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0.1. INTRODUCTION

0.1 Introduction

The first experiments with unstable nuclear beams were designed to measure the nuclear
sizes, namely the matter distribution of protons and neutrons. For stable nuclei such exper-
iments are best accomplished with electron beams, which probe the nuclear charge (proton)
distribution. Electron scattering experiments with unstable beams can only be performed
in an electron-nucleus collider. Such machines are not yet available. The easiest solution is
to measure the interaction cross section in collisions of unstable beams with a fixed target
nucleus.

The interaction cross section is defined as the cross section for the change of proton and/or
neutron number in the incident nucleus. To extract the interaction radii of the radioactive
secondary beam nuclei, one has assumed that it can be expressed as [1]

σI(P, T ) = π [RI(P ) +RI(T )]2 (1)

where RI(P ) and RI(T ) are the interaction radii of the projectile and the target nuclei,
respectively. RI(T ) can be obtained from σI in collisions between identical nuclei, while
RI(P ) can be obtained by measuring σI for different targets T [1].

The above equation assumes a separability of the projectile and target radius. This
hypotheses has been tested by Tanihata and collaborators [1]. As an example, the interaction
radii RI for Li and Be isotopes have been obtained using three different targets. The results
are shown in Fig. 1.

In Table 3.1 we show in the first column the interaction radii of several nuclei obtained
with this technique [1]. In the last column the root mean charge radius of some nuclei
obtained by electron scattering, Re

rms, are also shown. One observes that Re
rms is almost

constant for A ≥ 6 , while RI increases with A . One can show that this difference is due
to the definitions of the two radii but not due to a difference between the charge and the
matter distributions. To prove it we use an eikonal calculation for the cross sections. The
rms radius of the matter density can be determined independently of the assumed model
density functions.

0.2 Reaction cross sections

The reaction cross section in high energy collisions is given by

σR = 2π

∫
[1− T (b)]bdb , (2)

where

T (b) = exp

{
−σNN

∫ ∞
−∞

dz

∫
ρP (r )ρT (R + r) d3r

}
(3)
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0.2. REACTION CROSS SECTIONS

Figure 1: Interaction radii for Li and Be isotopes using three different targets [1].

with R = (b, z) . σNN is the nucleon-nucleon cross section at the corresponding bombarding
energy, and ρP (T ) is the projectile (target) matter density distribution. T (b) is know as the
transparency function.

The data compiled in Table 3.1 were obtained by measuring the cross sections for the
interaction of the projectiles listed in the left part of the Table with several targets at a
bombarding energy of 790 MeV/nucleon. At this energy the (free) nucleon-nucleon cross
section is σNN = 40 mb . Also, at these energies we can assume that the interaction cross
sections and the reaction cross sections are equal (the reaction cross section includes nuclear
excitations besides of fragmentation).

The simplest parametrization for the nuclear matter densities are Gaussians. Assuming

ρP (T ) (r) = ρP (T ) (0) exp
{
−r2/a2

P (T )

}
(4)

the integral in Eq. 3 can be performed analytically. One gets

T (b) = exp

{
−π

2 σNNρT (0)ρP (0)a3
Ta

3
P

(a2
T + a2

P )
exp

[
− b2

(a2
T + a2

P )

]}
. (5)
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0.2. REACTION CROSS SECTIONS

The integral in Eq. 2 can also be done analytically by using the identity∫ x

0

1− e−u

u
du = E1(x) + ln x+ γ , (6)

where

E1(x) =

∫ ∞
x

e−u

u
du (7)

is the exponential integral [3], and γ = 0.5772 . . . is the Euler’s constant.

The final expression for σR is [4]1

σR = π
(
a2
p + a2

T

)
[E1(x) + ln x+ γ] (8)

where

x =
π2σNNρT (0)ρP (0)a3

Ta
3
P

(a2
T + a2

P )
. (9)

Except for the very light nuclei (as α-particles and carbon nuclei) the Gaussian parametriza-
tion is not a good one. A Fermi function is more adequate in most cases. However, as
observed by Karol [4] the absorption probability term [1− T (b)] which enters in Eq. 2 is
very little dependent on the lower values of b and consequently on the values of ρP (T ) (r)
for small r′s . Only the surface form of the density is relevant. Thus, one can fit the surface
part of the densities by Gaussians and use the Eq. 8 for σR with the appropriate fitting
parameters ρP (0), ρT (0), aT and aP . If the density distributions are described by a Fermi
function

ρ(r) = ρ0{1 + exp[(r −R)/c]}−1 (10)

it can be shown [4] that [1− T (b)] is well reproduced with Eq. 4 if the parameters in the
Gaussian distributions are given by

t = (4 ln 3) c = (4.39444...) c, a2 =
4Rt+ t2

k
, ρ(0) =

1

2
ρ0 e

R2/a2

, (11)

where

ρ0 =
3A

4πR3 [1 + (π2c2/R2)]
, k = 4 ln 5 = 6.43775... (12)

where A is the mass number.

1Misprints appearing in Ref. [4] were corrected.
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0.2. REACTION CROSS SECTIONS

Rrms

Gaussian Harmonic osc. Electron scatt.
RI (matter) (matter) (charge)a (charge)

4He 1.41 ± 0.03 1.59 ± 0.04 1.57 ± 0.04 1.57 ± 0.04 1.67 ± 0.01
6He 2.18 ± 0.02 2.52 ± 0.03 2.48 ± 0.03 2.21 ±0.03
8He 2.48 ± 0.03 2.55 ± 0.03 2.52 ± 0.03 2.15 ± 0.02
6Li 2.09 ± 0.02 2.35 ± 0.03 2.32 ± 0.03 2.32 ± 0.03 2.56 ± 0.10
7Li 2.23 ± 0.02 2.35 ± 0.03 2.33 ± 0.02 2.27 ± 0.02 2.41 ± 0.10
8Li 2.36 ± 0.02 2.38 ± 0.02 2.37 ± 0.02 2.26 ± 0.02
9Li 2.41 ± 0.02 2.32 ± 0.02 2.32 ± 0.02 2.18 ± 0.02
11Li 3.14 ± 0.16 3.10 ± 0.17 3.12 ±0.16 2.88 ± 0.11
7Be 2.22 ± 0.02 2.33 ± 0.02 2.31 ± 0.02 2.36 ± 0.02
9Be 2.45 ± 0.01 2.38 ± 0.01 2.38 ± 0.01 2.34 ± 0.01 2.52 ± 0.01
10Be 2.46 ± 0.03 2.28 ± 0.02 2.30 ± 0.02 2.24 ± 0.02
12C 2.61 ± 0.02 2.32 ± 0.02 2.35 ± 0.02 2.35 ± 0.02 2.45 ± 0.01

Table 3.1. Comparison of the interaction radii and the rms radii of several light nuclei.
The radii obtained in electron scattering experiments are shown in the last column. Adapted
from Refs. [1, 2].

The upper part of figure 2 shows the nucleon density distributions for 64Cu and 208Pb.
The solid curves are Fermi distributions with R = 4.34 fm and t = 2.15 fm for Cu, and R =
6.32 fm and t = 2.73 fm for Pb, respectively. The dotted curves correspond to the “surface
normalized” Gaussian distributions (Eqs. 11, 12), which cross the Fermi distributions at the
50% and 10% central density values. In the lower part of Fig. 2 one sees the absorption
probabilities [1−T (b)] as a function of impact parameter for collisions of Cu and Pb targets
with N and Ar projectiles at Elab = 2.1 GeV/nucleon. For this energy σNN = 35mb.
The open circles are evaluated using the surface-normalized Gaussian distributions while
the closed circles used Fermi distributions. One can see that the approximation proposed
by Karol [4] works extremely well and is therefore very useful for the calculation of total
reaction cross sections in high energy collisions.

