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0.1. INTRODUCTION

0.1 Introduction

We have seen that state-of-the-art self-consistent Hartree-Fock or shell model nuclear struc-
ture calculations are not able to correctly reproduce the binding energy of 11Li or 14Be.
However, it is possible to numerically adjust the binding energy to the measured experimen-
tal values. In this case, one is able to reproduce the large observed interaction radii with
reasonable accuracy [1]. The proton and neutron matter densities obtained in this way are
represented by the solid lines in the lower part of Fig. 1(a).

Due to the small binding energy and the large spatial extension of the neutrons in the
so-called “halo” [2], one expects the neutron momentum distribution to exhibit a smaller
width than in more deeply bound nuclei. This has indeed been observed in several ways.

Kobayashi et al. [3] observed the fragmentation of 11Li with a radioactive beam of energy
790 MeV/nucleon. Their experimental data for the transverse momentum distribution of
9Li from the reaction 11Li → 9Li + 2n can be found in the bottom half of Fig. 1(b). It
can be fitted with a superposition of two Gaussian distributions of widths ωcore = 95 ±
12 MeV/c and ωhalo = 23 ± 5 MeV/c. By using Goldhaber’s statistical model of the
fragmentation process [4], they were able to interpret the two widths as an indication that the
neutron momentum distribution inside the halo and the core of 11Li are different. However,
alternative explanations of the two-widths shape of the transverse momentum distribution
are possible [5],. It is therefore wise to pursue other complementary ways of determining
the momentum and coordinate space structure of exotic nuclei. For example, one can also
measure the neutron momentum distribution in 11Li by detecting the neutrons from the
decay of 11Li [6, 7].

We will investigate the possibility to further determine the coordinate and momentum
space distribution of neutrons inside weakly bound isotope via pion production with ra-
dioactive beams. In principle, pion production in nucleus-nucleus collisions can be described
with nuclear transport models developed during the last decade [8, 9, 10]. These models
have been very successful to describe particle production in heavy ion collisions. The most
used model is based on the BUU equation. However, they are semi-classical in nature and
therefore lack the capability to properly take into account the special nuclear structure fea-
tures of weakly bound nuclei near the drip line. It is therefore necessary to construct a
more phenomenological model. The model is not able to provide a complete time dependent
description of heavy ion reactions the way the above mentioned transport models can. But
it is more precise as far as utilizing nuclear structure information is concerned. Before, we
have shown a calculation similar to the ones presented in Refs. [12, 13, 14], but using shell
model nucleon densities and energy dependent cross sections. The calculations are to due to
Li, Bauer and Hussein [14].

Supplement A
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0.2. THE BOLTZMANN EQUATION FOR NUCLEON-NUCLEON COLLISIONS

Figure 1: (a) Density distributions for 12C and 11Li. The solid lines are calculated with
the binding energy adjusted shell model. The dotted lines are the Gaussian fits to the
density profiles. (b) Upper figure: Calculated transverse momentum distribution of 9Li in
the reaction 11Li+12C→ 9Li+2n+X. The dashed (dotted) line is obtained by assuming knock
out of two neutrons from the core (halo) of 11Li. The solid line represents the weighted sum
of the two. Lower figure: Comparison with the experimental data.

0.2 The Boltzmann equation for nucleon-nucleon col-

lisions

Let us call dN (r,p, t) the number of particles with positions r and momenta p at time t. If dN
is the number of particles in the volume element d3r and whose momenta fall in the momentum
element d3p at time t, then the distribution function f (r,p, t) is given by

dN = f (r,p, t) d3rd3p (1)

For a particle to be included in dN its position coordinates must lie between ri and ri + ∆ri,
and its momentum must lie between pi and pi + ∆pi, where i runs from 1 to 3.

If there were no collisions, then a short time ∆t later each particle would move from to r +
∆r , and each particle momentum would change from to p + F∆t, where is F the external
force on a particle at r with momentum p. Therefore, any difference between dN (r,p, t) and
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0.2. THE BOLTZMANN EQUATION FOR NUCLEON-NUCLEON COLLISIONS

dN (r + ∆r,p + F∆t, t) is due to collisions, and we may set

[f (r + ∆r,p + F∆t, t)− f (r,p, t)] d3rd3p =

(
∂f

∂t

)
c

d3r′d3p′∆t , (2)

where (∂f/∂t)c is the time rate of change of f due to collisions. Expanding the first term on the
left as a Taylor series about f (r,p, t), we have (here repeated indices mean a summation, e.g.,
aibi = a · b = a1b1 + a2b2 + a3b3)

f (r + ∆r,p + F∆t, t) = f (r,p, t) +

(
∂f

∂ri

pi
m

+
∂f

∂pi
Fi +

∂f

∂t

)
∆t , (3)

where m is the nucleon mass.
In the limit as ∆t→ 0,

∂f

∂ri

pi
m

+
∂f

∂pi
Fi +

∂f

∂t
=

(
∂f

∂t

)
c

(4)

which is known at the Boltzmann equation for f . Note we have used the result that the Jacobian
for the transformation d3r′d3p′ = |J | d3rd3p is unity, where J is the 6× 6 element array,

