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0.1. INTRODUCTION

0.1 Introduction

The study of nuclear physics demands beams of energetic particles to induce nuclear reactions
on the nuclei of target atoms. It was from this need that accelerators were born. Over
the years nuclear physicists have devised many ways of accelerating charged particles to
ever increasing energies. Today we have beams of all nuclei from protons to uranium ions
available at energies well beyond those needed for the study of atomic nuclei. This basic
research activity, driven by the desire to understand the forces which dictate the properties
of nuclei, has spawned a large number of beneficial applications. Amongst its many progeny
we can count reactor- and spallation-based neutron sources, synchrotron radiation sources,
particle physics, materials modification by implantation, carbon dating and much more. It
is an excellent example of the return to society of investment in basic research.

All of these achievements have been realized by accelerating the 283 stable or long-lived
nuclear species we find here on Earth. We see them in Fig. 1, the black squares, plotted as a
function of the numbers of protons (Z) and neutrons (N) that they contain. In recent years,
however, it has become evident that it is now technically possible to create and accelerate
unstable nuclei and, as we see in Fig. 1, there are some 6-7,000 distinct nuclear species which
live long enough to be candidates for acceleration. They are the nuclei within the so-called
drip-lines, the point where the nucleus can no longer hold another particle. It needs little
imagination to see that this development might not only transform Nuclear Physics but
could lead to many new, undreamed of, opportunities in industry, medicine, material studies
and the environment.

Fig. 2 shows schematically the two main methods of radioactive beam production which
have been proposed. They are commonly known as the ISOL-Isotope separation on line -
and In-flight techniques. In the ISOL method, we must first make the radioactive nuclei
in a target/ion source, extract them in the form of ions and, after selection of mass by
an electromagnetic device, accelerate them to the energy required for the experiments. In
contrast, the in-flight method relies on energetic beams of heavy ions impinging on a thin
target. Interactions with the target nuclei can result in fission or fragmentation, with the
nuclei which are produced leaving the target with velocities close to those of the projectiles.
A cocktail of many different species is produced which, since the ions have high velocities,
does not need further acceleration to transport it to the secondary target. On route to
the target the reaction products can be identified by mass, charge and momentum in a
spectrometer (fragment separator). Thus a pure beam is not separated out from the cocktail.
Instead each ion is tagged and identified by these primary characteristics and the secondary
reactions are studied on an event-by-event basis. Another possibility is a combination of the
two methods in which the in-flight reaction products are brought to rest in a gas cell, sucked
out and separated by mass and then re-accelerated to the required energy. For reviews of
experimental and theoretical developments involving production, acceleration, and reactions
with unstable nuclei, see, e.g., Refs. [1, 2, 3, 4, 5, 6, 7, 8].

2 Physics of Radioactive Beams - C.A. Bertulani



0.1. INTRODUCTION

Figure 1: A chart of the nuclides with the black squares, representing the stable nuclei,
plotted as a function of the number of protons and neutrons in the nucleus. It also shows
the limits of observation of nuclei, the drip-lines and the astrophysical r- and rp-process
pathways.

The ISOL and in-flight methods are complementary in almost every respect. With the
ISOL technique one can produce beams of high quality, comparable to that of stable beams.
Since we start with ions at the temperature of the target/ion source the process is similar
to the way the beam is generated in a stable beam accelerator so one can produce beams of
similar quality. Strong ISOL beams can be produced but the intensity varies markedly ac-
cording to a) the chemical species involved and b) how far from stability they are. Refractory
elements such as zirconium and molybdenum are extremely difficult to ionize and are not
suitable for the method at present. This technique also relies on the diffusion and effusion
of the radioactive atoms in the target, which is maintained at high temperatures (˜2500◦C)
to speed the process up. Such diffusion processes vary a lot in speed. For short-lived nuclear
species, with half-lives of milliseconds or less, this is often the limiting factor in intensity
because the atoms decay before they reach the final target.