For the light nuclei in Table 1.2 the Gaussian distribution gives a good description of the
full densities. Thus, we can use

ρ(r) =
A

(a
√
π)3

e−r
2/a2

(13)

where A is the mass number, and a is related to the root mean square radius Rrms by

a =

√
2

3
Rrms. (14)
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0.2. REACTION CROSS SECTIONS

Figure 2: Upper figure: Nucleon density distribution for 64Cu and 208Pb. Solid lines represent
the experimental data. Dashed lines are the Fermi distributions, and dashed lines are the
Gaussian distributions which fit the surface region. Lower figure: absorption probability 1−
T (b) for (a) 64Cu+14N, 64Cu+40Ar, 208Pb+14N, and 208Pb+40Ar. Solid circles are calculations
using Fermi (or experimental) distributions, open circles are the calculations using Gaussian
densities, following Karol [4].

The reaction cross sections can be calculated using the matter distributions of the target in
Eq. 2, or by means of the approximation 8. The Rrms radii of the projectiles obtained in
these calculations are listed in the second column of Table 1.2 by a comparison of σR with
the experimental values of σI .

The reactions cross sections were also calculated [1] by using harmonic oscillator wave-
functions to obtain the nuclear densities (see Supplement A). The Rrms radii of these densi-
ties needed to reproduce the experimental values of σI are given in the 3rd an 4th column
of Table 3.1. The charge distributions were obtained by folding the charge distributions of
a proton with the proton density calculated with the harmonic oscillator wavefunctions,

ρp(r) =
1

r2

∑
n`(protons)

R2
n`(r) . (15)
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0.2. REACTION CROSS SECTIONS

Figure 3: Comparison of calculated rms charge radii with those obtained by electron-
scattering experiments with stable nuclei. The calculations using harmonic-oscillator distri-
butions are shown by the solid line. Calculations using Gaussian distributions (which are
the same for protons as for neutrons) is shown by the dashed-line.

One finds

RC
rms =

[(
RP

rms

)2
+ (0.8)2

]1/2

fm (16)

where 0.8 fm is the rms charge radius of a proton.

Supplement A

0.2.1 Harmonic oscillator model

The radial harmonic-oscillator potential is given by

V (r) =
1

2
mω2r2. (17)
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0.2. REACTION CROSS SECTIONS

The Schrödinger equation [
∇2 +

2m

~2
(E − V (r))

]
ψ(r ) = 0 (18)

with

ψn`m(r ) =
Rn`(r)

r
Y`m(θ, φ) (19)

reduces to [
d2

dr2
− `(`+ 1)

r2
+

2m

~2
(En` − V (r))

]
Rn`(r) = 0 (20)

where n is the number of nodes in Rn` including the one at the origin, ` is the angular momentum.
The solution of 20, with 17, is

Rn`(r) = Nn` exp

(
−1

2
νr2

)
r`+1ϑn`(r) (21)

where ν = Mω/~ and ϑn`(r) is the Laguerre polynomial

ϑn`(r) = L
`+1/2
n+`−1/2

(
νr2
)

=
n−1∑
k=0

(−1)k2k
(
n− 1
k

)
(2`+ 1)!!

(2`+ 2k + 1)!!
(νr2)k.

From the normalization condition ∫ ∞
0

R2
n`(r)dr = 1 (22)

one gets

N2
n`=

2`−n+3(2`+ 2n− 1)!!√
π(n− 1)![(2`+ 1)!!]2

ν`+3/2. (23)

The energy eigenvalue corresponding to the wavefunction ψn`m(r) is

En` = ~ω
(

2n+ `− 1

2

)
= ~ω

(
Λ +

3

2

)
= EΛ (24)

with
n = 1, 2, 3, ; ` = 0, 1, 2· ; Λ = 2n+ `− 2

For each `-value there are 2(2` + 1) states with the same energy (degenerate states). The
factor 2 is due to two spin states. However, the eigenvalues corresponding to the same value of
2n + ` (same value of Λ ) are also degenerate. Since 2n = Λ − ` + 2 = even , for a given value
of Λ , the degenerate eigenstates are

(n, `) =

(
Λ + 2

2
, 0

)
,

(
Λ

2
, 2

)
, . . . , (2,Λ− 2), (1,Λ) for Λ = even
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0.2. REACTION CROSS SECTIONS

(n, `) =

(
Λ + 1

2
, 1

)
,

(
Λ− 1

2
, 3

)
, . . . , (2,Λ− 2), (1,Λ) for Λ = odd

so that the number of neutrons or protons with the eigenvalue EΛ is (setting ` = 2k or 2k + 1
according whether Λ is even or odd)

NΛ =

Λ/2∑
k=0

2[2(2k) + 1] for even Λ

NΛ =

(Λ−1)/2∑
k=0

2[2(2k + 1) + 1] for odd Λ. (25)

That is
NΛ= (Λ + 1)(Λ + 2) in either case, (26)

The accumulating total number of particles for all levels up to Λ is∑
Λ

NΛ =
1

3
(Λ + 1)(Λ + 2)(Λ + 3). (27)

The single-particle level scheme predicted by the infinite harmonic-oscillator well is given in
Table 3.2. One observes that closed shells occur at 2, 8 and 20, in agreement with experimental
evidence, but predicted shell closures at higher nucleon numbers are in disagreement.

Degenerate
States n` for NΛ Accumulating

Λ = 2n+ `− 2 E/~ω each Λ number =
∑

Λ NΛ

0 3/2 1s 2 2
1 5/2 1p 6 8
2 7/2 2s, 1d 12 20
3 9/2 2p, 1f 20 40
4 11/2 3s, 2d, 1g 30 70
5 13/2 3p, 2f, 1h 42 112
6 15/2 4s, 3d, 2g, 1i 56 168

Table 3.2 - Quantum numbers of the tridimensional harmonic oscillator.

To obtain the magic numbers 28, 50, 82 and 126 correctly one needs to use a potential with
shape between a square-well and a harmonic oscillator. One normally uses a Woods-Saxon (Fermi)
form

V = −V0

{
1 + exp

(
r −R
a

)}−1

(28)

Physics of Radioactive Beams - C.A. Bertulani 9



0.2. REACTION CROSS SECTIONS

But this is not sufficient. One needs also to include a spin-orbit potential [5]

−f(r) (l · s ) (29)

This term depresses the j = `+1/2 level relative to the j = `−1/2 one. In fact, since J = l + s ,

〈l · s 〉 =
1

2

{
〈j2〉 − 〈`2〉 − 〈s2〉

}
=

1

2
[j(j + 1)− `(`+ 1)− s(s+ 1)]

=

{
1
2
` for j = `+ 1/2

−1
2
(`+ 1) for j = `− 1/2

. (30)

In Fig. 4 we show the effect of the spin-orbit potential on the levels of a potential with a
shape between a square-well and a harmonic oscillator. By adding the spin-orbit term the magic
numbers (on the right) are reproduced.

For the light nuclei the radial density distribution

ρ(r) =
1

r2

∑
[n`]

R2
`n(r) (31)

maybe calculated by using the harmonic oscillator wavefunctions 21.
For a harmonic-oscillator potential the expectation value of the kinetic energy in any state is

equal to the expectation value of the potential energy. Thus the total single-particle energies in a
nucleus of mass number A are

E = mω2A〈r2〉. (32)

Estimating 〈r2〉 by the relation

〈r2〉 ∼=
3

5
R2 (33)

with R ∼= 1.2 A1/3 fm , assuming that N = Z and that all states up to energy EΛ0 are occupied,
we obtain

A =

Λ0∑
Λ=0

2NΛ =
2

3
(Λ0 + 1)(Λ0 + 2)(Λ0 + 3)

∼=
2

3
(Λ0 + 2)3 + terms of order (Λ0) (34)

and
E

~ω
=

Λ0∑
Λ=0

2NΛ

(
Λ +

3

2

)
∼=

1

2
(Λ0 + 2)4 − 1

3
(Λ0 + 2)3 + . . . (35)
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0.2. REACTION CROSS SECTIONS

Figure 4: Shell model configuration of A < 82 nuclei.