J =
∂ (x, y, z, px, py, pz)

∂
(
x′, y′, z′, p′x, p

′
y, p
′
z

) . (5)

This assumption is valid only if the collisions are elastic, i.e., if they conserve energy and momentum.
The system of nucleons are often free from external sources, so that one can drop off the term

containing Fi in Eq. 4. However, to account for the effect of each particle interacting with all
other, one introduces the concept of mean-field, U (r,p, t) . This mean-field exerts a force on each
particle, given by −∇rU (r,p, t) . Re-deriving Eq. 4 in terms of a mean field yields

∂f

∂t
+
( p

m
+∇pU

)
· ∇rf −∇rU · ∇rf =

(
∂f

∂t

)
c

(6)

Note that the left hand side of this equation is simply the total time derivative of the distribution
function, Df/Dt. In the absence of collisions, one obtains the Vlasov equation

Df

Dt
=
∂f

∂t
+
( p

m
+∇pU

)
· ∇rf −∇rU · ∇rf = 0. (7)

Let us now assume that the system of nucleons form a dilute system of particles. Dilute means
that the total volume of the gas particles is small compared to the volume available to the gas,

na2 � 1 (8)

where n is the number density of particles and a is the radius of a particle. Since the particles
in a neutral gas do not have long range forces like the particles in a plasma, they are assumed to
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0.2. THE BOLTZMANN EQUATION FOR NUCLEON-NUCLEON COLLISIONS

interact only when they collide, i.e., when the separation between two particles is not much larger
than 2a. The term collision normally means the interaction between two such nearby particles.
A particle moves in a straight line between collisions. The average distance traveled by a particle
between two collisions is known as the mean free path. The mean free path depends on the cross
section σ, and is given by

λ =
1

nσ
. (9)

One consequence of the requirement that the gas be dilute is that λ � a. In other words the
diluteness implies that the mean free path is much larger than the particle size so that a typical
particle trajectory consists of long straight segments interrupted by almost discontinuous changes
of direction when collisions occur. If the gas is dilute, the probability of three body collisions is
much lower than for two body collisions and they can be neglected.

The Vlasov equation, Df/Dt = 0, says that f does not change as we move along the trajectory
of a particle, provided collisions are neglected. Collisions can change f in two ways.

1. Some particles originally having momentum p will have some different momentum after the
collision. This causes a decrease in f .

2. Some particles having other momentum may have the momentum p after a collision, increas-
ing f .

The Boltzmann collisional term in the Boltzmann equation can be written as

Df

Dt
d3rd3p = Cin − Cout (10)

where Cin and Cout are the rates at which particles enter and leave the infinitesimal volume d3rd3p
due to collisions.

Suppose two particle with initial velocities v1and v2 have velocities v′1and v′2 and after a
collision. Since all particles have the same mass, conservation of momentum and energy require
that

v′1 + v′2 = v1 + v2 and
1

2
|v′1|

2
+

1

2
|v′2|

2
=

1

2
|v1|2 +

1

2
|v2|2 (11)

One would like to calculate the final velocities v′1and v′2 from the initial velocities. Since and
have six components we need six equations to solve for them. Four are provided by the conservation
equations. A fifth condition comes from the fact that collisions are coplanar if the forces between
particles are purely radial, i.e., v′1 will lie in the plane of v1and v2 , forcing v′2 to also lie in the
same plane from conservation of momentum. We still need a sixth condition, which must come
from the nature of the force between the particles. The short range nature of the forces allow
us to assume that the collision occurs at essentially only one value of r so we need not account
for the changes of external forces. The unknown velocities are therefore specified once the impact
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0.2. THE BOLTZMANN EQUATION FOR NUCLEON-NUCLEON COLLISIONS

Figure 2: (a) Scattering of an incident beam of particles by a center of force. The impact pa-
rameter is b, and the angle of deflection is Θ. The number of particles scattered into a solid angle
dΩ = 2π sin ΘdΘ lying between Θ and Θ + dΘ must equal the number scattered through im-
pact parameters between band b + db, hence 2πbdb =2πσ (Θ) sin ΘdΘ. (b) Nucleon momentum
averaged nucleon-nucleon cross sections in the reaction 11 Li+12C. Solid lines are the free space
nucleon-nucleon cross sections. Dotted lines are for carbon nucleons colliding with halo neutrons
and dashed lines are for carbon nucleons colliding with core nucleons of 11 Li.