In contrast, in-flight facilities can produce all chemical species with half-lives greater
than about 150ns, the time of transit through the fragment separator, and since the beams
are produced at high energy they do not need re-acceleration. The main drawbacks of this
method however are that a) the beams are weak, b) they are not separated physically - the
individual ions are simply tagged electronically by A, Z and momentum and c) they are of
poor quality in terms of energy and focussing.

Assume that a highly energetic uranium projectile (N/Z ∼ 1.6) hits a target nucleus
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Figure 2: A schematic view of the basic methods of producing radioactive nuclear beams.
At the left we see the ISOL method with and without a post-accelerator. At the right we
see the In-flight method and the proposed hybrid in which fragments are caught in a gas cell
and then re-accelerated.

in an almost central collision, as shown in Fig. 3. A part of the projectile (participant) is
scrapped off and forms a highly excited mixture of nucleons with a part of the target. A
piece of the projectile (spectator) flies away with nearly the same velocity of the beam. The
neutron-to-proton-ratio of the spectator is nearly equal to that of the projectile. Since the
N/Z - ratio of light nuclei (stable) is close to one, the fragment is far from the stability line.
Statistically, a large number of fragments with different N/Z - ratios is created and several
new exotic nuclei have been discovered in this way.

Experiments with secondary-beam are limited by reaction cross section and luminosity.
The luminosity L is defined as the product of beam intensity i and target thickness t:

L = i · t. (1)

The reaction rate N is the product of luminosity and reaction cross section σr:

N = σr · L. (2)
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Figure 3: (a) Schematic description of a nuclear fragmentation reaction producing rare
isotopes. The lower fragments are called participants, while the upper one is called by
spectator. Using uranium projectiles (N/Z ∼ 1.6) one expects to produce (light) spectator
nuclei of about the same N/Z ratio. (b) Coulomb fission of relativistic projectiles leading to
the production of rare isotopes. For a heavy unstable projectile an exchanged photon with
the target can give it enough energy to fragment into several types of isotopes.

In most of the reactions the usable target thickness is limited by the width of the exci-
tation function (i.e., the cross section as a function of the excitation energy). Production
reactions with a wide excitation function covering a broad energy range can profit in lumi-
nosity by the use of thick targets.

The condition for fragmentation of heavy ions is that the projectile should move faster
than the nucleons move inside the nucleus. The projectile energy should be sufficiently above
the Fermi domain, e.g., above 100 A MeV. The usable target thickness for these high energies
is of the order of several grams per square centimeter, corresponding to 1023atoms/cm2.
The excitation function for complete fusion of heavy ions, however, has a width of only
10 MeV. This corresponds to a usable target thickness of the order of one milligram per
square centimeter or 1018atoms/cm2. Consequently beam intensities for the investigation of
complete fusion reactions must be by four to five orders higher to achieve the same luminosity
as for fragmentation.

Fig. 4 shows as an example the production cross sections for the tin isotopes from
complete fusion (dotted line), nuclear fragmentation (solid line), and Coulomb fission of 238U
(dashed line). The symbols represent experimental data. The fragmentation cross-sections
(solid line) have been calculated with a semi-empirical code [10].

It is very pedagogical and useful at his stage to discuss the production of nuclei in the
nuclear fragmentation region of Fig. 4. We develop some mathematical tools to understand
them. The simplest theoretical model to describe the isotopic distribution of fragments in
heavy ion collisions at high energies is the abrasion-ablation one of [11]. In the model’s
abrasion stage, the nucleons in the overlap volume of two energetic heavy ions are scrapped
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Figure 4: Production cross sections for the tin isotopes from complete fusion (dotted line),
fragmentation (solid line), and projectile fission of 238U (dashed line). The symbols represent
experimental data. The fragmentation cross-sections (solid line) have been calculated with
a semi-empirical code [10].

off (abraded) as the ions pass each other. In the subsequent ablation stage, the excited
projectile and target fragments decay by emitting particles. The abrasion stage can be well
described within the probability model of nuclear scattering [12, 13, 14, 15, 16].