Eliminating (Λ0 + 2) from the above equations and retaining terms of the highest powers of
(Λ0 + 2) , we obtain

E

~ω
∼=

1

2

(
3

2
A

)4/3

. (36)

Or, using 32 and 33,

~ω ∼= 41 A−1/3 MeV. (37)

The giant dipole resonances in nuclei are excitations with ∆` = ±1 do in fact vary with the
nuclear mass as A−1/3 and are a good example of application of 37.
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0.3. HALO NUCLEI

Figure 5: (a) Rms radii for the neutron-rich isotopes He, Li, Be, and C. (b) The matter
density radii of several light nuclei compared to the trend R ∼ 1.18 A1/3 fm (dashed line)
for normal nuclei. The solid lines are guide to the eyes.

0.3 Halo nuclei

In order to show that the rms radii obtained by a comparison of reaction cross section cal-
culations with the experimentally determined σI are equal, Fig. 3 shows the calculated rms
charge radii and those obtained by electron-scattering experiments for stable nuclei. Even
the difference between the radii of 6Li and 7Li because of the occupation-number difference
between protons and neutrons is reproduced by the harmonic-oscillator distribution (solid
line). The rms radii obtained with Gaussian distributions (which are the same for protons
as for neutrons) is shown by the dashed-line.

The calculations also show that RI represents the radius where the matter density is
about 0.05 fm−3 for A ≥ 6 nuclei. Now we can understand why the rms radii and
RI behave differently with A . While the rms radii stay constant, the absolute density
increases with A . Therefore RI , which represents constant density, increases with A . These
interesting results are presented in figure 5(a) where the rms radii of He, Li, Be, and C
isotopes are shown [7]. The curves are guides to the eyes.

We observe a great increase in the rms radii for the neutron-rich isotopes 6He, 8He
and 11Li. Thus, the addition of the neutrons to 4He and 9Li nuclei increase their radii
considerably. This might be understood in terms of the binding energy of the outer nucleons.
The large matter radii of these nuclei have lead the experimentalists to call them by “halo
nuclei”. The binding energy of the last two neutrons in 11Li is equal to 315± 50 keV [6]. In
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0.3. HALO NUCLEI

Figure 6: (Nuclear chart showing the halo nuclei (by Haik Simon).

6He it is 0.97 MeV. These are very small values and should be compared with Sn = 6−8 MeV
which is the average binding of nucleons in stable nuclei.

The wavefunction of a loosely-bound nucleon (as in the case of the deuteron) extends far
beyond the nuclear potential. For large distances the wavefunction behaves as an Yukawa
function,

R(r)/r ∼ e−ηr

r
(38)

where (~η)2 = 2mB , with B equal to the binding energy and m the nucleon mass. Thus,
the smaller the value of B is, the more the wavefunction extends to larger r′s . Thus the
“halo” in an exotic unstable nuclei, like 11Li, is a simple manifestation of the weak binding
energy of the last nucleons. What is not as trivial is to know why 6He and 11Li are bound
while 5He and 10Li are not. We will continue this discussion later.

Abnormally large radii were also found for other light neutron-rich nuclei [7] as shown
in figure 5(b).

The matter density radii of these nuclei do not follow the commonly observed trend
R ∼ 1.18 A1/3 fm of normal nuclei. Thus the halo seems to be a common feature of
loosely-bound neutron-rich nuclei. In Table 3.3 we list the spin, parities and mass number
of some light neutron-rich nuclei. The separation energy of one neutron (Sn) and of two
neutrons (S2n) are also shown. One observes that the two-neutron separation energies of
11Li, 14Be and 17B are very small and are responsible for large matter radii of these nuclei,
as seen in figure 5(b). A nuclear chart with the halo nuclei is shown in Figure 6.

Physics of Radioactive Beams - C.A. Bertulani 13



0.4. MICROSCOPIC CALCULATIONS OF NUCLEAR DENSITIES

0.4 Microscopic calculations of nuclear densities

Supplement B

0.4.1 Hartree-Fock theory

Let us consider a system of particles with a central (mean-field) potential, U0, and a two-body
(particle-particle) potential, v, as, e.g., the atomic electron system

H =
A∑
i

[Ti + U0(ri)] +
1

2

∑
ij

v(ri, rj) (39)

where the factor 1/2 prevents double-counting of the two-body interaction energy (see Fig. 7(a)).
Neglecting v(ri, rj) : {

− ~2

2m
∇2 + U0(r)

}
ψi(r) = εi ψi(r). (40)

If antisymmetrization is neglected, the total wavefunction is

φ(1, 2, . . . , A) = ψ1(1)ψ2(2) . . . ψA(A) (41)

The average interaction felt by particle i due to all other particles is

U1(ri) =
A∑
j 6=i

∫
d3rj|ψj(rj)|2v(ri, rj). (42)

Now we add this potential to Eq. 40 and we obtain a new wave equation:{
− ~

2m
∇2 + U0(r) + U1(r)

}
ψi(r) = εiψi(r) (43)

The Hartree method is now clear: one begins with the shell-model Hamiltonian 40 and con-
structs the total wavefunction 41. From this wavefunction one calculates the average two-body
interaction 42. One then solves the new wave equation 43. This sequence2 is repeated (a process
called iteration) until a stable solution is found. In general, only a few iterations are needed if
|U0(r)| � |U1(r)|.

241 → 42 → 43

14 Physics of Radioactive Beams - C.A. Bertulani



0.4. MICROSCOPIC CALCULATIONS OF NUCLEAR DENSITIES

Figure 7: (a) Particles, i and j, interacting with a mean field U0(r) and among themselves with
an interaction v(ri, rj). (b) Labelling of states used in Hartree-Fock calculations.

The Hartree-Fock method is easily derived from a variational method. The total wavefunction
is now antisymmetrized

φ(1, 2, . . . , A) = A ψ1(1)ψ2(2) . . . ψA(A) (44)

where

Aψ1(1)ψ2(2) . . . ψA(A) =
1√
A!

∣∣∣∣∣∣∣∣∣
ψ1(1)ψ2(1) . . . ψA(1)
ψ1(2)ψ2(2) . . . ψA(2)

...
...

ψ1(A)ψ2(A) . . . ψA(A)

∣∣∣∣∣∣∣∣∣ (45)

is a Slater-determinant.
For a small variation δφ , the energy expectation should be stationary. Thus,

δ〈φ|H|φ〉 = 〈δφ|H|φ〉 = 0. (46)

The variation of δφ should preserve the norm of the wavefunctions:∫
|ψi(r)|2d3r = 1. (47)

Now we solve the many-body Hamiltonian with two-body forces only (e.g., the nuclear Hamil-
tonian)

H =
A∑
i

Ti +
1

2

A∑
ij

v(ri, rj) (48)

where Ti = − (~2/2m)∇2
i .