parameter b and the azimuthal orientation φ of the collision is known. For an elastic collision the
magnitude of the relative velocity is a collisional invariant:

|v′1 − v′2| = |v1 − v2| , (12)

which follows from kinetic energy conservation in the center of mass frame. Thus we may specify
the remaining two pieces of information concerning the collision in terms of the change of the
orientation of the relative velocity, i.e., in terms of two angles Θ and φ. In an elastic encounter
the collision occurs in a single plane φ = const., turning the relative velocity v1 − v2 through an
angle Θ without change in the magnitude of the relative velocity. For given intermolecular forces,
the deflection, Θ, depends only on the impact parameter b. The differential cross-section for the
encounter σ (v1,v2|v′1,v′2) is defined so that σdΩ = bdbdφ, where dΩ = 2π sin ΘdΘ.

Consider a beam of particles of number density n1 and velocity v1 colliding with another
beam of particles of density n2 and velocity v2. A particle in the second beam experiences a flux

6 Physics of Radioactive Beams - C.A. Bertulani



0.2. THE BOLTZMANN EQUATION FOR NUCLEON-NUCLEON COLLISIONS

I = n1 |v1 − v2| of particles from the first beam. We consider the number δnc of collisions per
unit time per unit volume which deflect particles from the second beam into a solid angle dΩ,

δnc = σ (v1,v2|v′1,v′2)n1 |v1 − v2|n2dΩ. (13)

Consider the inverse collision where (v1,v2) −→ (v′1,v
′
2). If the molecular processes are

time-reversible, then we expect the reverse cross-section to equal the forward cross-section:

σ (v′1,v
′
2|v1,v2) = σ (v1,v2|v′1,v′2) (14)

It should be noted that this condition of time reversibility is by no means self-evident.
We now evaluate the term Cout. Consider the two streams of particles having the tips of

their momentum vectors in d3p1 and d3p2. The first stream makes up a beam of number density
n1 = f (r,p1, t) d

3p1, and velocity v1, whereas the second stream constitutes a beam of density
n2 = f (r,p2, t) d

3p2 and velocity v2. Substitution for n1 and n2 in the collision rate between the
two beams is

δnc = σ (v1,v2|v′1,v′2) |v1 − v2| f (r,p1, t) f (r,p2, t) dΩd3p1d
3p2. (15)

Since Cout must be equal to the number of collisions per unit time with the volume d3r1d
3p1,

Cout is obtained by multiplying δnc by d3r1 and then integrating over all solid angles, Ω, and
collision partner momenta, p2. Hence,

Cout = d3r1

∫
p2

∫
Ω

δnc

= d3r1d
3p1

∫
d3p2

∫
dΩσ (v1,v2|v′1,v′2) |v1 − v2| f (r,p1, t) f (r,p2, t) . (16)

To evaluate Cin, we consider the reverse collisions between particles in d3p′1 and with momenta
in d3p′2 such that their velocities after collisions lie within d3p1and d3p2, respectively. The number
of such collision per unit volume per unit time is

δn′c = σ (v′1,v
′
2|v1,v2) |v′1 − v′2| f (r,p′1, t) f (r,p′2, t) dΩd3p′1d

3p′2. (17)

Recall that the relative velocity of the particles is a collisional invariant, |v′1 − v′2| = |v1 − v2|,
and from Liouville’s theorem, if the interaction can be described by a Hamiltonian,

d3p′1d
3p′2 = d3p1d

3p2 (18)

Thus assuming reversible collisions, the invariance of the relative velocity and the constant
phase space volume,

δn′c = σ (v1,v2|v′1,v′2) |v1 − v2| f (r,p′1, t) f (r,p′2, t) dΩd3p1d
3p2. (19)
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0.2. THE BOLTZMANN EQUATION FOR NUCLEON-NUCLEON COLLISIONS

The term is Cin obtained by multiplying δn′c by d3r1and integrating over all solid angles, Ω,
and collision partner momenta, p2., i.e.,

Cout = d3r1d
3p1

∫
d3p2

∫
dΩσ (v1,v2|v′1,v′2) |v1 − v2| f (r,p′1, t) f (r,p′2, t) . (20)

Now that we have the rates at which particles leave and enter d3r1d
3p1 we can write the full

