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Abstract
In this review, we discuss the present status of three indirect techniques that are used to
determine reaction rates for stellar burning processes, asymptotic normalization coefficients,
the Trojan Horse method and Coulomb dissociation. A comprehensive review of the theory
behind each of these techniques is presented. This is followed by an overview of the
experiments that have been carried out using these indirect approaches.
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1. Introduction

Understanding the origin of the elements is one of the key
scientific questions facing researchers in nuclear physics and
astronomy in the twenty first century. Intimately tied to
this is the issue of stellar evolution and the fate of objects
as close to our world as our Sun. Over 70 years ago, the
concept that hydrogen and helium burning are the sources for
energy production in stars was postulated by Bethe (1939).
A byproduct of this burning process is the production of
new elements. We know today that a large number of
different reactions are involved in element production, many of
which take place on rather short-lived nuclei during explosive
processes that occur in the cosmos. For over 50 years,
experimentalists have worked to quantify stellar reaction
rates on systems involving stable beams and stable targets.
Until rather recently, very little experimental information was
available for reaction rates on radioactive nuclei. This is now
changing with the development of new indirect techniques
to determine these rates and new radioactive beam facilities
that are expanding the possibilities for both direct and indirect
studies.

Nucleosynthesis in the Universe, i.e. the ‘cooking’
processes that produce the elements of the periodic chart
(Weizsäcker 1937), proceeds through a variety of reactions
and decays such as (p,γ ), (n,γ ), (3He,γ ), (α,γ ), (p,α), (α,p),
(n,α), (α,n), beta decays, reactions induced by gamma-quanta
(photodisintegration), and neutrinos. Determining the rates
of these processes at stellar energies is the major part of the
subject of nuclear astrophysics.

Many of the important stellar reactions occur in cycles,
as described by Rolfs and Rodney (1988). These cycles are
typically ones that burn hydrogen through proton-γ capture
reactions and beta decays. The carbon–nitrogen–oxygen, or
CNO, cycle is an example of a cycle that occurs once carbon
is produced in a star. The CNO cycle reactions produce
much more heat from burning hydrogen than the p–p chain
reactions, which are the reactions in the first stage of hydrogen
burning. The increased energy production heats up the star
and can eventually lead to even more rapid burning through
the hot-CNO cycle. This is typically the first step in a
thermal runaway that eventually produces new nuclei through
explosive hydrogen burning. Similar cycles of reactions occur
for helium burning and also can lead to explosive processes.
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The conditions under which the majority of astrophysical
reactions proceed in stellar environments make it difficult or
impossible to measure them under the same conditions in the
laboratory. For example, the astrophysical reactions between
charged nuclei occur at energies much lower than the Coulomb
barrier, which often makes the cross section of the reaction
too small to measure. This is due to the very small barrier
penetration factor from the Coulomb force, which produces
an exponential fall off of the cross section as a function
of energy. Many years ago, the astrophysical S-factor was
adopted as a way to characterize cross sections by removing
the Coulomb penetration factor based on an s-wave, or zero
angular momentum capture. The S-factor, S(E), is defined
through the relationship

σ(E) = E−1 exp(−2πη)S(E). (1.1)

where σ(E) is the energy dependent cross section and
η = (Z1Z2e

2/�)
√

µ/2E with Z being the charges of the two
nuclei, E the relative kinetic energy of the interacting particles,
and µ their reduced mass. For an s-wave capture reaction, the
S-factor is nearly independent of energy and is typically the
quantity that is used to extrapolate to low energies. For the
reactions that cannot be measured directly, the quantities to
determine are the energies and strengths of the resonant states
that contribute to the reaction rate and the normalization of the
tail of the overlap function.

Typically reactions that are of interest for nuclear
astrophysics are measured in the laboratory at energies much
higher than those relevant to stellar processes. As noted above,
an extrapolation down to stellar energies must then be done.
In this way, rates are predicted for reactions in the region of
interest, the so-called Gamow window (for details on this see
Rolfs and Rodney (1988)), which is the name for the energy
window that results in the maximum reaction rate due to the
convolution of the Maxwell–Boltzmann energy distribution of
the particles and the cross section of a reaction. However,
such extrapolations may result in significant uncertainty.
Recently at the underground laboratory in Gran Sasso, Italy,
a collaboration using a low-energy accelerator has succeeded
in measuring the cross section for some reactions involving
stable beams and targets to significantly lower energies than
has previously been achieved (Broggini 2010). But still
extrapolation to astrophysical energies is usually required.
Another problem plagues measurements of charged particle
reaction rates at low energy. Electron screening distorts the
cross section measured in the laboratory compared to the actual
rate that applies in stellar plasma. Similarly neutron-induced
reactions on unstable short-lived nuclei cannot be measured
directly in the laboratory today.

Indirect techniques have been developed over the past
several decades to provide ways to determine reaction rates
that cannot be measured in the lab. The important information
that is needed to determine the reaction rate for reactions that
are dominated by a nuclear resonance is the energy of the
resonance and its decay width in the appropriate initial and final
channels. This information can often be determined by nuclear
spectroscopy measurements and either particle or gamma
decay measurements from the resonance state. Applications

of this approach have been undertaken with both stable and
radioactive beams. A review of this approach for determining
stellar reaction rates can be found in Smith and Rhem (2001).

In this review we address three different commonly used
indirect techniques to obtain the information about astro-
physical reactions, the asymptotic normalization coefficient
(ANC) method, the Trojan Horse method (THM), and the
Coulomb dissociation (CD) method. The ANC method
focuses on determining the normalization of the tail of the
overlap function. The ANC for a nuclear level determines
the direct capture reaction rate associated with that level. For
some reactions, this dominates over resonant capture. In
other reactions, direct capture often interferes with resonant
capture, which can be very important in determining the
overall rate at stellar energies. Including both direct and
resonant capture in a consistent framework can be done through
an R-matrix analysis (Mukhamedzhanov et al 2011) if the
relevant information is available. The THM provides a way
to determine the reaction rate for rearrangement reactions by
obtaining the cross section for a binary process through the use
of a surrogate ‘Trojan Horse’ particle. The CD technique uses
the virtual photon flux from the interaction of a high-energy
ion with a very heavy target to dissociate the heavy ion. The
dissociation is an inverse process to a capture-gamma reaction
that takes place in a stellar environment. Measurements of
the dissociation cross section can be used to infer the reaction
rate of radiative capture processes at stellar energies. All three
of these methods provide information on stellar reaction rates
at very low energy without requiring an extrapolation of data
from higher energies.

