
structure studies will certainly be most welcome in the attempt to measure sub-picobarn
cross sections.

In the case of unstable targets, two different direct approaches are envisioned, depending
upon the lifetimes of the nuclides involved in the entrance channel. The radioactive target
technique appears most profitable for radio-active nuclides with lifetimes in excess of about
one hour. It has been applied in particular to 22Na (p, γ)23 Mg and 26Alg(p,γ)27Si. In contrast,
the radioactive beam method is appropriate for shorter-lived species, and has without doubt
to be seen as a new frontier in nuclear physics and astrophysics. Two basic techniques can be
used to produce the high-intensity, high-purity radioactive beams that are required for the
study of the low-energy resonances or non-resonant contributions of astrophysical interest.

A major breakthrough is the direct use of medium-energy or relativistic radioactive ion
beams from projectile fragmentation. As an example, this technique has been has been
applied to the direct measurement of 8Li(α,n)11B [38], which has been predicted to be of
interest in an inhomogeneous Big Bang model.

The indirect methods are a very important complement, or even an inevitable alternative,
to the direct measurements concerning reactions on stable as well as unstable targets. This
situation relates in particular to the extreme smallness of the cross sections of astrophysical
interest, or to the incapability of setting up radioactive beams of the required purity and
intensity.

Different indirect approaches have been developed and applied to a more or less large
extent, like (1) the use of transfer reactions, (2) the study of the inverse reactions, or (3)
measurements relating to the decay of radioactive beams. In cases where resonances near or
below the reaction threshold can contribute significantly to the reaction rate, extrapolations
of the rates from high energies to the Gamow window may fail. In such conditions, the
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Breit–Wigner parameters (energy, angular momentum, partial and total widths, and decay
modes) of the involved resonances must be determined independently. In nuclear structure
studies, this information is typically obtained via transfer reactions. They are well suited
for investigations using radioactive beams or targets.

0.5.6 Decay of radioactive beams

In certain cases, radioactive decays may offer an interesting alternative to transfer reactions
for exploring nuclear levels of astrophysical importance. For example, the β-decay of 20Mg
has been studied in order to improve the knowledge of the 20Na level structure above the
19Na + p threshold, and concomitantly of the 19Ne (p, γ)20 Na break-out reaction from the
hot CNO cycle [41].

Similarly, 12C(α, γ)16O has been investigated through the β-delayed α-emission from 16N
[42] - [43], and through the β-delayed proton emission from 17N [44]. These experiments
provide information on the E1 and E2 contributions to the rate, respectively.

Supplement C

0.5.7 Neutrinos as solar thermometers

The Sun serves as a very important test case for a variety of problems related to stellar structure
and evolution, as well as to fundamental physics. The central temperature T� of the Sun is a
nice example of a physical quantity which can be determined by means of solar neutrino detection,
provided that the relevant nuclear physics is known (and neutrino properties are also known).
Surprisingly enough for a star that has all reasons to be considered as one of the dullest astrophysical
objects, the Sun has been for years at the centre of various controversies. One of them is the solar
neutrino problem, referring to the fact that the pioneering 37Cl neutrino-capture experiments carried
out over the years in the Homestake gold mine observe a neutrino flux that is substantially smaller
than the one predicted by the solar models. That puzzle has led to a flurry of theoretical activities,
and to the development of new detectors. These activities have transformed the original solar
neutrino problem into problems. The relative levels of ‘responsibility’ of particle physics, nuclear
physics or astrophysics in these discrepancies have been debated ever since. In Ref. [40], the
discussion is conducted in particular in the light of the several experiment supporting the ideas of
‘oscillations’ between different neutrinos types [39]. In the neutrino oscillation picture, the electron-
neutrino, detected by the chlorine experiment, can transform into a muon-neutrino on its way to
the earth from the center of the Sun. This would explain the smaller number of electron-neutrinos
observed at the earth.
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Figure 7: The solar neutrino spectrum, as calculated with the Standard Solar Model (SSM)
[40].

SSM calculations [40] predict T� with an accuracy of 1% or even better. In order to appreciate
such a result, let us remind that the central temperature of Earth is known with an accuracy of
about 20%. However, let us remind that this is a theoretical prediction which, as any result in
physics, demands observational evidence.