Supplement A

0.2 Probability approach to high energy scattering

In this Supplement we show that most equations used in the description of nuclear fragmentation
in high energy collisions can be deduced from very simple probability arguments. Let us assume,
as shown in Fig. 5(a), that a nucleus-nucleus collision occurs at an impact parameter b. We can
define the probability of having a nucleon-nucleon collision within the transverse element area db
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as t (b) db, where t (b) is known as the thickness function. It is defined in a normalized way, i.e.,∫
t (b) db = 1. (3)

For unpolarized projectiles t (b) = t (b). In most practical situations one can use t (b) ' δ (b),
which simplifies the calculations considerably.

Since the total transverse area for nucleon-nucleon collisions is given by σNN , the probability
of having an inelastic nucleon-nucleon collision is given by t (b)σNN .

The probability of finding a nucleon in dbBdzB is given by ρ (bB, zB) dbBdzB, where the
nuclear density is normalized to unity:∫

ρ (bB, zB) dbBdzB = 1 . (4)

Using these definitions, it is easy to verify that the probability dP of occurrence of a nucleon-
nucleon collision is given by

dP = ρ (bB, zB) dbBdzB . ρ (bA, zA) dbAdzA . t (b− bA − bB) . (5)

Thus, as in the case of free nucleon-nucleon collisions, we define T (b)σNN as the probability of
occurrence of a nucleon-nucleon collision in nucleus-nucleus collisions at impact parameter b. This
is obtained by multiplying dP by σNN and integrating it over all the projectile and target volumes,
i.e.,

T (b)σNN =

∫
ρ (bB, zB) dbBdzB ρ (bA, zA) dbAdzA t (b− bA − bB) σNN . (6)

The thickness function for nucleus-nucleus collisions, T (b), can thus be related to the corresponding
thickness function for nucleon-nucleon collisions as

T (b) =

∫
ρ (bB, zB) dbBdzB ρ (bA, zA) dbAdzA t (b− bA − bB) . (7)

We notice that our definition immediately implies that T (b) is also normalized to unity:∫
T (b) db = 1. (8)

We can also define the individual thickness functions for each nucleus. That is, for nucleus A,

TA (bA) =

∫
ρ (bA, zA) dzA , (9)

and similarly for the nucleus B. In terms of these definitions

T (b) =

∫
dbAdbB TA (bA)TB (bB) t (b− bA − bB) . (10)
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Now we are able to describe more specific aspects of nucleus-nucleus collisions in terms of nucleon-
nucleon collisions. For example, we may want to calculate the probability of occurrence of n
nucleon-nucleon collisions in a nucleus-nucleus collision at impact parameter b. If for simplicity we
call A(B) the number of nucleons in nucleus A(B), this probability is given by

P (n,b) =

(
AB
n

)
[T (b)σNN ]n [1− T (b)σNN ]AB−n . (11)

The first term is the number of combinations for finding n collisions out of AB possible nucleon-
nucleon encounters. The second term is the probability of having exact n collisions, while the last
term is the probability of having AB−n misses. The total probability, or differential cross section,
is given by

dσ

db
=

AB∑
n=1

P (n,b) = 1− [1− T (b)σNN ]AB , (12)

and the total nucleus-nucleus cross section is given by

σ =

∫
db
{

1− [1− T (b)σNN ]AB
}
. (13)

For nucleus-nucleus collisions one may ask what is the average number of nucleon-nucleon
collisions at a given impact parameter b. One has

〈n(b)〉 =
AB∑
n=0

nP (n,b) =
AB∑
n=0

n

(
AB
n

)
[T (b)σNN ]n [1− T (b)σNN ]AB−n

= α
∂

∂α

AB∑
n=0

(
AB
n

)
[ασNN ]n [1− T (b)σNN ]AB−n

∣∣∣∣∣
α=T (b)