These three indirect techniques have in common an
underlying connection to nuclear reaction theory. Thus the
review will begin with a theoretical overview for the three
processes, which will be followed by examples of the use
of each of the techniques in probing reaction rates in stellar
environments.

2. Theoretical considerations

2.1. The ANC technique

Direct capture reactions of astrophysical interest often involve
systems where the binding energy of the captured particles is
low, so the capture occurs through the tail of the nuclear overlap
function in the corresponding two-body channel. The shape
of this tail is dictated by the Coulomb interaction. Hence,
the capture rate may be calculated accurately if one knows
the amplitude of the tail, which is given by the ANC. The
role of the ANC in nuclear astrophysics was first discussed in
Mukhamedzhanov and Timofeyuk (1990), and Xu et al (1994),
where it was underscored that the ANC determines the overall
normalization of peripheral radiative capture reactions. These
papers paved the way for using the ANC method as an indirect
technique in nuclear astrophysics (see also Mukhamedzhanov
et al (2001)).

The ANC can be determined from peripheral transfer
reactions at energies above the Coulomb barrier or at sub-
Coulomb energies and can be used to calculate peripheral
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radiative capture reactions. It constitutes a powerful indirect
method in nuclear astrophysics. Cross sections of the reactions
above the Coulomb barrier are many orders of magnitude larger
than direct capture reaction cross sections at astrophysical
energies. The sub-Coulomb barrier cross sections are lower
than those above the barrier but are still significantly larger than
the cross sections at astrophysical energies. The ANC method
has been extensively used in the analysis of many important
astrophysical reactions (see, for example, Mukhamedzhanov
et al (1997, 2003a, 2003b, 2006, 2008b, 2011), Gagliardi et al
(1999), Azhari et al (2001), Tang et al (2004), Banu et al (2009)
and Al-Abdullah et al (2010) and references therein). If a
radiative capture reaction is peripheral and the astrophysical
factor is accurately measured the ANC can be determined
from the experimental data (Igamov and Yarmukhamedov
2007). The role of the ANC in nuclear astrophysics has
been underscored in a recent review of solar reaction rates
(Adelberger et al 2011).

Many important astrophysical reactions proceed through
a sub-threshold resonance, which is a bound state in the
entry channel, but can decay emitting a photon or a nuclear
fragment. The partial width of the sub-threshold resonance
is proportional to the ANC (Mukhamedzhanov and Tribble
1999). In some cases knowledge of the ANC allows one
to determine the interference sign of the resonant and non-
resonant radiative capture amplitudes. In other uses, the ANC
method combined with the THM opens up new possibilities
to exploit astrophysical processes (La Cognata et al 2012).
The ANCs can be used to determine the spectroscopic factors
(SFs) (Mukhamedzhanov and Nunes 2005, Pang et al 2007).
The ANC and the SFs also can be used to determine cross
sections for direct (n,γ ) capture processes (Mukhamedzhanov
et al 2008a).

2.1.1. ANCs. ANCs have been studied in few-nucleon
systems and 1p-shell nuclei for many years. But the relation
between peripheral transfer reaction cross sections and ANCs
and the importance of this relation as an indirect technique
to measure astrophysical radiative capture rates has only
recently been stressed. Usually the distorted-wave Born
approximation (DWBA) is used to analyze peripheral transfer
reactions. However, in the conventional DWBA, the transfer
reaction amplitude is parametrized in terms of SFs rather than
ANCs. We articulate here the difference between and the
relationship that connects ANCs and SFs. We also address an
important consistency issue—the parametrization of a DWBA
cross section in terms of SFs is appropriate for non-peripheral
transfer reactions, but in such cases, several of the assumptions
underlying traditional DWBA treatments are questionable.

The ANC is a fundamental nuclear characteristic
important both in nuclear reactions and nuclear structure. The
ANC enters the theory in two ways. In the Schrödinger
formalism of the wave functions and interaction potentials,
the ANC is the amplitude of the overlap function of the
bound-state wave functions of the initial and final nuclei.
In the scattering theory the residue of the S−matrix for the
elastic scattering, x + A (throughout the text these symbols
represent arbitrary nuclei), is expressed in terms of the ANC.

The first comprehensive review about the overlap functions
was given in Blokhintsev et al (1977) (see also Locher and
Mizutani (1978) and Blokhintsev et al (1984)). Here we will
briefly recall the necessary equations for the overlap functions,
ANC and spectroscopic functions, which are important for
application of the ANC method as an indirect technique in
nuclear astrophysics.

In scattering theory the residue at the poles of the
elastic scattering S matrix corresponding to bound states
(Kramers 1938, Perelomov et al 1966) or resonances (Dolinsky
and Mukhamedzhanov 1977) can be expressed in terms of
the ANC:

S
JF

lF jF ;lF jF

k→k
p

xA−−−→ AlF jF

kxA − k
p

xA

(2.1)

with the residue

A
JF

lF jF
= −i2lF +1eiπη

p

xA(CF
xAlF jF JF

)2, (2.2)

where CF
xAlF jF JF

is the ANC for the virtual or real decay
F → x + A in the channel with the relative orbital angular
momentum lF of x and A, the total angular momentum jF of
x and total angular momentum JF of the system x + A, kxA is
the relative momentum of particles x and A. If F = (xA) is a
bound state,

η
p

xA ≡ ηbs
xA = ZxZAe2µxA

κF
xA

(2.3)

is the Coulomb parameter for the bound state F = (xA),

k
p

xA = iκF
xA, κF

xA =
√

2µxAεF
xA is the bound-state wave

number, εF
xA = mx + mA − mF is the binding energy for the

virtual decay F → x +A, Zie and mi is the charge and mass of
particle i, and µxA is the reduced mass of x and A. Throughout
the paper we use the system of units with � = c = 1. Note that
singling out the factor eiπη

p

xA in the residue makes the ANC for
bound states real.