Boltzmann equation as

∂f

∂t
+
( p

m
+∇pU

)
· ∇rf −∇rU · ∇rf =∫

d3p2

∫
dΩσ (v1,v2|v′1,v′2) |v1 − v2|

× [f (r,p′1, t) f (r,p′2, t)− f (r,p1, t) f (r,p2, t)] . (21)

which is conveniently abbreviated as

∂f

∂t
+
( p

m
+∇pU

)
· ∇rf −∇rU · ∇rf =

∫
d3p2

∫
dΩσ (Ω) |v1 − v2| [f ′1f ′2 − f1f2] . (22)

We have assumed that the differential cross-section is a function only of the scattering angle Ω
between p1 and p2, since the differential cross-section for a simple spherically symmetric interaction
potential can, due to symmetry, only be a function of the scattering angle. The complete (classical)
Boltzmann equation with the collision integral for binary collisions is a nonlinear integro-differential
equation for the distribution function.

For a system of nucleons the classical Boltzmann equation can be modified to account for
the Pauli principle. The principle states that no nucleon can scatter into a phase space already
occupied by another nucleon. This amounts in modifying the term f1f2 to f1f2 [1− f ′1] [1− f ′2],
where the 1−f ′ terms is zero if the final state is occupied (f = 1). Accordingly, f ′1f

′
2 is modified to

f ′1f
′
2 [1− f1] [1− f2]. Thus, for a nucleon system of particles, the appropriate Boltzmann equation

for a nucleon-nucleon collisions (called the Boltzmann-Uehling-Uhlenbeck, or BUU, equation) is

∂f

∂t
+
( p

m
+∇pU

)
· ∇rf −∇rU · ∇rf =∫

d3p2

∫
dΩσNN (Ω) |v1 − v2|

× {f ′1f ′2 [1− f1] [1− f2]− f1f2 [1− f ′1] [1− f ′2]} . (23)

The collision integral, Eq.23, takes into account the nucleon scattering inside the nuclear
medium. Its form can be justified on general physical grounds, but it can be also derived self-
consistently from the quantum equations of motion of the one-body and two-body density .

Eq. 23 needs as basic ingredients the mean field U and the cross section σNN . Because these
two quantities are related to each other, one should in principle derive them in a self-consistent
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0.2. THE BOLTZMANN EQUATION FOR NUCLEON-NUCLEON COLLISIONS

microscopic approach, as the Brueckner theory. However, in practice the simulations are often done
with a phenomenological mean field and free nuclear cross sections.

The most commonly used mean field is of Skyrme-type, eventually with a momentum dependent
part [15].

The output of Eq. 23 is the distribution function f(r, p, t), which allows one to calculate a
lot of properties of the heavy-ion collisions. Let us quote collective flows, proton and neutron
production rates, (sub-threshold and above threshold) pion and kaon yields, etc. Combining Eq.
23 with a phase-space coalescence model, one can also calculate such quantities as exclusive flows
and intermediate fragment formations.

In order to numerically solve Eq. 23 one needs to go throughout the following general steps:
initialization, mean field propagation, collisions and Pauli blocking. The solution of 23 is usually
Monte Carlo simulated by using the pseudo-particle method. According to these models the dy-
namics is traced by the one-body distribution function f(r,p, t) expanded in terms of a set of
generating functions centered on a finite number of points, Monte Carlo distributed in the whole
phase-space. In this way the dynamics of nucleons is replaced by the dynamics of test-particles.
Between two collisions a test-particle propagates following a classical trajectory determined by
Newton-type equations. In order to have a good approximation of the exact continuous distri-
bution function,f(r,p, t), the number of test-particles per nucleon should be large enough. This
requirement brings about, in the case of a large nucleus, a fast increase of the CPU time needed
for running serial-code simulations.

Let us briefly discuss the general aspects of a typical numerical algorithm. In the first step one
prepares nuclei in the ground state by discretizing the continuous distribution function as a sum
of elementary functions. Here we describe them in terms of Gaussian functions both in coordinate
and momentum space, with fixed widths σr and σp:

f(r,p, t) =
1

ng (4π2σrσp)
3/2

∑
i=1,n

exp
[
− (r− ri)

2 /2σ2
r

]
exp

[
− (p− pi)

2 /2σ2
p

]
(24)

where ng is the number of generating functions per nucleon. This number should be quite large in
order to have a good approximation of the exact continuous distribution function f(r,p, t). The
total number of test-particles (”Gaussians”) is N = ngA, where A is the total number of nucleons
in the nuclear system. The ground state is prepared by a Monte Carlo sampling of the phase space
with a variational self- consistent procedure to reproduce the nuclear binding energy.