= α
∂

∂α
[1− T (b)σNN + ασNN ]AB

∣∣∣
α=T (b)

=
{
αABσNN [1− T (b)σNN + ασNN ]AB−1

}∣∣∣
α=T (b)

, (14)

or
〈n(b)〉= ABT (b)σNN . (15)

One can also calculate the standard deviation in the number of nucleon-nucleon collisions. First,
we need to calculate 〈n2(b)〉. One can use the same trick as in the derivation above, replacing the
sum over n2P (n,b) by the application of twice the operator α∂/∂α. The net result is〈

n2(b)
〉

= ABT (b)σNN + AB (AB − 1) [T (b)σNN ]2 . (16)

Using 14 and 15 we find for the standard deviation〈
n2(b)− 〈n(b)〉2

〉
≡
〈
n2
〉
−〈n〉2 = ABT (b)σNN [1− T (b)] . (17)
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It is worthwhile to apply this formalism to nucleon-nucleus collisions. In this case, we can set
B = 1 in Eq. 11 and

P (n,b) =

(
A
n

)
[T (b)σNN ]n [1− T (b)σNN ]A−n

=
A!

n! (A− n)!
[T (b)σNN ]n [1− T (b)σNN ]A−n

' An

n!
[T (b)σNN ]n exp [−T (b)σNN (A− n)]

' [AT (b)σNN ]n

n!
exp [−AT (b)σNN ] , (18)

valid for A� n. Thus, for nucleon-nucleus collisions,

P (n,b) =
[〈n(b)〉]n

n!
exp [−〈n(b)〉] , (19)

where

〈n(b)〉 = AσNN

∫
ρ (b, z) dz (20)

is the average number of nucleon-nucleon collisions. Thus, the probability of having n nucleon-
nucleon collisions in a nucleon-nucleus collision is given in terms of the Poisson distribution of the
average number of nn-collisions.

We can also ask a more refined question: what is the probability of n nucleons in A colliding
with m nucleons in B? To answer this let us write the probability of finding a nucleon in a tube
of cross section σNN at bB. It is given by TB (bB)σNN . The probability of finding n nucleons in
the same tube is (

B
n

)
[TB (bB)σNN ]n [1− TB (bB)σNN ]B−n . (21)

Following the same steps as in Eq. 14 we get for the average number of collisions in this tube,

〈n(bB)〉= BTB (b)σNN . (22)

Thus, the probability of having n nucleons of B in a tube of cross section σNN colliding with
m nucleons of A in a similar tube is given by

P (n,m,bA,bB) =

∫
t (b− bA − bB) dbA .

(
B
n

)
[TB (bB)σNN ]n

× [1− TB (bB)σNN ]B−n
(
A
n

)
[TA (bA)σNN ]m [1− TA (bA)σNN ]A−m .

(23)
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Figure 5: (a) Geometry of nucleus-nucleus collisions at high energies. (b) The average
primary fragment excitation energy obtained from the densities of states is shown as a
function of the fragment mass by the solid points. The variances of the distributions are
displayed as error bars. The solid line shows the excitation energy obtained using the surface
energy estimate of Ref. [11].

Using t (b) ' δ (b) we get

P (n,m,bA,bB) =

(
A
n

)(
B
n

)
[TB (bB)σNN ]n [1− TB (bB)σNN ]B−n

× [TA (|b− bB|)σNN ]m [1− TA (|b− bB|)σNN ]A−m .

(24)

The abrasion-ablation model [11] used in Section 3 is based on this equation. It is extended
to account for the isospin dependence of the nucleon-nucleon collisions in a trivial way. In that
Section m is interpreted as the number of holes created in the nucleon orbitals in the target. These
equations can also be derived quantum-mechanically using the eikonal approximation ). This was
shown by Hüfner, Schäfer and Schürman [17]. The derivation presented in this Supplement is much
simpler and only requires the use of probability concepts.