The fluxes of 8B and 7Be neutrinos (see Fig. 1) are given by:

Φ(B) = cBS17
S34√
S33

T 20
� , Φ(Be) = cBe

S34√
S33

T 10
� (97)

where Sij are the low energy astrophysical factors for nuclear reactions between nuclei with atomic
mass numbers i and j, cB and cBe are well determined constants.

The high powers of T� in the above equations imply that the measured neutrino fluxes are
strongly sensitive to T�, i.e. 7Be and 8B neutrinos in principle are good thermometers for the
innermost part of the Sun. On the other hand, the relevant nuclear physics has to be known, which
justifies the present theoretical and experimental efforts for better determinations of the Sij .

Much experimental and theoretical work has been devoted to the reactions of the p-p chains
that are the main energy and neutrino producers in the Sun. In spite of that, problems remain
concerning the astrophysical rates of some of the involved reactions. This is especially the case for
7Be (p, γ)8B (which determines the value of S17 in Eq. 97), which provides the main neutrino
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flux detectable by the chlorine detector, and is considered by some as one of the most important
nuclear reactions for astrophysics. Improved low-energy data are also required for other reactions,
like 3He(3He,2p)4He. Since such low-energy measurements are predominantly hampered by the
cosmic-ray background, improved data could be obtained by underground measurements.

0.6 Indirect methods

Nuclear capture reactions, such as (p, γ) and (α, γ), play a major role in defining our universe.
A primary goal in nuclear astrophysics is to determine rates for capture reactions that
are important in the evolution of stellar systems. However, the reactions of interest often
involve radioactive targets which makes measurements quite difficult or even impossible using
conventional methods. Hence techniques have been developed to determine rates by indirect
methods. For example, precise information on excitation energies and particle decay widths
can be used to make accurate predictions of rates which proceed by resonance capture.
The only reliable method to determine a reaction rate that is dominated by direct capture
has been to measure it at laboratory energies with a low energy particle beam and then
extrapolate the result to energies of astrophysical interest.

0.6.1 Coulomb dissociation method

With increasing beam energy higher lying states of nuclei can be excited with the Coulomb
excitation mechanism. This can lead to Coulomb dissociation, in addition to Coulomb exci-
tation of particle bound states, for a review see , e.g., [45]. Such investigations are also well
suited for secondary (radioactive) beams [37]. Due to the time-dependent electromagnetic
field the projectile is excited to a bound or continuum state, which can subsequently decay.
We briefly mention the very large effects of electromagnetic excitation in relativistic heavy
ion collisions. If 1st order electromagnetic excitation is the dominant effect, experiments
can directly be interpreted in terms of electromagnetic matrix elements, which also enter,
e.g., in radiative capture cross-sections The question of higher order effects is therefore very
important.

In the equivalent photon approximation the cross section for an electromagnetic process
is written as

σ =

∫
dω

ω
n(ω) σγ(ω) (98)

where σγ(ω) denotes the appropriate cross section for the photo-induced process and n(ω)
is the equivalent photon number.

Since the equivalent photon numbers can be calculated theoretically, an experimental
measurement of the Coulomb breakup reaction a + A −→ b + c + A is useful to obtain the
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Figure 8: (a) The Coulomb dissociation method is based on the Coulomb breakup of a
projectile in the electric field of a heavy nucleus. (b) World data for the astrophyhsical S-
factor of the 7Be(p,γ)8B reaction [55], of relevance for understanding the energy production
in the Sun. The solid data point were obtained with the Coulomb dissociation method [55].
The solid curve is a potential model calculation by Bertulani [14]. The dashed curve is a
calculation by Descouvement and Baye [56].

corresponding γ-induced cross section γ + a −→ b + c. Using detailed balance, this cross
section can be related to the radiative capture cross section b+ c −→ a+ γ, of astrophysical
interest [37]. In this case since π/k2 for a photon is approximately 100-1000 times larger than
that of a particle beam, the small cross section is enhanced. The large virtual photon flux
(typically 100-1000 photons per collision) also gives rise to enhancement of the cross section.
However, the method is useful only when the higher order effects are under control, so that
the Eq. 98, obtained in 1st-order perturbation theory, is valid. Higher order effects can be
taken into account in a coupled channels approach, or by using higher order perturbation
theory. The latter involves a sum over all intermediate states n considered to be important.
Another approach is to integrate the time-dependent Schrödinger equation directly for a
given model Hamiltonian [46, 47, 48, 49].