Once the initial phase-space configuration of the test particles in the two ground state nuclei is
fixed, the two nuclei are translated and boosted to the center of mass frame where the calculation
is performed. The evolution in time of the system is controlled by dividing the total reaction
time in small time steps, dt (of the order of 0.5 fm/c). During a time step interval the test-
particles are propagated freely in phase-space along the classical trajectories determined by the
Newton equations, with the force term given by the derivative of the mean field. Actually, in the
case of Gaussian generating functions (Eq. 24), it can be shown [16] that the dynamics of test-
particles (“the Gaussians”) is given by Ehrenfest type equations, with the force term replaced by
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0.3. INCLUSIVE π+ AND π− PRODUCTION CROSS SECTION

the convoluted derivatives of the mean field over the given Gaussian:

dri
dt

=
pi
m

+ 〈∇pU (r,p)〉ri,pi
and

dpi
dt

=
ri
m

+ 〈∇rU (r,p)〉ri,pi
. (25)

At the end of each time-step the phase space is searched for allowed collisions. The algorithm for
simulating the collision integral is based on the mean free path, λ. The procedure is as follow [11]:
for a given test particle one searches a possible scattering partner taken as the closest test-particle
inside a sphere of a given radius. Then one estimates the averaged mean free path as λ = (ρσ)−1,
where ρ is the local averaged density and is σ the cross section corresponding to the relative kinetic
energy of the partners. Dividing the calculated mean free path by the relative velocity of the two
test particles, one finds the averaged time-life between two collisions, dtcoll. In terms of dtcoll the
probability for scattering is :

P = 1− exp (−dt/dtcoll) . (26)

If dt is chosen as to have dt << dtcoll then P can be approximated by dt/dtcoll. After the
probability P is calculated the decision for the scattering is made by the Monte Carlo method:
the scattering is decided if P is greater than a generated random number smaller than one. As
soon as a collision is decided, the final momenta of the two scattered test-particles are randomly
generated, with the momentum-energy conservation constraints. The final decision for the scat-
tering is taken only if the final scattering states are not Pauli-blocked. The Pauli-blocking factor
is , (1− f1) (1− f2) where f1 and f2 are the one-body distribution functions calculated in the
phase-space points corresponding to the final states of the scattered test-particles. The decision
about the Pauli-blocking is taken again by Monte Carlo method.

0.3 Inclusive π+ and π− production cross section

Within a Glauber-type multiple collision model, the total number of nucleon-nucleon colli-
sions in the reaction of A+B at an impact parameter b is

N(b) = σ(E)

∫
O
dxdy

∫
dz1dz2ρA(x, y, z1)ρB(x, y − b, z2), (27)

where O is the overlap region of nuclei A and B, and σ(E) is the momentum averaged total
nucleon-nucleon cross section. Since the core nucleons and the halo neutrons have different
momentum distributions in 11Li, σ(E) may be written as

σ(E) = 9
11
σcore(E) + 2

11
σhalo(E). (28)

Since we wish to analytically carry out the bulk of the calculations, we follow Karol [17]
and assume that the nucleon density distribution is a Gaussian function

ρ(r) = ρ(0) exp

(
−r

2

a2

)
. (29)
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0.3. INCLUSIVE π+ AND π− PRODUCTION CROSS SECTION

The integration in Eq. 27 can then be performed analytically to yield the result

N(b) =
σ(E)π2ρA(0)ρB(0)a3

Aa
3
B

a2
A + a2

B

exp

(
− b2

a2
A + A2

B

)
. (30)

Similar forms for the proton-proton and neutron-neutron collision numbers can be obtained
in terms of their density distribution parameters.

Under the assumption that pions are produced through ∆ resonances, the inclusive π+

and π− cross sections can then be written as [13]

dσπ
+

inc

dΩ
= |fN∆(q)|2ZAZB

π2ρZA(0)ρZB(0)a3
ZAa

3
ZB

a2
ZA + a2

ZB

× 2π

∫ ∞
0

bdb exp

[
− b2

a2
ZA + a2

ZB

− σ(E)(AB − 1)ρA(0)ρB(0)a3
Aa

3
B

a2
A + a2

B

exp

(
− b2

a2
A + a2

B

)]
, (31)

dσπ
−

inc

dΩ
= |fN∆(q)|2NANB

π2ρNA(0)ρNB(0)a3
NAa

3
NB

a2
NA + a2

NB

× 2π

∫ ∞
0

bdb exp

[
− b2

a2
NA + a2

NB

− σ(E)(AB − 1)ρA(0)ρB(0)a3
Aa

3
B

a2
A + a2

B

exp

(
− b2

a2
A + a2

B

)]
, (32)

where ρNi and ρZi are the neutron and proton coordinate space densities of nucleus i, and
fN∆(q) is the amplitude for the processN+N → N+∆. The exponentials inside the integrals
represent the product of the proton (Eq. 31) or neutron (Eq. 32) densities with the elastic sur-
vival probability given by exp[− (σ(E)(AB − 1)ρA(0)ρB(0)a3

Aa
3
B) / (a2

A + a2
B) exp (−b2/ (a2

A + a2
B))],.