If F is a resonance, that is the decay F → x + A is real,
then

η
p

xA = iηR
xA, ηR

xA = ZxZAe2µxA

kxA(R)

(2.4)

is the Coulomb parameter for the resonance state with complex
relative momentum k

p

xA = kxA(R), kxA(R) = √
2µxAExA(R),

ExA(R) is the resonance energy in the system x + A of the
resonance state F = (xA). Equations (2.1) and (2.2) are
valid for both bound-state poles and resonances (Dolinsky and
Mukhamedzhanov 1977) and provide the most general and
model-independent definition of the ANC.

In the case of the Breit–Wigner resonance (ImkxA(R) �
Re kxA(R) = k0

xA(R)) the residue of the elastic scattering S-
matrix element in terms of the resonance width is (Dolinsky
and Mukhamedzhanov 1977)

A
JF

lF jF
= −ie2iδp

lF jF JF
(k0

xA) µxA

k0
xA(R)

	xAlF jF JF
, (2.5)

where δ
p

lF jF JF
(k0

xA) is the potential (non-resonance) scattering
phase shift at the real resonance relative momentum k0

xA(R).
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Equation (2.2) in the Breit–Wigner resonance case takes
the form

A
JF

lF jF
= −i2lF +1e−πη

(0)
xA (CF

xAlF jF JF
)2, (2.6)

where η
(0)
xA = ZxZAe2µxA/k0

xA(R). Then the ANC and the
partial width of the resonance are related by

(CF
xAlF jF JF

)2 = (−1)−lF eπη
(0)
xAei2δ

p

lF jF JF
(k0

xA(R))
µxA	xAlF jF JF

k0
xA(R)

.

(2.7)

For a sub-threshold resonance (a nuclear level that is a
bound state in the entry channel and a resonance in the exit
channel), the connection between the ANC and the partial
width, calculated at the relative momentum of particles x and
A, kxA, is given by Mukhamedzhanov and Tribble (1999) as

	xAlF jF JF
(kxA) = PlF (kxARxA)

W 2
−ηbs

xA,lF +1/2
(2κF

xARxA)

µxARxA

×(CF
xAlF jF JF

)2, (2.8)

where PlF (kxARxA) is the barrier penetrability, W−ηbs
xA,lF +1/2×

(2κF
xARxA) is the Whittaker function for the bound state F =

(xA) and RxA is the channel radius. Correspondingly, the
reduced width is determined by

γ 2
xAlF jF JF

=
W 2

−ηbs
xA,lF +1/2

(2κF
xARxA)

2µxARxA

(CF
xAlF jF JF

)2. (2.9)

Note that in the R-matrix method the peripheral part of
the radiative capture amplitude is expressed in terms of the
reduced width rather than the ANC (Barker and Kajino 1991).
However, the reduced width is model dependent, because it
depends on the channel radius, RxA, while the ANC is not.

Note that the definition of the ANC as the residue in
the pole, equation (2.1), is based only on the analytic and
unitary character of the S−matrix and is valid both in the
non-relativistic quantum mechanics and field theory. However,
there is another, more familiar but less universal definition of
the ANC, which is based on the Schrödinger formalism of the
wave functions and potentials. In this formalism the ANC is
defined as the amplitude of the tail of the overlap function of
the bound-state wave functions of F , A and a. The overlap
function is given by (in the isospin formalism)

IF
xA(rxA) = 〈ψc|ϕF (ξA, ξx; rxA)〉

=
(

A

x

) 1
2

〈ϕA(ξA)ϕx(ξx)|ϕF (ξA, ξx; rxA)〉

=
∑

lF mlF jF mjF

〈JAMAjF mjF
|JF MF 〉〈JxMxlF mlF |jF mjF

〉

×YlF mlF
(r̂xA)IF

xAlF jF JF
(rxA). (2.10)

Here

ψc =
∑

mjF
mlF

MAMx

〈JAMAjF mjF
|JF MF 〉〈JxMxlF mlF |jF mjF

〉

×ÂxA{ϕA(ξA)ϕx(ξx)YlF mlF
(r̂xA)} (2.11)

is the two-body x +A channel wave function in the jj coupling
scheme, 〈j1m1j2m2|jm〉 is the Clebsch–Gordan coefficient,

ÂxA is the antisymmetrization operator between the nucleons
of nuclei x and A; ϕi(ξi) represents the fully antisymmetrized
bound-state wave function of nucleus i with ξi being a set of
the internal coordinates including spin–isospin variables, Ji

and Mi are the spin and spin projection of nucleus i. Also rxA

is the radius-vector connecting the centers of mass of nuclei
x and A where r̂xA = rxA/rxA, YlF mlF

(r̂xA) is the spherical
harmonics, and IF

xAlF jF JF
(rxA) is the radial overlap function.

The summation over lF and jF is carried out over the values
allowed by the angular momentum and parity conservation in
the virtual process F → A + x. The radial overlap function is
given by

IF
xAlF jF JF

(rxA)

= 〈ÂxA{ϕA(ξA)ϕx(ξx)YlF mlF
(r̂xA)}|ϕF (ξA, ξx; rxA)〉

=
(

A

x

)1/2

〈ϕA(ξA)ϕx(ξx)YlF mlF
(r̂xA)|ϕF (ξA, ξx; rxA)〉.

(2.12)

Equation (2.12) follows from a trivial observation that, because
ϕF is fully antisymmetrized, the antisymmetrization operator
ÂxA can be replaced by the factor

(
A
x

)1/2
. Here, in contrast to

Blokhintsev et al (1977), we absorb this factor into the radial
overlap function.