Physics of Radioactive Beams - C.A. Bertulani 15



0.4. MICROSCOPIC CALCULATIONS OF NUCLEAR DENSITIES

The expectation value with the wavefunction 44 is

〈φ|H|φ〉 = − ~2

2m

A∑
i

∫
ψ∗i (r)∇2ψi(r)d3r

+
1

2

A∑
ij

∫∫
ψ∗i (r)ψ∗j (r

′)v(r, r′)ψi(r)ψj(r
′)d3rd3r′

− 1

2

A∑
ij

∫∫
ψ∗i (r)ψ∗j (r

′)v(r, r′)ψi(r
′)ψj(r)d3rd3r′. (49)

The last term is a consequence of antisymmetrization. Applying the variation on ψi(r) we obtain

− ~2

2m
∇2ψi(r) +

A∑
j

∫
d3r′ψ∗j (r

′)v(r, r′)ψj(r
′)ψi(r)

−
A∑
j

∫
d3r′ψ∗j (r

′)v(r, r′)ψj(r)ψi(r
′)

= εiψi(r) (50)

where εi is seen as a Lagrange multiplier that enforces the constraint 47. It has the significance of
a single particle energy.

We can rewrite 50 as

− ~2

2m
∇2ψi(r) +

∫
d3r′U(r, r′)ψi(r

′) = εiψi(r) (51)

where U(r, r′) is the self-consistent field

U(r, r′) = δ(r− r′)
A∑
j

∫
d3r′ v(r, r′)ψj(r

′)ψ∗j (r
′)−

A∑
j

v(r, r′)ψj(r)ψ∗j (r
′). (52)

The first term is the direct term (Hartree field). The second is called the exchange interaction
and is non-local. This non-locality is closely related to the range of the two-body interaction. If we
use a δ-force, then the Fock (or exchange) term is also local.

In constructing the HF (Hartree-Fock) determinant one naturally selects the A lowest energy
wavefunctions. Thus the HF state corresponds to a Fermi sea of particles with a sharp Fermi
surface.

As in the Hartree method, one guesses a initial U (0) , solves 51, finds ψi , calculates 52, finds
new ψ′is , etc, until the desired accuracy is achieved.
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0.4. MICROSCOPIC CALCULATIONS OF NUCLEAR DENSITIES

0.4.2 The Skyrme interaction

The most popular effective interaction used in Hartree-Fock calculations is the Skyrme interaction.
It is based on the fact that a finite range interaction can be simulated by a momentum dependence.
This can be shown by transforming an interaction V (r) , where r = r1−r2 , into momentum space,
i.e.,

〈p |v|p ′〉 =
1

(2π~)3

∫
e−i(p−p ′)·r/~ v(r)d3r. (53)

This integral gives a constant if v(r ) = δ(r ) . A finite range v(r ) will represent a p-dependence
in momentum space.

The simplest form that one may find for 〈p |v|p ′〉 which is rotationally invariant, is

(2π~)3〈p |v|p ′〉 = v0 + v1 p
′2 + v1 p 2 + v2p · p′ (54)

which in coordinate space is related to the momentum dependent operator

v(r) = v0δ(r) + v1

[
p̂ 2δ(r) + δ (r) p̂ 2

]
+ v2 p̂ · δ(r )p̂. (55)

The Skyrme interaction is based on this property and is an effective interaction with a three-
body term [8, 9]

v =
∑
i<j

v(i, j) +
∑
i<j<k

v(i, j, k). (56)

For v(i, j) one uses the form 55 with

v(1, 2) = t0 (1 + x0 P
σ)δ(r1 − r2)

+
1

2
t1

[
δ(r1 − r2)k̂ 2 + k̂ 2 δ(r1 − r2)

]
+t2 k̂ δ(r− r2)k̂

+i W0

[
σ (1) + σ (2 )

] [
k̂× δ(r1 − r2 )k̂

]
(57)

where

k̂ =
1

~
p̂ =

1

2i
(∇1 −∇2)

P σ =
1

2

[
1 + σ (1) · σ (2)

]
. (58)

σ the Dirac matrices which act on the spin part of the wavefunctions. The three-body part of the
Skyrme interaction is also taken as a zero-range (delta function) force,
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v(1, 2, 3) = t3δ (r1−r2) δ (r2−r3) . (59)

The constants t0, t1, t2, t3, x0 and W0 are manipulated so as to adjust the experimental binding
energies and radii. There are several set of parameters often called Skyrme I, II, etc. For example,
the Skyrme III interaction uses

t0 = −1128.75 MeV fm3, t1 = 395 MeV fm5 ,

t2 = −95 MeV fm5 , t3 = 1.4× 104 MeV fm6 ,

W0 = 120 MeV fm5 , x0 = 0.45 . (60)

The parameter t0 describes a pure δ-force with a spin-exchange; t1 and t2 simulate an effective
range, as in Eq. 55. The fourth term in Eq. 57 represents a two-body spin-orbit interaction. It
can be obtained from a normal spin-orbit term in the short range limit.

To implement numerically a Hartree-Fock calculation with the Skyrme potential a little more
algebra is necessary. In a long, but straightforward calculation, it can be shown [10] that the
HF-equation in coordinate space becomes{

−∇ ~2

2m∗(r )
∇+ U(r ) + W · 1

i
(∇× σ)

}
ψi(r) = εi ψi(r ) (61)

where

m∗(r ) = m

[
1 +

2m

~2

1

16
(3t1 + 5t2) ρ

]−1

(62)

U(r ) =
3

4
t0 ρ+

3

16
t3ρ

2 +
1

16
(3t1 + 5t2) τ

+
1

32
(5t2 − 9t1)∇2ρ− 3

4
W0∇ · J (63)

and

W(r ) =
3

4
W0∇ρ. (64)

In the Equations above

ρ(r ) =
∑
i,s,t

|ψi(r, s, t)|2 (65)

is the nucleon density,

τ(r) =
∑
i,s,t

|∇ψi(r, s, t)|2 (66)
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is the kinetic energy density, and

J(r ) = −i
∑
j,t,s,s′

ψ∗j (r, s, t) [∇ψj(r, s′, t)× σss′ ] (67)

is the “spin-orbit density”. s and t denote the spin and isospin quantum numbers, respectively.
We observe that U(r) is local and 61 is a pure differential equation. The non-locality appears

only in the r-dependence of m∗(r) , the effective nucleon mass. For a spherical symmetry 61
reduces to a one-dimensional differential equation of second order in the radial coordinate r . Then
the spin-orbit term in 63 becomes

3

2
W0

(
1

r

∂

∂r
ρ

)
l · s (68)

For those who do not want to write a HF-program, there are many programs of public access.
For example, a very elaborate one is described in the book “Computational Nuclear Physics” [11].

Supplement C

0.4.3 Relativistic mean field theory

It is well known from classical mechanics (see, e.g., [12] that the dynamics of a system of particles
is well defined if a Lagrangian

L (qi, q̇i, t) = T − V (69)

is given. Then, with help of the Euler-Lagrange equations

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 (70)

one obtains the Newtonian equations of motion for the particle coordinates qj . This can also be
generalized in relativistic mechanics [12]. In fact the generalization can be further extended to
continuous systems and to fields, the concept of a Lagrangian density L is needed, so that

L =

∫
Ld3r (71)

It can be shown [12] that if the amplitude of the field is given by φ(r, t) , the Euler-Lagrange
equations of motion for this field are

d

dt

(
∂L

∂(dφ/dt)

)
+

3∑
i=1

d

dxi

(
∂L

∂(dφ/dxi)

)
− ∂L
∂φ

= 0 (72)
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where r ≡ (x1, x2, x3) and

L = L
(
φ,
dφ

dxi
,
dφ

dt
, xi, t

)
. (73)

If the Lagrangian density is a function of many fields φj , there will be an Euler-Lagrangian equation
for each field.