At beam energies smaller than 1 GeV/nucleon, available experimental data [18, 19] show
that pion are mainly produced through ∆ resonances. Direct processes of the form N+N →
N + N + π account for less than 20 percent and higher resonances have negligible cross
sections.

From the experimental data of n+p collisions [18] and the calculated ratio of the isospin
matrix elements [13], it can be shown that the numbers of π+ and π− produced in n+p
collisions are smaller than that in p+p and n+n collisions, respectively, by about an order
of magnitude. We therefore expect that the above equations are good approximations for
the present purpose of this calculation.

The above considerations do not include the effect of the Pauli-exclusion principle on the
final state nucleons after producing the pions. This should result in a reduction of |fN∆(q)|2
in the nuclear medium. However, to first approximation, this reduction should be the same
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0.3. INCLUSIVE π+ AND π− PRODUCTION CROSS SECTION

for both pion species, and since we are only interested in the ratio of the production cross
sections, the reduction factor will cancel out.

Pion reabsorption accounts for up to 50% of the produced primordial pions in the light
systems studied here [9]. In the same spirit as just described for the Pauli exclusion principle,
the amplitudes fN∆ should be understood as effective amplitudes which already include this
reduction.

Since we are interested in the ratio of the inclusive π+ and π− production, the main
ingredients in the model calculation are then the density parameters and the momentum
averaged cross sections.

We start out by looking for realistic density distributions for protons and neutrons for
all isotopes under consideration. This is accomplished by using a binding energy adjusted
shell model program [1]. As examples for the calculated density distributions, we display in
Fig. 1(a) the neutron and proton densities for 12C (upper part) and 11Li (lower part) by the
solid lines.

The results of the Gaussian fit to the calculated density distributions are represented by
the dotted lines. In Table 9.1, we list the obtained values for ρ(0) and a for proton and
neutron density distributions for all Li-isotopes used in the subsequent calculations as well
as the corresponding values for 12C.

ρn(0) an ρp(0) ap ρ(0) a
(fm−3) (fm) (fm−3) (fm) (fm−3) (fm)

12C 0.1148 2.110 0.1120 2.128 0.2268 2.120
7Li 0.1051 1.897 0.1121 1.688 0.2168 1.797
8Li 0.1151 1.984 0.0996 1.755 0.2134 1.885
9Li 0.1215 2.071 0.0989 1.760 0.2178 1.952
11Li 0.1115 2.346 0.0851 1.851 0.1922 2.175

Table 9.1: Parameters of the Gaussian fits to the nucleon density distributions in Li-isotopes and
12C.

For calculating the momentum averaged nucleon-nucleon cross sections, one chooses the
momentum space distribution functions such that the results agree with know experimental
data.

One such comparison is performed in Fig. 1(b). In the upper part, one uses a Fermi
gas model for the momentum distribution of the neutrons in 11Li. One assumes different
Fermi momenta for core and halo neutrons. The fitted values are PF (core) = 158 MeV/c
and PF (halo) = 38 MeV/c which coincide with the one inferred from the experimental
data by using the Goldhaber model. By randomly picking 2 neutron momenta from within
these Fermi spheres and adding their momenta, one obtains a recoil spectrum for 9Li in
the projectile rest frame, employing the assumptions entering the Goldhaber model [4]. By
picking two neutrons from the halo, one obtains the dotted curve in Fig. 1(b). The dashed
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curve is the result of using the same procedure on two core neutrons. The solid curve is the
result of an addition of the two contributions with the proper weights as measured in the
experiment of Kobayashi et al. [3]. For purposes of comparison, all curves in the upper part
of Fig. 1(b) were normalized to the same value. In the lower part of this figure, we compare
the simulated 9Li transverse momentum spectra to the data of Kobayashi et al. [3]. One can
see that one is able to reliably fit the experimental observables.

We obtain the momentum distribution averaged nucleon-nucleon cross sections by inte-
grating σ(

√
s) weighted with the momentum distributions of target and projectile,

σ(Ebeam) =

∫
fA(pA)fB(pB − pbeam)σ(

√
s(pA,pB))d3pAd

3pB. (33)

Here, fi(p) are the momentum distributions of target (i = A) and projectile i = B.
For the purpose of this calculation, one can use the well known parametrizations of

Cugnon [20] for the free space elastic and inelastic nucleon-nucleon cross sections as a function
of the available center of mass energy,

√
s, in a nucleon-nucleon collision.