The tail of the radial overlap function (rxA > RxA) in the
case of the normal asymptotic behavior is given by

IF
xAlF jF JF

(rxA)
rxA>RxA−−−−→ CF

xAlF jF JF

W−ηbs
xA,lF +1/2(2κF

xArxA)

rxA

rxA→∞−−−−→ CF
xAlF jF JF

e−κF
xArxA−ηbs

xA ln(2κF
xArxA)

rxA

. (2.13)

Correspondingly, for the resonance case

IF
xAlF jF JF

(rxA)
rxA>RxA−−−−→ CF

xAlF jF JF

W−iηR
xA,lF +1/2(−2ikxA(R)rxA)

rxA

rxA→∞−−−−→ CF
xAlF jF JF

e−ikxA(R)rxA−iηR
xA ln(−2ikxA(R)rxA)

rxA

. (2.14)

The proof of the fundamental connection between the residue
A

JF

lF jF
in the bound-state pole of the elastic scattering S matrix

and the amplitude CF
xAlF jF JF

of the tail of the overlap function
was presented first by Kramers (1938) and later by Heisenberg
(1946), Möller (1946) and Hu (1948). Note that in these works
the ANC was the amplitude of the bound-state wave function
of two structureless particles. The proof of this relationship
for charged particles was given by Perelomov et al (1966).
Finally, the extension of this relationship to bound states and
resonances for charged particles was presented by Dolinsky
and Mukhamedzhanov (1977).

2.1.2. Coulomb renormalization of the ANC. The study of
ANCs of astrophysical interest often requires the use of weak
radioactive beams, which generally involves more difficult and
less accurate experiments than ones with stable beams. The
higher intensities of stable beams means that they can be used
at energies below the Coulomb barrier where the sensitivity to
optical potentials, which are the main source of uncertainty for
ANCs determined from transfer reactions, is minimized. The
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ANCs for the neutron removal from a nucleus whose mirror is
of astrophysical interest for proton removal can be determined
from transfer experiments with stable beams. These neutron
ANCs can be related in a model independent way by charge
symmetry of nuclear forces to the proton ANCs. Here we
address the Coulomb renormalization of the ANCs allowing
one to connect the proton and neutron ANCs for mirror nuclei.

The repulsive Coulomb interaction between the charged
particles creates the barrier, which results in the appearance

of the factor r
−ηbs

xA

xA in the asymptotic behavior of the radial
overlap function, see (2.13), leading to its faster decrease. The
decrease of the asymptotic part of the overlap function leads
to an increase of the ANC. It was shown by Blokhintsev et al
(1984) that the main Coulomb renormalization factor (CRF)
of the ANC is given by

R1 =
[
	(lF + 1 + ηbs

xA)

lF !

]2

. (2.15)

We can introduce the Coulomb renormalized ANC C̃F
xAlF jF JF

for the virtual decay F → A + x, in which the main CRF is
eliminated. It is related to the conventional ANC as

CF
xAlF jF JF

= 	(lF + 1 + ηbs
xA)

lF !
C̃F

xAlF jF JF
. (2.16)

Let us introduce also the Coulomb renormalized Whittaker
function:

W̃−ηbs
xA,lF +1/2(2κF

xArxA)

= lF !

	(lF + ηbs
xA + 1)

W−ηbs
xA,lF +1/2(2κF

xArxA). (2.17)

Then the tail of the overlap function can be rewritten in terms
of the renormalized ANC and Whittaker function as

IF
xA lF jF JF

(rxA)
r>RxA−−−→ CF

xAlF jF JF

W−ηbs
xA,lF +1/2(2κF

xArxA)

rxA

= C̃F
xAlF jF JF

W̃−ηbs
xA,lF +1/2(2κF

xArxA)

rxA

. (2.18)

Timofeyuk et al (2003) derived an approximate ratio of the
proton and neutron squares of the ANCs for mirror states

R0 = (CF
pAlF jF JF

)2

(CF
nAlF jF JF

)2
=

∣∣∣∣∣ eiσlF FlF (iκF
pA, RNA)

κF
pARNAjlF (iκA+1

nA RNA)

∣∣∣∣∣
2

. (2.19)

Here,

eiσlF FlF (iκF
pA, rpA)= eiπηbs

pA/2
	(lF + 1 + ηbs

pA)

2	(2lF + 2)
(2iκF

pArpA)lF +1

× e
−κF

pArxA

1 F1(lF + 1 + ηbs
pA, 2lF + 2; 2κF

pArpA) (2.20)

is the regular partial Coulomb wave function at the imaginary
momentum kpA = iκF

pA, jlF (iκA+1
nA RNA) is the spherical

Bessel function at imaginary momentum iκA+1
nA , σlF is the

Coulomb scattering phase shift. As we can see the CRF
R1/2

1 appears explicitly in (2.20) confirming the results from
Blokhintsev et al (1984).

For loosely bound states CF
xAlF jF JF

can be a huge number.
For example, the proton binding energy of the bound state

21Na( 1
2

+
, Ex = 2.425 MeV) is ε

21Na
p20Ne = 7.1 ± 0.6 keV

with the bound-state Coulomb parameter, ηbs
p20Ne = 18.3.

The proton removal ANC for this state extracted from the
analysis of the peripheral 20Ne(3He, d)21Na(2s+

1/2) reaction

(Mukhamedzhanov et al 2006) is C
21Na
p20Ne0 1/2 1/2 = 8.3 ×

1016 fm−1/2. The square root of CRF for lF = 0 is R1/2
1 =

	(ηbs
p20Ne + 1) = 1.56 × 1016 resulting in the Coulomb

renormalized ANC C̃
21Na
p20Ne0 1/2 1/2 = 5.32 fm−1/2, which is

significantly smaller than the conventional one and close to
the one generated by a pure nuclear interaction.