As examples we quote
(a)

L = φ̇φ̇∗ − c2∇φ · ∇φ∗ − µ2
0c

2φφ∗. (74)

We leave as an exercise to show that using the Euler-Lagrange equations 72 leads to

∇2φ− 1

c2

d2φ

dt2
− µ2

0φ = 0 (75)

which is the well-known Klein-Gordon equation. This is a relativistic analog of the Schrödinger
equation for a charged zero-spin particle of rest mass µ0 (e.g., the pion).

(b)

L = − 1

8π

dAµ
dxν

dAµ
dxν
− e

c
ψ†γµAµ ψ + iψ†γµ

∂ψ

∂µ
+mψ†ψ (76)

where Aµ is the electromagnetic four-vector potential Aµ = (A, iφ0) . The above Lagrangian
density describes the dynamics of a Dirac particle in an electromagnetic field. The particle field
consists of four complex scalar quantities appearing in two arrays, ψ and ψ†·ψ can be considered as

a four-element column matrix and ψ† as the adjoint matrix
(
M †

ij = M∗
ji

)
. Matrix multiplication

and summation convention VµWµ = V ·W + V4W4 is assumed in Eq. 76.
The matrices γi are generalization of the Dirac matrices, γ4 = β, γ = iαβ , i.e.,

γi =

(
0 σi
−σi 0

)
, γ4 =

(
1 0
0 −1

)
(77)

where σi, (i = 1, 2, 3) , are the usual Dirac matrices

σ1 =

(
0 1
1 0

)
, σ1 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(78)

using the Euler-Lagrange equations. for the field ψ† one can show that [12] (xµ = (r, ict)) ;

γµ

[
i
d

dxµ
− e

c
Aµ

]
ψ +mψ = 0 (79)

This is the Dirac equation for a charged particle of charge e and mass m interacting with an
electromagnetic field.
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The relativistic mean field theory for the nuclear dynamics is based on a Lagrangian density
that ascribes to each nucleon a Dirac field (or spinor) ψi which interacts with meson fields, i.e.,
the nucleon-nucleon interaction is assumed to arise from the exchange of mesons.

The most common Lagrangian used is given by (for a review of this theory, see [13])

L = ψ (iγµ∂µ −m)ψ +
1

2
∂µσ∂µσ − U (σ)− 1

4
Ωµν Ωµν

+
1

2
m2
ω ωµ ωµ −

1

4
Rµν Rµν +

1

2
m2
ρ ρµρµ −

1

4
FµνFµν

−gσ ψσψ − gω ψγµωµψ − g% ψγµ%µτψ − e ψγµAµψ (80)

where
ψ = ψ†γ4 (81)

σ is the isoscalar-scalar (T = 0, S = 0) σ-meson field;

Ω µν = ∂µων − ∂νωµ, (82)

in terms of the isoscalar-vector (T = 0, S = 1) ω-meson field, ωµ;

Rµν = ∂µ ρν − ∂ν ρ µ − gρ (ρµ × ρν) (83)

in terms of the isovector-vector (T = 1, S = 1) ρ-meson field, ρµ ;

Fµν =
∂Aµ
∂xν
− ∂Aν
∂xµ

(84)

is the familiar expression for the electromagnetic fields tensor; m is the nucleon mass; mσ, mω,
and mρ are the masses of the σ-meson, the ω-meson, and the ρ-meson, respectively, and are the
corresponding coupling constants gρ, gρ, gω .

The σ-meson moves in a potential with self-interacting non-linear cubic (σ3) and quartic (σ4)
terms with strength parameters g2 and g3 , respectively:

U(σ) =
1

2
m2
σσ

2 +
g2

3
σ3 +

g3

4
σ4 (85)

The Euler-Lagrange equations lead to the Dirac equation for the nucleons

{−iα · ∇+ V (r ) + β (m+ S(r ))}ψi = εiψi (86)

where V is a repulsive vector potential

V (r ) = gωω0(r ) + gρ τ3ρ0(r ) + e
1 + τ3

2
A0(r ). (87)
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τ3 is the 3rd component of the isospin operator: t3χp = −1

2
χp, t3 χn =

1

2
χn , where χp, and

χn are the proton and the neutron isospin wave function, respectively. S is the attractive scalar
potential

S(r ) = gσσ(r ) (88)

contributing to the effective Dirac mass

m∗(r ) = m+ S(r ) (89)

The equations for the mesonic fields are also obtained from the Euler-Lagrangian equations, leading
to the Klein-Gordon equations with source terms involving the baryon densities:{

−∆ +m2
σ

}
σ(r ) = −gσ ρs(r )− g2σ

2(r )− g3σ
3(r ){

−∆ +m2
ω

}
ω0(r ) = gω ρν(r ){

−∆ +m2
ρ

}
ρ0(r ) = gρ ρ3(r )

−∆A0(r ) = e ρc(r) (90)

The corresponding source terms are

ρs =
A∑
i=1

ψi ψi

ρv =
A∑
i=1

ψ+
i ψi

ρ3 =
Z∑
p=1

ψ+
p ψp −

N∑
n=1

ψ+
n ψn

ρc =
Z∑
p=1

ψ+
p ψp (91)

These set of equations known as RMF (Relativistic Mean Field) equations are solved self-
consistently by iteration, as in the usual H-F procedure.

A typical set of parameters are

Mσ = 504.89 gσ = 9.111
Mω = 780 g2 = −2.304 fm−1

Mρ = 763 g3 = 13.783
gω = 11.493
gf = 5.507

(92)

where the masses are in MeV.
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The Lagrangian density 80 is based on the hypothesis that the one-pion-exchange potential
contribution to the bulk properties of nuclear matter largely averages to zero [13]. A numerical
implementation of a RMF is given in Ref. [11]. These set of equations known as RMF equations
are solved self-consistently by iteration, as in the usual H-F procedure (see Supplement B).

0.5 Nuclear density calculations

In order to explain the spin, parities, separation energies and size of exotic nuclei consistently
a microscopic calculation is needed. One possibility is to resort to a Hartree-Fock calculation
(see Supplement B). Unfortunately, the H-F theory cannot provide the predictions for the
separation energies within the required accuracy of hundred keV [14].

A fully microscopic consistent solution of this problem seems to be very difficult [17, 18].
However a simple and tractable method was suggested in Ref. [19]. The idea is the following.
The H-F equation for the Skyrme interaction can be written as (see Supplement B).

[
−∇ ~2

2m∗(r)
∇+ V (r)

]
ψi(r) = εiψi(r) (93)

where m∗(r) is the effective mass. The potential V (r) has a central, a spin-orbit and a
Coulomb term

V (r) = Vcentral + Vspin−orbit + VCoulomb (94)

The idea is to multiply the central potential by a constant factor f only for the last
neutron configuration:

Vcentral(r) = fVHF (r),

{
f 6= 1 for last neutron configuration
f = 1 otherwise

(95)
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A Jπ Sn (MeV) S2n (MeV)
6He 0+ 1.87 0.97
8He 0+ 2.58 2.13
9Li 3

2

−
4.06 6.10

10Li (2−) −0.5 ± 0.3 3.6 ± 0.3
11Li 3

2

−
0.82 ± 0.30 0.33 ± 0.09

9Be 3
2

−
1.67 20.56

10Be 0+ 6.81 8.48
11Be 1

2

+
0.51 7.32

12Be 0+ 3.17 3.67
13Be

(
1
2

−
)
−1.8 ± 0.5 1.37

14Be 0+ 2.0 ± 0.5 0.2 ± 0.3
15B 3

2

−
2.77 3.74

16B (0−) −0.6 ± 0.5 2.2 ± 0.5
17B

(
3
2

−
)

1.7 ± 0.5 1.1± 0.7

Table 3.3 - Nuclei with negative separation energies are unstable against neutron decay.
Data are from Refs. [15, 16].