0.3 Isotope yield in high energy collisions

Using the probability approach to high energy scattering, described in Supplement A, we
can develop a simple model to calculate the isotopic yield in high energy collisions of heavy
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nuclei. This is know as the abrasion-ablation model.
According to Carlson, Mastroleo and Hussein [18], the differential primary yield can

be written as the product of a density of states ω (ε, Zf , Af ) and an integral over impact
parameter,

dσ0

dε
(ε, Zf , Af ) = ω (ε, Zf , Af )

×
∫
d2b [1− Pπ(b)]ZP−Zf Pπ(b)Zf [1− Pν(b)]NP−Nf Pν(b)

Nf .

(25)

The integral gives the cross section for each primary fragment state as the sum over
impact parameters of the probability that Zf projectile protons and Nf = Af −Zf projectile
neutrons do not scatter, while the remaining ones do. The distinction between protons and
neutrons generalizes the expression 5 of the Supplement A and permits one to account for
the differences in their densities.

We can use Eq. 18 and write the probability that a projectile proton does not collide
with the target as

Pπ(b) =

∫
d2s dz ρPπ (z, s)

× exp

[
−σppZT

∫
dz ρTπ (z,b− s)− σpnNT

∫
dz ρTν (z,b− s)

]
(26)

where ρPπ and ρTν are the projectile and target single-particle proton and neutron densities
while σpp and σpn are the total (minus Coulomb) proton-proton and proton-neutron scatter-
ing cross sections, respectively. The neutron probability can be expressed likewise as

Pν(b) =

∫
d2s dz ρPν (z, s)

× exp

[
−σpnZT

∫
dz ρTπ (z,b− s)− σppNT

∫
dz ρTν (z,b− s)

]
(27)

where we have identified the total neutron-neutron scattering cross section σnn with the
proton-proton one. At lower energies it is important to account for the Pauli blocking of the
nucleon-nucleon scattering. This tends to reduce the values of σNN entering Eqs. 26 and 27.
A geometrical model of Pauli blocking is discussed in Supplement B.

Note that Eqs. 25, 26 and 27 are slightly different than those that we have derived
in Supplement A. The difference is the replacement of the probability 1 − T (b)σNN by
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exp [−T (b)σNN ], to account for unitarity (i.e., when T (b)σNN is larger than the unity).
This form of the collision probability is often used in the literature. It can also be justified
in terms of probabilistic concepts, as we will do later, where we will introduce the “tρρ” ap-
proximation, useful to calculate total reaction cross sections (see also the arguments leading
to Eq. 19).

For each primary fragment, the density of states, ω (ε, Zf , Af ), is obtained by counting
all combinations of projectile holes consistent with the fragment’s charge and neutron num-
bers. Each hole is a state left vacant by an abraded nucleon. One can use the projectile
single-particle energies in the calculation since the mean field rearrangements that would
modify them do not have time to occur until long after the abrasion stage has passed. The
distribution is shifted down in energy so that the lowest level is at zero excitation energy
(This ground level is obtained by removing the nucleons from the highest energy levels in
the projectile.). The total number of states is given by

N (Zf , Af ) =

∫
dε ω (ε, Zf , Af ) =

(
ZP
Zf

)(
NP

Nf

)
. (28)

Thus, the energy-integrated primary cross section contains the combinatorial factors
(
ZP

Zf

)
and

(
NP

Nf

)
.

A collision between two nuclei of zero isotopic spin, in which the proton and neutron
distributions for each nucleus are taken to be identical, results in energy-integrated primary
cross sections that are symmetric in charge and neutron number about the point Zf = Nf =
Af/2. This need not be the case when the distributions are different or when one of the
nuclei is not of zero isotopic spin. The calculations of Ref. [18], based on Eqs. 25 - 28,
show that the asymmetry of the primary yield from a Z = N projectile on a Z 6= N target
is small. The target dependence of the primary projectile yield is thus an almost purely
geometrical one.