We also can rewrite the width of the sub-threshold
resonance

	xA lF jF JF
= 2PlF (RxA)γ 2

lF jF JF

= PlF (RxA)
W̃ 2

−ηbs
xA,lF +1/2

(2κF
xARxA)

µxARxA

(̃C
F

xA lF jF JF
)2, (2.21)

with

γ 2
xAlF jF JF

=
W̃ 2

−ηbs
xA, lF + 1/2

(2κF
xARxA)(̃C

F

xAlF jF JF
)2

2µxARxA

. (2.22)

An expression for the ANC also can be obtained starting
from the Pinkston–Satchler equation (Pinkston and Satchler
1965), which contains the source term (Mukhamedzhanov and
Timofeyuk 1990, Timofeyuk 1998). From this equation the
expression for the ANC in terms of the Wronskian can be
derived (Mukhamedzhanov 2012):

CF
xAlF jF JF

= e−iπηbs
xA/2 1

L
C(+)
lF

(iκF
xA)

× W [IF
xAlF jF JF

(rxA), ϕC
lF

(iκF
xA, rxA)]|rxA=RxA

, (2.23)

where the Wronskian is

Wx(iκ
F
xArxA) = W [IF

xAlF jF JF
(rxA), ϕC

lF
(iκF

xA, rxA)]

= IF
xAlF jF JF

(rxA)
dϕC

lF
(iκF

xA, rxA)

draA

−ϕC
lF

(iκF
xA, rxA)

dIF
xAlF jF JF

(rxA)

draA

. (2.24)

ϕC
lF

(iκF
xA, rxA) = − 1

2κF
xA

[
L

C(−)
lF

(iκF
xA)f

C(+)
lF

(iκF
xA, rxA)

−L
C(+)
lF

(iκF
xA)f

C(−)
lF

(iκF
xA, rxA)

]
= r

lF +1
xA e

−κF
xArxA

1 F1(lF + 1 + ηbs
xA, 2lF + 2; 2κF

xArxA)

= e−iπlF /2L
C(+)
lF

(iκF
xA)

eiσlF FlF (iκF
xA, rxA)

iκF
xA

(2.25)

is the Coulomb regular solution of the partial Schrödinger
equation at imaginary momentum iκF

xA,

f
C(±)
lF

(iκF
xA, rxA) = e−iπηbs

xA/2W∓ηbs
xA,lF +1/2(±2κF

xArxA)

(2.26)

are the Jost solutions (singular at the origin rxA = 0) and

L
C(±)
lF

(iκF
xA) = 1

(2iκF
xA)lF

e−iπηbs
xA/2e±iπlF /2 	(2lF + 2)

	(lF + 1 ± ηbs
xA)

(2.27)

are the Jost functions.
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It is straightforward to see that this ANC is a real quantity
because ϕC

lF
(iκF

xA, rxA) given by (2.25), IF
xAlF jF JF

(rxA), and

e−iπηbs
xA/2 1

L
C(+)
lF

(iκF
xA)

are real at the pure imaginary momentum

kxA = iκF
xA.

Correspondingly, the Coulomb renormalized ANC is
given by

C̃F
xAlF jF JF

= (2κF
xA)lF

	(lF + 1)

	(2lF + 2)

× W [IF
xAlF jF JF

(rxA), ϕC
lF

(iκF
xA, rxA)]|rxA=RxA

. (2.28)

The Wronskian calculated for two independent solutions of
the Schrödinger equation is constant. Because the radial
overlap function IF

xAlF jF JF
(rxA) is not a solution of the

Schrödinger equation in the nuclear interior, the Wronskian
and, hence, the ANCs determined by (2.23) and (2.28)
depend on the channel radius RaA, if it is not too large.
However, if the adopted channel radius is large enough, we
can replace the radial overlap function by its asymptotic
term, see (2.13), proportional to the Whittaker function,
which determines the radial shape of the asymptotic radial
overlap function and is a singular solution of the radial
Schrödinger equation. ϕC

lF
(iκF

xA, rxA) is the independent
regular solution of the same equation at large RxA where the
nuclear x −A interaction can be neglected and the asymptotic
form of (2.13) can be applied. Taking into account that
W [f C(+)

lF
(iκF

xA, rxA), f
C(−)
lF

(iκF
xA, rxA)] = 2κF

xA, we get at
large RxA

e−iπηbs
xA/2 1

L
C(+)
lF

(iκF
xA)

W [IF
xAlF jF JF

(rxA),

ϕC
lF

(iκF
xA, rxA)]|rxA=RxA

= CF
xAlF jF JF

. (2.29)

Hence (2.23) at large RxA, as expected, is verified. The main
advantage of this equation is that it can be used at RxA, which
does not exceed the radius of nucleus F = (xA). In the nuclear
interior the contemporary microscopic models provide quite
accurate overlap functions. Note that the ANCs calculated
using (2.23) and (2.28) may depend on the adopted channel
radius RxA but the ratio of the mirror ANCs, as shown below,
is practically insensitive to RxA. This allows us to analyze the
impact of the Coulomb effects on the ANC by separating the
different scales of these effects.

From (2.23) we get the ratio of the squares of the proton
and neutron ANCs for mirror nuclei:

LW
pn(RNA) = (CF

pAlF jF JF
)2

(CA+1
nAlF jF JF

)2

=
(

κF
pA

κA+1
nA

)lF
	(lF + 1 + ηbs

pA)

	(lF + 1)

Wp(iκF
pARNA)

Wn(iκA+1
nA RNA)

2

.

(2.30)

Here Wp(iκF
pARNA)(Wn(iκA+1

nA RNA)) is the Wronskian calcu-
lated for the proton (neutron) at the channel radius RNA. To
get the proton (neutron) Wronskian we can just replace x → p

(x → n) in (2.24).
For the neutron Wronskian

ϕlF (iκA+1
nA , rnA)

= r
lF +1
nA e

−κA+1
nA rnA

1 1F1(lF + 1, 2lF + 2; 2κA+1
nA rnA), (2.31)

κA+1
nA =

√
2µnAεA+1

nA is the wave number of the bound state
A + 1 = (nA) of the isobaric analog state of the bound
state F = (pA).