Thus, the last neutron configuration (last orbits) is treated differently from the other
orbits in the H-F potential in order to reproduce the neutron separation energy of the
neutron-rich nucleus. This model was successful to explain most features of the light-neutron
rich nuclei as e.g., the quantities given in Table 3.3 [19, 20]. It can also explain the magnitude
of the nuclear sizes, as shown in Table 3.1. In order to obtain the nuclear sizes, the rms radii
of the occupied nucleon orbits are multiplied by the shell model occupation probabilities,
which are also obtained in the calculations. The column indicated by jhalo in Table 3.3
displays the most probably occupied orbits. The final radius is obtained by adding the core
radius, and is given in the rows indicated by SM.

To understand these results we show in Figure 8 the (a) core and orbital densities, as well
as the (b) shell model densities [core density and orbital density × occupation probability]
for 11Be. The core density is calculated by the original HF potential. It shows a reasonable
agreement with the experimental data. Due to the centrifugal barrier, the orbits with lower
angular momenta have a longer tail and larger rms radii for the same separation energy.
The single-particle orbits with lower angular momenta ` ≤ 1 are very likely to be halo
configurations, while the orbits with higher ` are not. Similar results are obtained for 11Li
[20].
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A jhalo

√
〈r2〉

cal
(fm)

√
〈r2〉

exp
(fm)

9Li (core) 2.45 2.41 ± 0.02
11Li 1p1/2 5.36

2s1/2 7.61
SM 3.26 3.16 ± 0.11

10Be (core) 2.39 2.46 ± 0.03
11Be 2s1/2 6.49

1p1/2 5.96
1d5/2 3.79

SM 2.90 2.86 ± 0.04
15B (core) 2.70 2.83 ± 0.25

17B 2s1/2 5.62
1d5/2 3.95

Table 3.4 - The second column gives the spins of the most probable occupied orbits in the
nuclear halo of several nuclei. The third column is the result of Hartree-Fock calculations
for the rms radii associated with these orbits, and the last column gives the rms radii of the
matter distribution of these nuclei.

The success of the model let us conclude that the outer neutrons and the core have to be
treated differently. That is, a simple mean field approach (as a traditional HF calculation)
is likely to fail.

Of course, the factor f in Eq. 95 is arbitrary (f = 0.82 for the last neutrons in 11Li
[19]) and deserves a satisfactory explanation. It was claimed (e.g., [21]) that this problem
can be remedied by using a relativistic mean field theory (RMF) instead of the usual (non-
relativistic) H-F calculation. A sketch of the RMF-theory is given in Supplement D. An
example of application of these calculations to describe the rms radii of 6He and 8He is
given below following Ref. [22].

The “experimental” matter densities of these nuclei were extracted from σI by using
Eqs. 2 and 3, with densities chosen to reproduce the experimental data. For light nuclei
the harmonic oscillator density distribution (see Supplement A) gives a good approximation.
But, in the same spirit of the HF calculations shown in Figure 8(a and b), different size
parameters were given for the 1s and 1p orbital. The following density is obtained

ρ(r) =
2

π2/3

{
1

a3
e−r

2/a2

+
1

b3

N − 2

3

(r
b

)2

e−r
2/b2
}

(96)

The size parameters a and b are given in Table 3.5. Also shown are the rms radii for
neutrons, protons and nucleons. ∆Rrms = ∆Rrms

n −Rrms
p .
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Figure 8: (a and b) Core and orbital densities (upper figure), as well as the shell model
densities (lower figures). The core and orbital densities are multiplied by the occupation
probabilities. The figures are from ref. [20]. (c and d) Relativistic Mean Field (RMF)
calculations for the ground state densities of 6He and 8He (solid lines).

Fitted par.a) RMS radius (fm) ∆Rrms (fm)
a (fm) b (fm) Rn Rp Rm

4He 1.53 — 1.63 ± 0.03 1.63 ± 0.03 1.63 ± 0.03 0
6He 1.53 2.24 2.59 ± 0.04 1.72 ± 0.04 2.33 ± 0.04 0.87 ±0.06
8He 1.53 2.06 2.69 ± 0.04 1.76 ± 0.03 2.49 ± 0.04 0.93 ± 0.06

Table 3.5 - Parameters used in Eq. 96 to fit the radii of Helium isotopes.

A RMF calculation with the same parameters as those described in Supplement C was
done [22] for the matter density distribution. As shown in Fig. 8(c and d) the agreement,
with the “experimental” distributions is reasonable.

Since the number of neutrons in the outer orbits in 8He is large (4) but ∆Rrms (see Table
3.5) is not much larger than that for 6He, the term “skin” nucleus was coined for 8He [22]
. Neutron skins appear in many nuclei away from the stability line (close to the drip line).
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Figure 9: (a) Reaction cross section for 11Be with Al (upper points) and C (lower points)
targets at two different energies, 33 MeV/nucleon and 790 MeV/nucleon. Hartree-Fock
calculations and phenomenological Gaussian densities are also shown and are compared with
the experiments. (b) Radius parameter used to fit the experimental reaction cross section,
as a function of the neutron excess in several nuclei.

While a considerable number of neutrons can be included in a neutron skin, a neutron halo
is expected to include only a few neutrons in the last orbital.

The fact emerging from the experiments is that the long tail of the matter distribution
in some light neutron-rich nuclei is due to the small binding of the last neutrons. The
contribution from the nucleons in the core and in the valence orbitals to the total matter
distribution yield different distribution shapes. This fact is well displayed in figure 9(a) where
a phenomenological density for 11Be was used to describe its reaction cross section with Al
and C targets at two different energies, 33 MeV/nucleon and 790 MeV/nucleon, respectively.
The 11Be was described as a 10Be-core + a valence neutron. The density distribution of
10Be was assumed to be a Gaussian which describes very well the matter distribution of light
stable nuclei (see Figure 3). The wavefunction of a nucleon with separation energy ε has
a tail of the form e−ηr/r where ~2η2 = 2µε and µ is the reduced mass. Thus, the valence
neutron contributes with a density which is proportional to the square of this distribution.
The summed distribution was used in Eqs. 2 and 3, and the reaction cross section was
compared with the experiment. One sees that a single Gaussian distribution is unable to
describe both set of data simultaneously. But a Gaussian plus a distribution obtained from
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Figure 10: Left side: Light exotic nucleus, with a halo formed by loosely-bound nucleons
and a tight core (11Li). Right side: a normal heavy nucleus (208Pb).

a Yukawa function does it quite well. Also shown is the result of a calculation (solid line)
using the modified HF (MHF) method described by Eqs. 93, 94, 95.

We conclude that the matter distribution in 11Li and 11Be is much like what one sees in
the figure 10. The calculations support the idea that the nuclei possess a “halo” generated
by the loosely-bound neutrons in the last orbit.

0.6 Intermediate energy experiments

σI does not really represent the reaction cross section σR . For loosely-bound nuclei the two
definitions converge since any excitation of these nuclei are likely to lead to their disruption.
Thus, σI ∼ σR for Elab ∼ 500 MeV/nucleon, or greater, with σI defined a in Eq. 1.

In reactions at lower energies the Coulomb repulsion between the nuclei play an important
role. The reaction cross section in intermediate energy experiments is given by

σR = π R2, (97)

where R is the reaction radius of the two nuclei. For high energies R ' R1+R2 , where Ri is
the matter radius of a sharp nuclear density for the nucleus i . In collisions at intermediate
energies the nuclei are displaced due to Coulomb recoil when they are at the distance of
closest approach. Thus situations for which the impact parameter b < R1 + R2 will also
contribute to the interaction cross section.