The primary yields in this model depend on the incident energy only through the nucleon-
nucleon cross sections in the absorption factors of Eqs. 26, 27. At high energies E/A > 1
GeV/nucleon), these cross sections have nearly the same value. We thus expect differences
in proton and neutron scattering to be their smallest at such energies. Any differences will
be seen best at lower energies where the proton-neutron cross section reaches values three
times that of the proton-proton and neutron-neutron ones. The effects of this dependence
are found to be small. The yields obtained in these calculations [18] are almost independent
of the incident energy.

We show in Fig. 5(b) the results of Ref. [18] for the system 16O + Pb and for the
average excitation energy obtained from the densities of states as a function of the primary
fragment mass Af . The average was performed over all isotopes with a given Af in order to
remove the slight isotopic dependence of the individual averages. The distributions’ variance
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Figure 6: Calculated secondary yields in the reaction 16O +208 Pb at Elab = 20 Mev/nucleon
are shown as open circles for the isotopes of (a) lithium, beryllium, and boron, and (b) of
carbon and nitrogen. The data of ref. [20] are shown as full circles.

is displayed as an error bar on each point. Also shown, as a solid line in Fig. 5(b), is the
excitation energy that would be obtained using a surface energy estimate [11]. The latter
yields about half the average energy of the hole distribution but remains within its variance
for all but the largest mass losses.

As can be seen in Fig. 5(b), the average excitation energy of fragments that undergo little
abrasion remains below the particle emission threshold, although their energy distribution
extends above it. In these cases, use of the energy distribution rather than an average value
is essential for describing the decay.

One can resort to several statistical models to calculate the particle evaporation during
the ablation stage as a function of the primary fragment charge Zf , mass Af , and excitation
energy ε. For the calculations presented here the limiting Weisskopf-Ewing evaporation
formalism was used [19]. The result of the evaporation calculation can be expressed as
the probability, P (Z,A; ε, Zf , Af ), of yielding a residue of charge Z and mass A, given a
primary compound nucleus of charge Zf mass Af and excitation energy ε. In terms of this
quantity and the differential primary yield dσ0 (ε, Zf , Af ) /dε, one can calculate the observed
secondary yield, σ0 (Z,A), as

σ0 (Z,A) =
∑
Zf , Af

∫
dε P (Z,A; ε, Zf , Af )

dσ0

dε
(ε, Zf , Af ) (29)

We show the calculation for 16O +208 Pb together with the experimental data [20, 21] at
20 MeV/nucleon and 2 GeV/nucleon in Figs. 6 and 7, respectively. In particular we note
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Figure 7: Calculated secondary yields in the reaction 16O +208 Pb at Elab = 2 Gev/nucleon
are shown as open circles for the isotopes of (a) lithium, beryllium, and boron and (b) of
carbon, nitrogen, and oxygen. The data of ref. [21] are shown as full circles .

the agreement of the calculation with the projectile-like isotope data. The agreement with
the data, especially that at 2 GeV/nucleon, is quite reasonable.

The microscopic calculation of the absorption probabilities and cross sections permits the
use of more realistic collision geometries. A natural step in this direction is to next replace the
average single-particle projectile densities in Eqs. 26 and 27 by the probability distributions
of the individual projectile orbitals. This allows one to take into account differences in the
abrasion probabilities or the different orbitals. In 16O for example, we expect the removal
of a p-orbital nucleon to be more likely than that of an s-orbital one, since the former will
tend to be at a larger radius than the latter.