The method has been successfully applied, among others, to the important 12C(α, γ)16O
reaction [50]. With radioactive beams produced by the fragmentation of energetic heavy-
ions, the Coulomb break-ups of 14O, 12N and 8B have been used to study the reactions
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13N(p,γ)14O [51, 52], 11C(p,γ)12N [53], and 7Be(p,γ)8B [54, 55] (see Fig. 8 ).
The Coulomb dissociation can be a very useful tool to obtain information on (n,γ)-

reaction cross sections on unstable nuclei, where direct measurements cannot be done, e.g.,
using nuclei like 124Mo, 126Ru, 128Pd and 130Cd as projectiles. The optimum choice of beam
energy depends on the actual neutron binding energy. Since the flux of equivalent photons
has essentially an 1/ω dependence, low neutron thresholds are favorable for the Coulomb
dissociation method. Note that only information about the (n,γ) capture reaction to the
ground state is possible with the Coulomb dissociation method.

It can also be applied to two nucleon capture reactions. Evidently, they cannot be
studied in a direct way in the laboratory. Sometimes this is not necessary, when the relevant
information about resonances involved can be obtained by other means (transfer reactions,
etc.), like in the triple α-process. Two-neutron capture reactions in supernovae neutrino
bubbles are studied in Ref. [59]. In the case of a high neutron abundance, a sequence of two-
neutron capture reactions, 4He(2n,γ)6He(2n,γ)8He can bridge the A = 5 and 8 gaps. The
6He and 8He nuclei may be formed preferentially by two-step resonant processes through
their broad 2+ first excited states [59]. Another key reaction can be the 4He(αn,γ) reaction
[59].

In the rp-process, two-proton capture reactions can bridge the waiting points [57, 58,
60]. From the 15O(2p,γ)17Ne, 18Ne(2p,γ)20Mg and 38Ca(2p,γ)40Ti reactions considered in
Ref. [58], the latter can act as an efficient reaction link at conditions typical for X-ray bursts
on neutron stars. A 40Ti → p + p + 38Ca. The decay with two protons is expected to be
sequential rather than correlated (“2He”-emission).

0.6.2 Asymptotic normalization coefficients

Direct capture reactions of astrophysical interest usually involve systems where the binding
energy of the captured proton is low. Hence at stellar energies, the capture proceeds through
the tail of the nuclear overlap wave function. The shape of this tail is completely determined
by the Coulomb interaction, so the rate of the capture reaction can be calculated accurately if
one knows its amplitude. The asymptotic normalization coefficient (ANC) C for the system
B ↔ A+ p specifies the amplitude of the single-proton tail of the wave function for nucleus
B when the core A and the proton are separated by a distance large compared to the nuclear
radius. Thus, this normalization coefficient determines the corresponding direct capture rate
[61].

The advantage of the ANC approach is that it provides a method to determine direct
capture S-factors accurately from the results of nuclear reactions such as peripheral nucleon
transfer which can be studied with radioactive beams and have cross sections that are orders
of magnitude larger than the direct capture reactions themselves. Furthermore, direct cap-
ture S-factors derived with this technique are most reliable at the lowest incident energies,
precisely where capture cross sections are smallest and most difficult to measure directly. In
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fact, the ANC approach even permits one to determine S-factors at zero energy, which is not
possible with direct measurements except by extrapolation.

For a peripheral transfer reaction, ANC’s are extracted from the measured angular dis-
tribution by comparison to a DWBA calculation. Consider the proton transfer reaction
a + A → c + B, where a = c + p and B = A + p. The experimental cross section is related
to the DWBA calculation according to

dσ

dΩ
=

∑
lBjB laja

(CB
AplBjB

)2(Ca
cplaja)

2RlBjB laja , (99)

where

RlBjB laja =
σ̃lBjB laja

b2AplBjBb
2
cplaja

. (100)

σ̃ is the calculated DWBA cross section and the b’s are the asymptotic normalization con-
stants for the single particle orbitals used in the DWBA. The sum in Eq. 99 is taken over
the allowed angular momentum couplings, and the C’s are the ANC’s for B → A + p and
a→ c+p. The normalization of the DWBA cross section by the ANC’s for the single particle
orbitals makes the extraction of the ANC for B → A+ p insensitive to the parameters used
in the single particle potential wells [62], in contrast to traditional spectroscopic factors. See
[62] for additional details.