The recoil due to the Coulomb force implies that, for a collision with impact parameter
b ,the relative distance the nuclei at their closest approach is given by

d = b+
Z1Z2 e

2

µv2
= b+

Z1Z2 e
2

2Ecm

(98)
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where Ecm is the center of mass energy , and µ =
m1m2

m1 +m2

, the reduced mass of the system.

Correcting for the recoil, the interaction radius to be used in 97 should be

R ∼= R0 −
Z1Z2 e

2

2Ecm

= R0

(
1− B

2Ecm

)
, (99)

where

B =
Z1Z2 e

2

R0

(100)

is called the barrier energy.
Thus, 97 becomes

σ ∼= πR2
0

(
1− B

Ecm

)
(101)

To fit the reaction cross sections the following parametrization for R 0 was found useful
[23]:

R0 = r0

(
A

1/3
1 + A

1/3
2 + b

A
1/3
1 A

1/3
2

A
1/3
1 + A

1/3
2

− c+ d

)
(102)

with r0 = 1.1 fm and b = 1.9 . The first two terms correspond to the sum of the nuclear radii
for sharp nuclear distributions. The third term (proportional to b ) accounts for the volume
overlap of the two colliding nuclei. The parameter c is energy dependent and takes care of
the increasing surface transparency as the projectile energy increases. It can be parametrized
as

c = 0.14 + 0.015
Ecm

A
(103)

for energies Ecm/A around 50 MeV/nucleon. At relativistic energies (& 500 MeV/A) it
reaches the asymptotic value of c = 1.9. The factor d = 5 (N2 − Z2)Z1/
(A1A2) accounts for the neutron excess in the target (nucleus 2) and is important only
for the heaviest targets. It can be neglected for light or medium-light ones [23].

In some experiments [24, 25] the total reaction cross section for neutron-rich light nuclei
was measured for several targets at intermediate bombarding energies (Ecm/A ∼ 50 MeV/nucleon).
The reaction cross sections were determined by measuring γ-rays with a 4π-detector. The
emission of γ-rays determines reliable total reaction cross sections over a wide range of
energies, projectiles and targets 3.

A deviation from the parametrization 102 would indicate an abnormal matter distribu-
tion. In Ref. [24] this deviation was stated in terms of the value of r0 needed to reproduce
the σ′rs. In principle r0 should be a constant. Results from Ref. [24] are shown in Fig. 9(b)

3The basic assumption is that a nuclear reaction is characterized by the emission of at least one γ-ray.
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where r2
0 is plotted as a function of the neutron excess for various atomic numbers. One

sees that r2
0 has a strong dependence on (N −Z) for several isotopes. Such a strong depen-

dence is again an evidence that a long-range nuclear-matter distribution is responsible for
the effect. The data show a single trend for all atomic numbers and it is not likely that such
a structure effect will show up independently of the proton number. This long-range tail is
due to an increase of the diffuseness, or a neutron halo (as shown pictorially in Figure 1.10).

The advantage of the 4π−γ measurements of Fig. 9(b) over the high energy experiments
is that the evidence of an abnormally large matter distribution is obtained by a model
independent extraction of the matter radii, while in the high energy experiments an eikonal
model with phenomenological matter distributions was needed in order to extract the rms
radii of the neutron-rich nuclei.

Theoretical predictions for the density distribution of exotic neutron-rich nuclei are not
straight forward. In fact, theoretical calculations only came after the fact, i.e., after the
measurements were done.

0.7 Reaction model with few-body wavefunctions

The approach presented in the previous Sections neglect the correlations between the pro-
jectile (and target) constituents, each projectile nucleon being assumed to carry the same
single particle density [26]. For weakly bound systems such as halo nuclei, however, the
intrinsic few-body nature or granularity of the projectiles imply strong spatial correlations
between the valence nucleons and the more localized core. At incident energies of order 800
MeV/nucleon one must also consider the relevant time scales for a significant motion of these
valence particles inside the projectile and that for the passage of the same particle through
the target interaction region. In breakup studies narrow momentum widths are associated
with these valence particles which have characteristic kinetic energies of order 10–40 MeV
within the projectile. For this reason some reaction models [27, 28] make a sudden approxi-
mation, freezing the position coordinates of the few-body projectile constituents during the
interaction. Physical observables are then obtained by suitably averaging the resulting po-
sition dependent reaction amplitudes over the relevant position probability distributions of
these constituents. This important idea was recognized by Al-Khalili and J.A. Tostevin [29]
and is the subject of this Section (see also Supplement D).

Consider for example 11Li as a pair of neutrons bound to a 9Li core (see Figure 11).
For an impact parameter b of the 11Li center of mass such that the projectile static density
(shaded circle) overlaps the target, many spatial configurations of the constituent bodies will
not overlap the target. The expectation is that the valence nucleon (large b) contribution to
the reaction cross section will be reduced or, alternatively, that the collision will appear more
transparent than otherwise expected. Nishioka and Johnson [30] investigated related sudden
approximation effects on light-ion composite projectile (d, t, 3He and α) cross sections in

30 Physics of Radioactive Beams - C.A. Bertulani
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Figure 11: (a) Schematic representation of the static density (shaded circle) and few-body
adiabatic (frozen coordinate) treatments of the three-body projectile (P)-target (T) collision
at impact parameter b. In the spatial configuration drawn the few-body projectile does not
overlap the target. (b) Definition of position coordinates, in the plane perpendicular to the
beam direction, in the case of a three-body (two valence nucleon+core) projectile.

the energy range 100 ≤ E ≤ 350 MeV/nucleon. The effects were very significant for the
extended deuteron but small for the α particle.

According to Eq. ??, the reaction cross section for projectile P is

σR(P ) = 2π

∫ ∞
0

db b [1− TP (b)] , (104)

where TP (b), the squared modulus of the Glauber S-matrix, is the transparency function of
the collision at impact parameter b. In the optical limit of the Glauber theory the trans-
parency function is given by

TOL
P (b) = exp

[
−σNN

∫
d2x ρ

(z)
P (|x|) ρ(z)

T (|b− x|)
]
, (105)

where

ρ
(z)
i (b) =

∫ ∞
−∞

dz ρi(
√
b2 + z2)
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are the z-integrated densities or thickness functions. Here only the projectile ground state
density enters the calculation and few-body correlations, the granular nature of the projectile,
does not enter explicitly.

For halo nuclei it is more appropriate to separate the core and the valence nucleon
contributions. In the few-body sudden limit, the transparency function is [31],

T SA
P (b) = |〈Φn

0 |SC(bC)Sv(bv)|Φn
0 〉|2 ,

where |Φn
0 〉 is the wavefunction for the n-constituent bodies in the projectile ground state,

the bra-ket denoting integration over these internal coordinates. For a two-body (one valence
nucleon+core) projectile the core-target and valence nucleon-target S-matrices, in the optical
limit, are

SC(bC) =
[
T SA
C (bC)

]1/2
, Sv(bv) ≡ S1(b1) =

[
T SA
N (b1)

]1/2
,

with bC the impact parameter of the core and T SA
N the analogue of Eq. (105) for the nucleon.

For a three-body (two valence nucleon+core) system, then of course

Sv(bv) ≡ S1(b1)S2(b2), (106)

where the coordinates, in the plane perpendicular to the beam direction, are shown in Figure
11. Eqs. (104) through (106) were calculated exactly in the following for realistic two- and
three-body wavefunctions |Φn

0 〉. The explicit forms of the three-body wavefunction for 11Li
are given in [28].