σel(
√
s) =

35

1 + 100(s− 1.8993)
+ 20, (

√
s > 1.8993)

σinel(
√
s) =

20(
√
s− 2.015)2

0.015 + (
√
s− 2.015)2

, (
√
s > 2.015). (34)

In this parameterization,
√
s is measured in GeV and σ in mb.

In Fig. 2(b), we display the results for σinel(Ebeam) and σtotal(Ebeam) for three different
cases. The solid lines are for free nucleons. In this case, the distribution function f are
δ-functions, and we have σ(Ebeam) = σNN . The threshold energy for pion production is in
this case Eth

beam/nucleon = 290 MeV.
The dashed and dotted lines represent the case that the target is a carbon nucleus. fA(p)

is then a Fermi gas distribution function with Fermi momentum of 221 MeV/c determined
from the carbon fragmentation experiment. The dashed lines are obtained by using the
momentum distribution of 11Li core neutrons for fB, and the dotted line represents the case
that the halo neutron momentum distribution is used. In these cases, the threshold energies
for pion production are 70 MeV and 120 MeV, respectively.

One can see from Fig. 2(b) that the distribution averaged value of the total nucleon-
nucleon cross section is hardly affected by the momentum distribution of nucleons in target
and projectile. However, the averaged inelastic cross section shows a very large effect close
to the threshold.

In Table 9.2, one sees the results for the ratio

E =
σπ

−
inc − σπ

+

inc

σπ
−

inc + σπ
+

inc

(35)
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for the systems ALi + 12C (A = 7, 8, 9, 11) with σ = 40 mb and 25 mb. These two
values for σ are chosen to represent the case for nucleus-nucleus interactions around the
pion production threshold (Ebeam ≈ 200 MeV/nucleon → σ ≈ 25 mb) and for reactions at
higher beam energies (Ebeam ≈ 800 MeV/nucleon → σ ≈ 40 mb). For comparison, we also
present the ratio E0 for the two cross section which results from simple counting arguments
of neutrons and protons or, equivalently, from assuming that protons and neutrons have the
same density distribution in Eq. 35,

E0 =
NANB − ZAZB
NANB + ZAZB

. (36)

The ratio E is sensitive to the difference between proton and neutron density distribution
[12].

7Li+12C 8Li+12C 9Li+12C 11Li+12C
E(40mb) 0.1153 0.2221 0.2955 0.3951
E(25mb) 0.1143 0.2210 0.2939 0.3927

E0 0.1429 0.2500 0.3333 0.4545
Table 9.2: Comparison of the computed normalized cross section differences between negative and

positive pion production, E, for two different values of σ and the same quantity obtained from
simple counting of nucleons, E0, for reactions of different Li isotopes with 12C.

0.4 Pion energy spectra

If we want to study pion energy spectra, it is clearly not sufficient any more to use energy
averaged production cross sections. In an exploratory study of pion spectra with exotic
nuclei, a modified Fermi gas model can be used. It was first used by G. Bertsch in the study
of threshold pion production [21].

For the individual nuclei, we assume that the phase space distribution function can be
separated into coordinate and momentum parts. For the momentum space distribution of
the colliding nuclei we use a simplified form of two homogeneously filled Fermi spheres, the
centers of which are separated by the beam momentum

fAB(p) = θ(pfA
− |p|)A+ θ(pfB

− |p− pbeam|)B. (37)

Here pfA
and pfB

are the Fermi momenta of the projectile of mass A and target of mass
B respectively. We will use the Fermi momenta for carbon and 11Li extracted from the
experimental data as we have discussed in the previous Section.

Pion energy spectra in the reaction A + B can then be calculated as a sum of the pion
energy distribution in each nucleon-nucleon collision with all possible momenta within the
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Fermi spheres (
dσπ
dE

)
AB

= C

∫ (
dσπ(s)

dE

)
NN

fA(pA)fB(pB)d3pAd
3pB, (38)

where C is a constant coming from the integration over the impact parameter, which is
irrelevant for the following discussions. s is the square of the center of mass energy of the
two colliding nucleons.