Thus generalized, the expression for the differential primary yield, dσ0

(ε, Zf , Af ) /dε, becomes a sum over all the possible combinations of orbital transmission
and absorption factors that result in a given primary charge Zf and mass Af . The popu-
lation of primary fragment states will no longer be evenly distributed but will depend on
the absorption probabilities of the single-particle states on which they are based. As the
nucleons that are less bound are the more superficial ones and, thus, also the ones more
likely to be absorbed, the average primary fragment excitation energy will be lower in this
more realistic model. The model presented in this Section shows that we can understand
the main features of the isotopic fragmentation yield in heavy ion collisions at high energies
in terms of simple Glauber calculations and with statistical decay models for the spectators
and participants.

Later on we will discuss the production of exotic nuclei in fusion reactions and in Coulomb
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Figure 8: (a) A nucleon from inside a Fermi sphere scatters off a nucleon from another Fermi
sphere. (b) Due to the Pauli principle the scattering angle of the nucleons is restricted to lie
outside the Fermi spheres.

fission processes. Before that we will develop the tools we need to understand these processes.

Supplement B

0.4 Pauli blocking of nucleon-nucleon scattering

The main effect of medium corrections is due to the Pauli-blocking of nucleon-nucleon scattering.
Pauli-blocking prevents the nucleons to scatter into final occupied states in binary collisions between
the projectile and target nucleons. This is best seen in momentum space, as shown in Fig 8. We see
that energy and momentum conservation, together with the Pauli principle, restrict the collision
phase space to a complex geometry involving the Fermi-spheres and the scattering sphere.

In this scenario, the in-medium cross section corrected by Pauli-blocking can be defined as

σNN(k,KF1, KF2) =

∫
d3k1d

3k2

(4πK3
F1/3)(4πK3

F2/3)

2q

k
σfreeNN (q)

ΩPauli

4π
, (30)

where k is the relative momentum per nucleon of the nucleus-nucleus collision (see figure 8), and
σfreeNN (q) is the free nucleon-nucleon cross section for the relative momentum 2q = k1− k2− k, of
a given pair of colliding nucleons. Clearly, Pauli-blocking enters through the restriction that |k′1|
and |k′2| lie outside the Fermi spheres. From energy and momentum conservation in the collision,
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q′ is a vector which can only rotate around a circle with center at p = (k1 + k2 + k)/2. These
conditions yield an allowed scattering solid angle given by [22]

ΩPauli = 4π − 2(Ωa + Ωb − Ω̄) , (31)

where Ωa and Ωb specify the excluded solid angles for each nucleon, and Ω̄ represents the intersection
angle of Ωa and Ωb (see Fig. 8).

The solid angles Ωa and Ωb are easily determined. They are given by

Ωa = 2π(1− cos θa) , Ωb = 2π(1− cos θb) , (32)

where q and p were defined above, b = k− p, and

cos θa = (p2 + q2 −K2
F1)/2pq , cos θb = (b2 + q2 −K2

F2)/2bq , (33)

The evaluation of Ω̄ is tedious but can be done analytically. The full calculation was done by
Bertulani [22] and the results have been reproduced in the Appendix of Ref. [23] (see also [24]).
To summarize, there are two possibilities:

(1) Ω̄ = Ωi(θ, θa, θb) + Ωi(π − θ, θa, θb) , for θ + θa + θb > π (34)

(2) Ω̄ = Ωi(θ, θa, θb) , for θ + θa + θb ≤ π , (35)

where θ is given by
cos θ = (k2 − p2 − b2)/2pb . (36)

The solid angle Ωi has the following values

(a) Ωi = 0 , for θ ≥ θa + θb (37)

(b) Ωi = 2

[
cos−1

(
cos θb − cos θ cos θa

sin θa(cos2 θa + cos2 θb − 2 cos θ cos θa cos θb)1/2

)
+ cos−1

(
cos θa − cos θ cos θb

sin θb(cos2 θa + cos2 θb − 2 cos θ cos θa cos θb)1/2

)
− cos θa cos−1

(
cos θb − cos θ cos θa

sin θ sin θa

)
− cos θb cos−1

(
cos θa − cos θ cos θb

sin θ sin θb

)]
(38)

for |θb − θa| ≤ θ ≤ θa + θb , (39)