The formalism above was used [29] to calculate reaction cross sections in the static
density and sudden limits for the one- and two-neutron halo nuclei 11Be and 11Li, and the
one-proton halo nucleus candidate 8B, all on a 12C target at 800 MeV/nucleon. A Gaussian

matter distribution is assumed for 12C in all cases with rms matter radius 〈r2〉1/212 = 2.32
fm. With these inputs, and assuming Gaussian matter distributions for the core nuclei with
radii 〈r2〉1/29 = 2.30 fm, 〈r2〉1/210 = 2.28 fm and 〈r2〉1/27 = 2.31 fm, the calculated reaction cross
sections for the core-target subsystems are σR(9Li) = 796 (796 ± 6) mb, σR(10Be) = 813
(813 ± 10) mb and σR(7Be) = 738 (738 ± 9) mb. The empirical values, in parentheses,
are taken from [32]. The deduced core radii agree with those of [2] within error bars. The
calculated nucleon-12C cross section at 800 MeV is σR(N) = 231 mb which also agrees with
experiment [33] within quoted errors. Thus each projectile constituent-target input to the
few-body calculations, the SC and Sv, is consistent with independent empirical data for that
binary system.

Figure 12(a) shows the results of static density and sudden approximation calculations
for the 11Li+12C system for a number of theoretical three-body wavefunctions of 11Li. The
calculated cross sections versus the matter rms radius calculated from the wavefunction
models is shown. The horizontal band shows the experimental interaction cross section
datum σ(11Li) = 1060 ± 10 mb [34] and the vertical dashed line the previously quoted

matter radius 〈r2〉1/211 = 3.10± 0.17 fm [2].
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Figure 12: (a) Calculated static density and few-body adiabatic reaction cross sections at
800 MeV/nucleon incident energy as a function of projectile rms matter radius, for a 12C
target for 11Li projectiles. (b) Same as in (a), but for 11Be.

The (upper) open symbols are the results of the static density model and the (lower)
full symbols those of the sudden approximation calculations for each wavefunction model.
The reduction in the calculated cross sections, or increased transparency of the projectile in
the latter case, is immediately evident. From left to right the diamond symbols correspond
to the P0 through P4 intruder s-wave (Faddeev) model wavefunctions of Thompson and
Zhukov [35], with increasing rms radius. The extreme right hand point is a continuation of
these model wavefunctions (P5) with a 1s-state scattering length of −44 fm and 80% (1s1/2)2

probability. The upright and inverted triangles are calculations using the L6A pairing model
wavefunction [36], which in the static density picture fits the published radial value, and
the weak binding potential 0s-wave intruder wavefunction (G1 of [35]). The straight lines
through these model points are to guide the eye.

The results of these calculations are indeed dramatic. Whereas static density calculations
suggest a matter rms radius of order 3.1 fm, as reported previously, a correct treatment of
the 11Li three-body character now suggests the halo is very much more extended and that
〈r2〉1/211 = 3.55 ± 0.10 fm, firmly in the middle of the range of values generated by intruder
state models which successfully reproduce empirical breakup momentum distributions [35].

Figure 12(b) shows the results of similar calculations but for the one-neutron halo system
11Be. Again the horizontal band shows the experimental cross section datum σ(11Be) =
942 ± 8 mb [32] and the vertical dashed line the previously reported rms matter radius

〈r2〉1/211 = 2.71± 0.05 fm [2]. The results are qualitatively very similar to those of the three-
body 11Li case. The angled dashed line shows the static density calculations and the angled
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Figure 13: Same as figure 12, but for 8B.

solid line and full symbols the sudden model results. In this case these lines connect a large
number of calculations using simple two-body (1s1/2) cluster wavefunctions for 11Be using
binding potentials with a range of geometries and with depth adjusted to reproduce the single
neutron separation energy 0.503 MeV. The solid symbols are the results of sudden model
calculations for 11Be wavefunctions [38] which include the effects of core (10Be) deformation
and excitation. The wavefunction with rms radius 2.92 fm, whose calculated cross section
lies within experimental error bars, best reproduces the excited state spectrum of 11Be.
These wavefunctions generate cross sections which follow precisely the trend of the inert
core calculations and suggest a revised matter rms radius of 〈r2〉1/211 = 2.90± 0.05 fm.

Finally, in Figure 13 we consider the one proton-halo nucleus candidate 8B. The previously
reported value of 〈r2〉1/28 = 2.39 ± 0.04 fm [2] was very close to that for 7Be, 〈r2〉1/27 =
2.33 ± 0.02 fm [2] suggesting, in spite of the very small proton separation energy (0.137
MeV) that the last proton had rather limited extension. The experimental cross section for
8B has been revised to σ(8B) = 798±6 mb and is shown by the horizontal band on the figure.
Using the static density model and a Gaussian density, in the manner of [2], one obtains

a revised static density estimate of 〈r2〉1/28 = 2.42 ± 0.03 fm, shown by the vertical dashed
line. The angled dashed and solid lines are the results of static density and sudden model
calculations for a large number of two-body (0p3/2) cluster wavefunctions for 8B based on
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Woods-Saxon potential geometries. The diamonds use wavefunctions based on the often used
cosh form cluster model interaction [39] and lie on the same lines. Although the differences
between the model calculations are smaller than in the neutron halo cases, they remain very
significant and suggest the rms radius of 8B should be revised to 〈r2〉1/28 = 2.50 ± 0.04 fm,
indicating quite significant extension of the last proton distribution beyond that of the core.

Supplement D

0.8 Cluster aspect correction of σR

The expression for the total reaction cross-section using the eikonal form for the S-matrix, namely

σR= 2π

∫
b db

(
1− |S|2

)
(107)

is valid for nuclei which are close-packed. For halo nuclei, one should consider S as an operator
(depending on the relative coordinate of the two fragments forming the projectile) and thus take
the ground state expectation value of S, viz.,

σR= 2π

∫
b db

(
1−

〈
φ0

∣∣∣Ŝ∣∣∣φ0

〉
|2
)

(108)

Using the eikonal form for S, namely (α stands for other variables of the optical potential)

Ŝ (χ) = exp

− i

}v

∞∫
−∞

V
(√

b2 + z2;α
)= exp [−iχ (b, α)]

one has for purely absorptive potentials〈
φ (α)

∣∣e−iχ(b,α)
∣∣φ (α)

〉
≥ e−i〈φ|χ(b,α)|φ〉

Clearly, σR, calculated with the correct form 〈φ |e−iχ|φ〉 is smaller than that calculated with
the usual eikonal form of the previous discussion. Though proving the above inequality for general
complex V , the numerical calculations presented in the last Section [29], have shown that the trend
is similar. To reproduce the experimental σR, with a smaller calculated σR one requires a larger
radius. The conclusion one reaches is that the radii of halo nuclei are > 10% larger than previously
believed (and shown in Table 3.4).
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Figure 14: Experimental proton shell gap (dots with error bars) for proton deficient the lead
isotopes compared to theoretical predictions.

0.9 Mass measurements of exotic nuclei

A powerful tool for large-scale mass measurements are heavy-ion storage and cooler rings.
As an advantage in comparison to ion traps, storage rings can accumulate in-flight separated
atomic nuclei at their full energy and with large phase space, e.g., many masses can be
measured simultaneously.

The nuclides of interest are produced by projectile fragmentation. The mass-over-charge
ratios are obtained from the Fourier-transformed noise signal of the coasting ions. This
Schottky-Mass-Spectroscopy, is very precise and extremely sensitive. It permits the measure-
ment even of single ions. In the first experiments 104 new masses of proton rich nuclides
ranging from tellurium to plutonium [40] were obtained by direct mass measurement of the
stored projectile fragments and by combining the known Qα values along the α – decay
chains of the trans-bismuth isotopes to masses at their endpoints, determined directly in the
experiment.

As an example selected from the results, Fig. 14 shows the persistence of the lead shell in
dependence from the neutron number. The lead shell gap decreases fast towards the proton
rich side. This is not predicted by the displayed models [41, 42, 43].
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