The relation of the ANC’s to the direct capture rate at low energies is straightforward
[61]. The cross section for the direct capture reaction A+ p→ B + γ can be written as

σ = λ|< IBAp(r) | Ô(r) | ψ(+)
i (r) >|

2
, (101)

where λ contains kinematic factors, IBAp is the overlap function for B → A + p, Ô is the

electromagnetic transition operator, and ψ
(+)
i is the incident scattering wave. If the domi-

nant contribution to the matrix element comes from outside the nuclear radius, the overlap
function may be replaced by

IBAp(r) ≈ C
W−η,l+1/2(2κr)

r
, (102)

where C defines the amplitude of the tail of the radial overlap function IBAp, W is the
Whittaker function, η is the Coulomb parameter for the bound state B = A + p, and κ is
the bound state wave number. For example, in the case of16O(p, γ)17F, the necessary C’s
are just the ANC’s determined from the 16O(3He, d)17F transfer reaction studies [63]. Thus,
the direct capture cross sections are directly proportional to the squares of these ANC’s.
In fact, the 16O(p, γ)17F reaction populating the very weakly bound 17F first excited state
provides an extreme test of the connection between the ANC measured in a transfer reaction
and the S-factor measured in direct capture. The approximation of Eq. 102 is excellent at
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Figure 9: A comparison of the experimental S-factors to those determined from the ANC’s
found in 16O(3He, d)17F. The solid data points are from [64], and the open boxes are from
[65]. The solid lines indicate our calculated S-factors, and the dashed lines indicate the ±1σ
error bands. Note that the experimental ground state S-factor may be contaminated by
background at energies below 500 keV.

large radii, but the proximity of the node in the 2s1/2 wave function makes it rather poor
near the nuclear surface. In contrast, Eq. 102 provides a good description of the 17F ground
state 1d5/2 wave function even in the vicinity of the nuclear surface.

Following the prescription outlined above, the S-factors for 16O(p, γ)17F were calculated
with no free parameters. The results are shown in Fig. 9.

Both E1 and E2 contributions have been included in the calculations, but the E1 compo-
nents dominate. The capture of protons by 16O at low energies occurs at very large distances
r due to the extremely small proton separation energy of 17F [64]. Thus, one finds that the
calculated capture cross sections are sensitive neither to the behavior of the overlap func-
tions at small r, nor to the nuclear interaction between 16O and p in the initial state [65].
One finds that S(0) = 0.40 ± 0.04 keV·b for populating the 17F ground state and S(0) =
9.8 ± 1.0 keV·b for populating the first excited state. The uncertainties in these calculated
zero-energy S-factors come almost entirely from those in the corresponding ANC’s. There is
no uncertainty associated with ambiguities in an extrapolation from higher incident energies
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to zero energy, and there is very little theoretical uncertainty, since the capture reaction is
almost purely peripheral at very low incident energies. In the astrophysical domain, the en-
ergy dependence of the capture cross sections is determined entirely by the initial Coulomb
scattering wave functions and the kinematic factors, while their magnitudes are fixed by the
ANC’s. The theoretical uncertainty in the S-factors is less than 2% at an energy of 1 MeV,
as estimated in Ref. [63]. Hence, the uncertainty in S at small energies is due just to the
uncertainties in the ANC’s. However, as the energy increases above 1 MeV, the calculated
S-factors become more sensitive to the behavior of the overlap functions at smaller r and
to the details of the nuclear interaction in the initial state. In that case, the simple di-
rect radiative capture model used here breaks down, and a microscopic approach including
antisymmetrization is needed. This effect has been studied for 7Be(p, γ)8B in [66].

Two previous measurements of 16O(p, γ)17F have determined the capture cross sections
to the ground and first excited states separately [64, 65]. The experimental results for the S-
factors populating the 17F ground and excited states are also shown in Fig. 9. It is clear from
Fig. 9 that the agreement between the experimental results and the predictions based on the
measured ANC’s is indeed very good for proton energies below 1 MeV. At these energies,
the 16O(p, γ)17F S-factors derived from the analysis of the 16O(3He, d)17F measurements [63]
agree with the corresponding direct experimental results to better than 9%.