(c) Ωi = Ωb for θb ≤ θa, θ ≤ |θb − θa| , (40)

(d) Ωi = Ωa for θa ≤ θb, θ ≤ |θb − θa| , (41)

The integrals over k1 and k2 in Eq. 30 reduce to a five-fold integral due to cylindrical symmetry.
Two approximations can be done which greatly simplify the problem: (a) on average, the symmetric
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0.4. PAULI BLOCKING OF NUCLEON-NUCLEON SCATTERING

situation in which KF1 = KF2 ≡ KF , q = k/2, p = k/2, and b = k/2, is favored, (b) the free
nucleon-nucleon cross section can be taken outside of the integral in Eq. 30.

Both approximations are supported by the studies of Refs. [23] and have been verified numer-
ically [22]. The assumption (a) implies that Ωa = Ωb = Ω̄, which can be checked using Eq. 41.
One gets from 31 the simple expression

ΩPauli = 4π − 2Ωa = 4π

(
1− 2

K2
F

k2

)
. (42)

Furthermore, the assumption (b) implies that

σNN(k,KF ) = σfreeNN (k)
ΩPauli

4π
= σfreeNN (k)

(
1− 2

K2
F

k2

)
. (43)

The above equation shows that the in-medium nucleon-nucleon cross section is about 1/2 of its
free value for k = 2KF , i.e., for E/A ' 150 MeV, in agreement with the numerical results of Ref.
[23]. Since the effect of Pauli blocking at these energies is very large it is important to calculate
the in-medium nucleon-nucleon scattering cross section according to Eq. 30, including the energy
dependence of the free nucleon-nucleon cross sections.

The connection with the nuclear densities is accomplished through the local density approxi-
mation, which relates the Fermi momenta to the local densities as

K2
F =

[
3π

4
ρ(r)

]2/3

+
5

2
ξ (∇ρ/ρ)2 (44)

where ρ(r) is the sum of the nucleon densities of each colliding nucleus at the position r.
The second term is small and amounts to a surface correction, with ξ of the order of 0.1 [23].

Inserting Eq. 44 into Eq. 43, and using E = ~2k2/2mN , one gets [24] (with ρ̄ = ρ/ρ0)

σNN(E, ρ) = σfreeNN (E)
(
1 + α′ρ̄2/3

)
with α′ = − 48.4

E (MeV)
(45)

where the second term of Eq. 44 has been neglected. This equation shows that the local density
approximation leads to a density dependence proportional to ρ̄2/3. The Pauli principle yields a 1/E
dependence on the bombarding energy. This behavior arises from a larger phase space available for
nucleon-nucleon scattering with increasing energy.

The nucleon-nucleon cross section at E/A . 200 MeV decreases with E approximately as 1/E.
We thus expect that, in nucleus-nucleus collisions, this energy dependence is flattened by the Pauli
correction, i.e., the in-medium nucleon-nucleon cross section is less dependent of E, for E . 200,
than the free cross section.

For higher values of E the Pauli blocking is less important and the free and in-medium nucleon-
nucleon cross sections are approximately equal. These conclusions are in agreement with the ex-
perimental data for nucleus-nucleus reaction cross sections [25], and is explained in Ref. [23].

Physics of Radioactive Beams - C.A. Bertulani 17



0.4. PAULI BLOCKING OF NUCLEON-NUCLEON SCATTERING

Notice that, for E/A = 100 − 200 MeV, and ρ ' ρ0, Eq. 45 yields a coefficient α′ between
−0.2 and −0.5. Values of α′ between −0.2 and −0.4 were indeed obtained with more elaborate
calculations using realistic nucleon-nucleon interactions [26].
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