To calculate the pion energy distribution (dσπ/dE)NN in each nucleon-nucleon collision,
we assume that pion production is proceeding via the ∆ resonance. The mass distribution
of the ∆ resonance is taken from Y. Kitazoe et. al. [19] and is given by

P (M∆) =
0.25 Γ2(q)

(M∆ −M0)2 + 0.25 Γ2(q)
, (39)

where M0 = 1232 MeV, and the width Γ(q) of the resonance is parametrized as

Γ(q) =
0.47q3

[1 + 0.6(q/mπ)2]m2
π

. (40)

q is the pion-momentum.
The ∆ is assumed to be produced isotropically in the nucleon-nucleon center of mass

frame, and one can also assume that the decay of the resonance has an isotropic angular
distribution in the ∆ rest frame. The decay of the resonance can then be calculated using
a Monte Carlo integration technique. This leads to a pion energy spectrum in the ∆ rest
frame which is finally Lorentz transformed into the laboratory frame.

The integration in Eq. 38 for calculating the pion spectra in the reaction A + B can
be performed with a Monte Carlo integration method. One generates pairs of colliding
nucleons from the projectile and the target, and isospin quantum numbers are assigned to
these nucleons according to the N/Z ratios of the projectile and the target. Then, one can
use available experimental data [18, 22] for pion production cross sections in nucleon-nucleon
collisions in all possible isospin channels.

One such calculation is performed for the reaction 11Li+12C at various beam energies. To
show the sensitivity of the pion energy spectra on the nucleon momentum distribution of the
radioactive nuclei, Fig. 3(a) shows the π− spectra calculated by using the core Fermi momen-
tum and halo Fermi momentum for the 11Li projectile, respectively. The solid histograms are
calculated with pfA

= pf (halo) = 38 MeV/c and the dotted histograms are calculated with
pfA

= pf (core) = 158 MeV/c. These two calculations simulate the situations that nucleons
coming from 12C collide with the halo and core nucleons of the 11Li, respectively [14].

A strong sensitivity of the pion spectra to the nucleon momentum distribution can be
seen, in particular for beam energies smaller than about 300 MeV/nucleon. Moreover, the
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0.4. PION ENERGY SPECTRA

Figure 3: (a) π− kinetic energy spectra in the reaction 11Li+12C at beam energies of 600, 300
and 150 MeV/nucleon. The solid lines are calculated with pfA

= pf (halo) and the dotted
lines are calculated with pfA

= pf (core). (b) Distribution of the center of mass energy above
pion production threshold for pairs of colliding nucleons in the reaction 11Li+12C. The solid
and dotted lines are calculated under the same conditions as in (a).

different slopes of the two curves indicate that the different momentum distributions of core
and halo neutrons can be seen experimentally.

Of course, one needs to know how to disentangle the pions produced by the core and
by the halo neutrons. One can do this in two ways: First, one can separate central and
peripheral collisions via some impact parameter trigger. Since the halo neutrons should
contribute stronger to pion production in peripheral collisions, their effect can be isolated.
A second and more tractable way to isolate the effect of the halo neutrons is a subtraction
method. Here one can utilize the fact that a 9Li nucleus contains the same core neutrons
as 11Li. Thus, if one subtracts the pion spectrum produced in a 9Li induced reaction from
that of a 11Li induced and otherwise identical reaction, the pion spectrum due to the halo
neutrons can be obtained.

Presently available radioactive beam facilities can produce high quality 11Li and 9Li
beams. Using these, the different neutron momentum distributions of core and halo neutrons
in 11Li shows up as contributions to the pion energy spectra with different slopes in 11Li and
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9Li induced reactions. One estimates [14] that a beam of 105 11Li per second at a beam energy
of 300 MeV/nucleon would produce about 104 pions per second. With this production rate,
a high quality experiment using a pion spectrometer can be performed.

As can be seen from Fig. 3(a), the difference in the slope of the pion spectra is not so
obvious at beam energies above 600 MeV/nucleon. This can be understood by looking at the
distribution of the center of mass energy,

√
s, of the two colliding nucleons in the reaction

A+B

F (s) =

∫
fA(pA)fB(pB − pbeam)δ(s− 2m2

n − 2EAEB + 2pA · pB)d3pAd
3pB. (41)

Here we take on-shell nucleons so that Ei = (p2
i +m2

n)1/2 for i = A,B.
In Fig. 3(b) we present the distribution of

√
s− (2mn +mπ), which is the total available

center of mass energy above pion production threshold in nucleon-nucleon collisions. The
calculation was done [14] for the reaction 11Li + 12C at beam energies of 200 MeV/nucleon
and 800 MeV/nucleon. Again, the solid histograms are the results using pfA

= pf (halo) and
the dotted ones using pfA

= pf (core). The effect of different internal momentum distribu-
tions is obvious at lower energies, but as the beam energy gets much larger than the pion
production threshold energy, the effect becomes less obvious.

One can thus see that pion production with radioactive nuclei provides an alternative
way for further determination of the properties of exotic nuclei.

Physics of Radioactive Beams - C.A. Bertulani 17
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