The calculation of the ratio of the mirror nucleon
ANCs requires knowledge of the microscopic radial overlap
functions. Equation (2.19) obtained in Timofeyuk et al (2003)
can be used when the overlap functions are not available.
We show here how to obtain (2.19) starting from (2.30)
(Mukhamedzhanov 2012). First, as it was pointed out in
Timofeyuk et al (2003), in the nuclear interior the Coulomb
interaction varies very little in the vicinity of RNA and its effect
leads only to shifting of the nucleon binding energy. Hence, we
assume that ϕC

lF
(iκF

xA, rxA) and ϕlF (iκF
xArxA) behave similarly

at rNA ≈ RNA except for the overall normalization, that is

ϕC
lF

(iκF
pArpA) = ϕC

lF
(iκF

pARNA)

ϕlF (iκA+1
nA RNA)

ϕlF (iκA+1
nA rpA). (2.32)

Then (2.30) reduces

LW ′
pn(RNA) = (CF

pAlF jF JF
)2

(CA+1
nAlF jF JF

)2

≈
(

κF
pA

κA+1
nA

)lF
	(lF + 1 + ηbs

pA)

	(lF + 1)

ϕC
lF

(iκF
pA, RNA)

ϕlF (iκA+1
nA , RNA)

× W [IF
pAjF JF

(rpA), ϕlF (iκA+1
nA , rpA)]|rpA=RNA

W [IA+1
nAlF jF JF

(rnA), ϕlF (iκA+1
nA , rnA)]|rnA=RNA

]2

. (2.33)

Neglecting the difference between the proton and neutron
mirror overlap functions in the nuclear interior, we obtain the
approximate ratio of the squares of the mirror ANCs from
Timofeyuk et al (2003)

Lpn(RNA) = (CF
pAlF jF JF

)2

(CA+1
nAlF jF JF

)2

≈
(

κF
pA

κA+1
nA

)lF
	(lF + 1 + ηbs

pA)

	(lF + 1)

ϕC
lF

(iκF
pA, RNA)

ϕlF (iκA+1
nA , RNA)

2

.

(2.34)

It is important to understand the physics causing the difference
between the proton and neutron mirror ANCs. First of all, the
proton ANC is affected by the main CRF, R1 (see (2.15)).
Eliminating this major factor from the proton ANC we obtain
the ratio of the squares of the Coulomb renormalized proton
and neutron ANCs:

L̃W
pn(RNA) = (C̃F

pAlF jF JF
)2

(CA+1
nAlF jF JF

)2

=
(

κF
pA

κA+1
nA

)lF
Wp(iκF

pA, RNA)

Wn(iκA+1
nA , RNA)

2

. (2.35)

This ratio still may be far from unity. After we removed the
main CRF, R1, there are two more remaining CRFs, which
determine the difference between the proton and neutron mirror
ANCs. The second factor appears because of the difference
in the proton and neutron binding energies. The dependence
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of the ANC on the binding energy is exponential. Because
the binding energy of the neutron analog state is larger than
the corresponding proton binding energy, the renormalized
squared proton ANC (C̃F

pAlF jF JF
)2 is lower than (C̃A+1

nAlF jF JF
)2,

and the second CRF decreases the proton ANC: the bigger
the difference εA+1

nA − εF
pA, the stronger the decrease of the

proton ANC. The third CRF, which increases the proton
ANC compared to the neutron one, is generated by the fine
Coulomb effects (the effects left after removal the main CRF
and difference in the binding energies) and is minor compared
to the first two CRFs. Now after this discussion we can rewrite
(2.35) as

L̃W
pn(RNA) = R̃W

2 R̃W
3 , (2.36)

where

R̃W
2 =

(
κF

pA

κA+1
nA

)lF
Wn(iκ

F
pARNA)

Wn(iκ
A+1
nA RNA)

2

(2.37)

and

R̃W
3 =

∣∣∣∣∣Wp(iκF
pARNA)

Wn(iκF
pARNA)

∣∣∣∣∣
2

. (2.38)

To calculate the binding energy effect R̃W
2 on the ratio of

the ANCs, it is sufficient to replace the proton Wronskian
Wp(iκF

pARNA) in (2.35) by the neutron one Wn(iκF
pARNA) that

is calculated at the proton binding energy. To calculate the
impact of the fine Coulomb effects it is sufficient to consider
the ratio of the squared proton and neutron Wronskians both
calculated at the proton binding energy. For the ratio of the
ANCs L̃pn considered in Timofeyuk et al (2003), we get

L̃pn = R̃2R̃3, (2.39)

where

R̃2 =
(

κF
pA

κA+1
nA

)lF
ϕlF (iκF

pA, RNA)

ϕlF (iκA+1
nA , RNA)

2

(2.40)

is the CRF determining the effect of the binding energy, while

R̃3 =
[

ϕC
lF

(iκF
pA, RNA)

ϕlF (iκF
pA, RNA)

]2

(2.41)

is the CRF determining the fine Coulomb effects. Thus we can
express the squared proton ANC in terms of the mirror squared
neutron one as

(CF
pAlF jF JF

)2 = R1R̃W
2 R̃W

3 (CA+1
nAlF jF JF

)2 (2.42)

or
(CF

pAlF jF JF
)2 = R1R̃2R̃3(C

A+1
nAlF jF JF

)2 (2.43)

depending on whether we use the Wronskian approach or the
simplified version in (2.34). Here we took into account that
the quantum numbers of the proton and neutron analog states
are the same.

In figure 1 the comparison of the ratio of the squared proton
and neutron ANCs for mirror nuclei 41Sc and 41Ca is shown.