38 Physics of Radioactive Beams - C.A. Bertulani



Bibliography

[1] J. N. Bahcall, Neutrino Astrophysics, Cambridge University Press, Cambridge, 1989.

[2] I. Iben Jr., Astrophys. J. 41 (1965) 993.

[3] S. Chandrasekhar, Astrophys. J. 74 (1931) 81; S. Chandrasekhar, Rev. Mod. Phys. 56
(1984) 137.

[4] S. E. Koonin, Computational Physics, Addison-Wesley, Reading, Massachusetts, 1986.

[5] H. A. Bethe, G. Brown, J. Applegate e J. M. Lattimer, Nucl. Phys. A324 (1979) 487.

[6] E.E. Salpeter, H.M. van Horn, Ap. J. 155 (1969) 183.

[7] W. A. Fowler, G. E. Caughlan, B. A. Zimmermann, Ann. Rev. Astron. Astrophys. 5
(1967) 525.

[8] G.M. Fuller, W.A. Fowler and M. Newman, Ap. J. 293 (1985) 1.

[9] R.V. Wagoner, Ap. J. Suppl. 18 (1969) 247.

[10] C. Rolfs, and W.S. Rodney, Cauldrons in the Cosmos, University of Chicago Press,
Chicago, 1988.

[11] P. Descouvemont, Tours Symposium on Nuclear Physics III [AIP Conf. Proc. 425] (New
York: Amer. Inst. Phys.), 1998, p. 418.

[12] P. Descouvemont Phys. Rev. C47 (1993) 210.

[13] K. Langanke and C.A. Barnes, Advances in Nuclear Physics 22 Negele J W and Vogt
E (eds) (New York: Plenum Press), 1996, p. 173.

[14] C.A. Bertulani, Z. Phys. A356 (1996) 293; C.A. Bertulani and M. Gai, Nucl. Phys.
A636 (1998) 227.

[15] C.A. Bertulani, J. Phys. G25 (1999) 1959.

39



BIBLIOGRAPHY BIBLIOGRAPHY

[16] F.C. Barker, Nucl. Phys. A575 (1994) 361.

[17] R.E. Azuma et al., Proc. ENAM 95, M. de Saint Simon and O. Sorlin (eds) (Gif-sur-
Yvette: Editions Frontières),1995 , p. 619.

[18] W. Hauser and H. Feshbach, Phys. Rev. A87 (1952) 366.

[19] C. Mahaux, H.A. Weidenmüller, Ann. Rev. Part. Nucl. Sci. 29 (1979) 1.

[20] J.M. Blatt and H.F. Weisskopf, Theoretical Nuclear Physics, Wiley, New York,1952.

[21] E.M. Burbidge et al., Rev. Mod. Phys. 29 (1957) 547.

[22] P.A. Seeger, W.A. Fowler and D.D. Clayton, Astrophys. J. Suppl. 11 (1965) 121.

[23] S.Goriely, Phys. Lett. B436 (1998) 10.

[24] L. Van Wormer et al., Astrophys. J. 432 (1994) 326.

[25] H. Schatz et al., Phys. Rep. 294 (1988)167.

[26] E. G. Adelberger et al., Rev. Mod. Phys. 70 (1998) 1265 .

[27] R. B. Dingle, Asymptotic Expansions: their derivation and interpretation,New York &
London Academic Press (1973).

[28] M. S. Hussein and M. P. Pato, Braz. J. Phys. 27 (1997) 364.

[29] B. K. Jennings and S. Karataglidis, Phys. Rev. C58 (1998) 3002.

[30] H.A. Bethe, Rev. Mod. Phys. 62 (1990) 801.

[31] K.L. Kratz et al.,,Z. Phys. A340 (1991) 419.

[32] O. Sorlin et al., Phys. Rev. C47 (1993) 2941.

[33] M. Bernas et al., Phys. Rev. Lett. 67 (1992) 3661.

[34] M. Bernas et al., Nucl. Phys. A616 (1997) 352.

[35] F. Ameil et al., European Phys. J. A1 (1998) 275.

[36] E. Roeckl 1998 in Proc. of the Hirschegg Workshop on Nuclear Astrophysics, ed. by
Buballa M et al. 1998, pp. 350.