Figure 1. Ratio LW
pn(RNA) of the square of the proton ANC for the

virtual decay between the ground states of 41Sc → 40Ca + p to the
square of the neutron ANC for the mirror nucleus virtual decay
41Ca → 40Ca + n as a function of the channel radius. The solid red
line is from the Wronskian method from (2.30) with the overlap
functions taken from Timofeyuk (2011); the dashed blue line is the
approximated result (2.34) as in Timofeyuk et al (2003).

In the Wronskian method, the microscopic proton and neutron
overlap functions from Timofeyuk (2011) were used. As we
can see, the Wronskian method provides the ratio, which is
nearly independent of the channel radius RNA. Thus, we can
use the microscopically calculated overlap functions with the
wrong tail and still get a reliable ratio of the mirror ANCs
using the channel radius at which these overlap functions are
reasonable.

Now we consider how the Coulomb renormalization
affects the proton ANC for the virtual decay 41Sc → 40Ca + p,
where (C

41Sc
p40Ca3 7/2 7/2)

2 = 286.9 fm−1. There are three CRFs.
Dividing the proton squared ANC by each of these factors,
we can eliminate step by step all three Coulomb effects
eventually arriving at the neutron squared ANC. To estimate
the different CRFs, we use (2.43), (2.40) and (2.41). The
main CRF in this case is R1 = 14 311.9. Using this gives
the Coulomb renormalized square of the proton ANC as
(C̃

41Sc
p40Ca37/27/2)

2 = (C
41Sc
p40Ca37/27/2)

2/R1 = 0.02 fm−1. Now
we take into account the remaining two CRFs coming from
the difference in the proton and neutron binding energies and
the residual Coulomb effects. Because at RNA = 4.4 fm the
ratio of the proton and neutron ANCs obtained using (2.44a)

is the closest to the one obtained by the Wronskian method,
the remaining two Coulomb renormalizations are calculated
at RNA = 4.45 fm. The binding energy of the proton in
41Sc(0.0MeV) is ε

41Sc
p40Ca = 1.085 MeV, while the neutron

binding energy in 41Ca(0.0 MeV) is ε
41Ca
n40Ca = 8.362 MeV. This

large difference in the neutron and proton binding energies
leads to a significant renormalization of the proton ANC
compared to the neutron one. Dividing (C̃

41Sc
p40Ca37/27/2)

2 by the
CRF, R2 = 0.0011, we get the renormalized proton ANC at the
neutron binding energy, (C̃

41Sc
p40Ca37/27/2)

2/R2 = 18.18 fm−1.
Finally, dividing it by the CRF, R3 = 4.16, defining the

7



Rep. Prog. Phys. 77 (2014) 106901 Review Article

residual Coulomb effects, we get the square of the neutron
ANC (C

41Ca
n40Ca37/27/2)

2 = 4.37 fm−1. These calculations clearly
demonstrate the scale of the different CRFs leading to the
difference between the mirror proton and neutron ANCs.

At the end of this section we note that although
equation (2.30) is exact, the accuracy of the calculated ratio
of the mirror depends on the quality of the overlap function.
Contemporary microscopic methods can provide quite good
overlap functions in the nuclear interior but not so good in
the external region. The advantage of equation (2.30) is that
it can be used in the region where the overlap functions are
quite reliable and in this case the calculated ratio of the mirror
ANCs is also quite accurate and can be predicted with accuracy
of a few percent. Different examples were considered by
Mukhamedzhanov (2012) including a case when the overlap
function has a node in the nuclear interior.

2.1.3. ANCs and SFs. The overlap function introduced
above is not an eigenfunction of any Hermitian Hamiltonian
and is not directly associated with a probability. Hence the
overlap function is not normalized to unity. The square of
the norm of the radial overlap function taking into account the
antisymmetrization between the nucleons of nuclei A and x

SFlF jF JF
=

∫ ∞

0
drAx r2

Ax [IF
Ax lF jF JF

(rAx)]
2 (2.44)

is, by definition, the SF for the configuration (xA)lF jF JF
in F .

Due to the antisymmetrization between A and x absorbed in
IF
xA lF jF JF

(rxA), the SF in (2.54) can be larger than unity.
There is a principal difference between the ANC and

the SF. The radial overlap function dies off exponentially as
rxA → ∞, so the main contribution to the radial integral (2.44)
comes from the nuclear interior, rxA < RNA (only for loosely
bound neutrons is the external contribution important). Thus,
the SF is defined predominantly by the behavior of the radial
overlap function within the nucleus. In contrast, the ANC
describes the peripheral properties of the overlap function since
it defines the amplitude of the tail. The ANC is, of course,
coupled to the internal behavior of the nuclear wave function.
In the shell model, the SF is a model-dependent quantity that is
sensitive to the adopted potential and to the truncations inherent
in the calculations (especially coupling to the continuum). In
general the SF can differ from unity since it depends on the
contribution of an infinite number of channels coupled to the
two-body channel (xA)lF jF JF

plus antisymmetrization effects,
but in the microscopic approach, the deviation of the SF from
1 is caused only by antisymmetrization effects that engage
different nonorthogonal channels. Due to these effects, the SF
calculated in microscopic approaches can be larger than 1.

In the single-particle approach, the radial overlap function
is approximated by a single-particle overlap function

IF
xA lF jF JF

(rxA) ≈ I
F(sp)

xA nF lF jF JF
(rxA)

= [SF(sp)

nF lF jF JF
]1/2 ϕnF lF jF JF

(rxA), (2.45)

where ϕnF lF jF JF
(rxA) is the normalized single-particle radial

wave function of the bound state (xA) calculated in an
adopted x − A interaction potential (often Woods–Saxon),

SF(sp)

nF lF jF JF
is called the SF of the single-particle configuration

(xA)nF lF jF JF
described by ϕnF lF jF JF

(rxA), rxA is the radius-
vector connecting the centers of mass of nuclei x and A.
However, strictly speaking, it is nothing more than the
normalization coefficient connecting the amplitude of the tail
of the overlap function (ANC) and the amplitude of the tail
of the single-particle wave function (single-particle ANC).
Equation (2.45) is an acceptable approximation if only one
configuration (xA)nF lF jF JF

gives a dominant contribution to
the wave function of nucleus F .