[37] G.Baur, C.A.Bertulani and H.Rebel, Nucl. Phys. A458 (1986) 188.

40 Physics of Radioactive Beams - C.A. Bertulani



BIBLIOGRAPHY BIBLIOGRAPHY

[38] X. Gu et al., Phys. Lett. B343 (1995) 31.

[39] Y. Fukuda et al., Phys. Rev. Lett. 81 (1998) 1158.

[40] J.N. Bahcall, P.I. Krastev and Yu.A. Smirnov, Phys. Rev. D58 (1998) 096016.

[41] A. Piechaczek et al., Radioactive Nuclear Beams III (Gif-sur-Yvette: Editions
Frontières) Morrisey D J (ed) 1993, p. 495.

[42] R.E. Azuma et al., Phys. Rev. C50 (1994) 1194.

[43] Z. Zhao, R.H. France, K.S. Lai, S.L. Rugari, M. Gai, and E.L. Wilds, Phys. Rev. Lett.
70 (1993) 2066.

[44] J.D. King et al.,Tours Symposium on Nuclear Physics III [AIP Conf. Proc. 425], ed.
by Arnould M et al. (eds) 1998 (New York: Amer. Inst. Phys.), p. 372.

[45] C. A. Bertulani and G. Baur, Phys. Rep. 163 (1988) 299.

[46] H. Esbensen, G. F. Bertsch and C. A. Bertulani, Nucl. Phys. A581 (1995) 107.

[47] V. S. Melezhik and D. Baye, Phys. Rev. C59 (1999) 3232.

[48] H. Utsunomia, Y. Tokimoto, T. Yamagata, M. Ohta, Y. Aoki, K. Hirota, K. Ieki, Y.
Iwata, K. Katori, S. Hamada, Y.-W. Lui, R. P. Schmitt, S. Typel and G. Baur, Nucl.
Phys. A654 (1999) 928c.

[49] S. Typel, H. H. Wolter, Z. Naturforsch. 54a (1999) 63.

[50] V. Tatischeff et al., Phys. Rev. C51 (1995) 2789.

[51] T. Motobayashi et al., Phys. Lett. B264 (1991) 259.

[52] J. Kiener et al., Nucl. Phys. A552 (1993) 66.

[53] A. Lefebvre et al. Nucl. Phys. A592 (1995) 69.

[54] T. Motobayashi et al., Phys. Rev. Lett. 73 (1994) 2680.

[55] N. Iwasa et al., Phys. Rev. Lett. 83 (1999) 2910.

[56] P. Descouvement and D. Baye, Nucl. Phys. A567 (1994) 341.

[57] NuPECC Report, Nuclear and Particle Astrophysics, July 16, 1997, I. Baraffe et al.,
F.-K. Thielemann (convener).

Physics of Radioactive Beams - C.A. Bertulani 41



BIBLIOGRAPHY BIBLIOGRAPHY

[58] J. Görres, M. Wiescher and F.-K. Thielemann, Phys. Rev. C51 (1995) 392.

[59] J. Görres, H. Herndl, I. J. Thompson and M. Wiescher, Phys. Rev. C52 (1995) 2231.

[60] H. Schatz et al., Phys. Rep. 294 (1998) 167.

[61] H.M. Xu, C.A. Gagliardi, R.E. Tribble, A.M. Mukhamedzhanov, and N.K. Timofeyuk,
Phys. Rev. Lett.73 (1994) 2027.

[62] C.A. Gagliardi, A.M. Mukhamedzhanov, R.E. Tribble, and H.M. Xu, Phys. Rev. Lett.
80, 421 (1998).

[63] C.A. Gagliardi et al., Phys.Rev. C59 (1999) 1149.

[64] R. Morlock, R. Kunz, A. Mayer, M. Jaeger, A. Muller, J.W. Hammer, P. Mohr, H.
Oberhummer, G. Staudt, and V. Kolle, Phys. Rev. Lett. 79 (1997) 3837.

[65] H.C. Chow, G.M. Griffith and T.H. Hall, Can. J. Phys. 53 (1975) 1672.

[66] A. Csoto, Phys. Lett. B 394 (1997) 247.

42 Physics of Radioactive Beams - C.A. Bertulani