The introduction of the single-particle wave function
brings an additional dependence on the principal quantum
number nF which is absent in the left-hand side of (2.45).
Equation (2.45) is used in the conventional DWBA analysis
of experimental data. Since the squares of the norms of the
overlap function and the radial bound-state wave function
are, correspondingly, the SF, SFlF jF JF

, and unity, the single-
particle SF in (2.45) will equal SFlF jF JF

if the bound-state
wave function and the overlap function have very similar radial
behavior both in the nuclear interior and exterior. However,
for r < RxA where both the overlap function and the single-
particle wave function have most of their probability, the
radial dependence of the overlap function and single-particle
wave function, a priori, are different because the overlap
function is a many-particle object, whereas the single-particle
wave function is a solution of the single-particle Schrödinger
equation. Thus, in general SF(sp)

nF lF jF JF
does not coincide with

the microscopically calculated SF, SFlF jF JF
. Nonetheless,

for r > RxA the radial dependences of IxAlF jF JF
(rxA) and

ϕnF lF jF JF
(rxA) are the same and they differ only by their overall

normalizations. The asymptotic behavior of the radial overlap
function is given by (2.13) and the asymptotic behavior of the
radial bound-state wave function is defined as

ϕnF lF jF JF
(rxA) ≈ bnF lF jF JF

W−ηF , lF +1/2(2κF
xArxA)

rxA

rxA→∞−−−−→ bnF lF jF JF

e−κxArxA

r
1+ ηbs

xA

xA

, (2.46)

where bnBlBjBJF
is the single-particle ANC. By the proper

choice of SF(sp)

nF lF jF JF
, one can make (2.55) exact for

rxA > RxA. Then, comparing (2.13), (2.55) and (2.56) gives
the relationship connecting the single-particle SF, the ANC,
and the single-particle ANC bnF lF jF JF

SF(sp)

nF lF jF JF
= (CF

xAlF jF JF
)2

b2
nF lF jF JF

. (2.47)

Note that equation (2.47) can be used for another approximate
estimate of the ratio of the mirror ANCs. Assuming that the
SFs of the mirror nucleon states are the same, we immediately
arrive at

(CF
pAlF jF JF

)2

(CF
nAlF jF JF

)2
≈ b2

p nF lF jF JF

b2
n nF lF jF JF

. (2.48)

While the ANC is an experimentally measurable quantity,
the single-particle ANC bnF lF jF JF

is not. Hence, the single-
particle SF, when defined by (2.47) is model dependent. Its
model dependence comes through the single-particle ANC,
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which is a function of the geometric parameters, radius r0 and
diffuseness a of the Woods–Saxon potential conventionally
used as a single-particle potential. Furthermore, note that,
unlike SFlF jF JF

as defined in (2.44), SF(sp)

nF lF jF JF
in (2.47)

is actually a property of the peripheral part of the nucleon
overlap function.

There is another important point to note about the
difference between the ANCs and SFs. In ab initio calculations
the overlap functions are model-dependent because the
adopted NN potentials are not observable. Rather there exists
an infinite number of the phase equivalent NN potentials,
which are related to each other via finite-range unitary
transformations. It has been shown (Mukhamedzhanov and
Kadyrov 2009) that the ANCs, which are the amplitudes of the
asymptotic tails of the overlap functions, are invariant under
finite-range unitary transformations but SFs are not. Thus
even on the fundamental level there is a difference between the
ANCs and SFs. The fact that SFs are not an observable does
not mean that they do not provide useful information, but we
always should keep in mind that the SFs are model-dependent
quantities.

2.1.4. Peripheral transfer reactions and ANCs. Since the
ANC is the amplitude of the tail of the overlap function, the
amplitude of the peripheral reaction containing the overlap
function is proportional to the ANC. Hence by normalizing
the calculated cross section of the peripheral reaction to
the experimental one we can determine the ANC. Due to
strong absorption in the nuclear interior, heavy ion induced
reactions at energies around 10 MeV/nucleon are peripheral.
This absorption in the DWBA is taken into account by using
the optical potentials. It turns out that even reactions such
as A(3He, d)B induced by such light projectiles as 3He are
peripheral due again to strong absorption.

Here we present the theoretical scheme for analysis of
peripheral charged particle transfer reactions to extract ANCs
within the framework of the DWBA. The DWBA approach is
based on the assumptions that (i) the simplest pole diagram
describes the particle transfer mechanism, at least near the
main peak in the angular distribution, (ii) rescattering effects
of the interacting particles in the initial and final states must
be taken into account. The DWBA amplitude for the transfer
reaction a + A → s + F where a = (sx) is given by

MDW(kf , ki ) =
∑
Mx

〈
χ

(−)
kf

I F
xA|�V (post,prior)|I a

sx χ
(+)
ki

〉
.

(2.49)

Here, kf = ksF , ki = kaA, and

k12 = m2k1 − m1k2

m1 + m2
(2.50)

is the relative momentum of particles 1 and 2. Also χ
(+)
ki

and χ
(−)
kf

are the distorted waves in the initial and final states,
correspondingly,

�V (post) = Vsx + UsA − UsF (2.51)

is the post-form of the DWBA transition operator and

�V (prior) = UsA + VxA − UaA (2.52)

is the prior form of the DWBA transition operator, V12 is the
interaction potential of nuclei 1 and 2 equal to the sum of
nuclear and Coulomb potentials, U12 is the optical interaction
potential of nuclei 1 and 2. It is assumed that all the potentials
depend only on the distance between the centers of mass of
nuclei 1 and 2 and not on the coordinates of the constituent
nucleons. The sum in (2.49) is taken over the spin projections
Mx of the transferred particle x.

The DWBA is the first-order perturbation theory in powers
of the transition operator. A priori this matrix element is not
small in the nuclear interior where the operator �V (post,prior)

is not small. However the interior contributions are small
due to the presence of the distorted waves, which suppress
the nuclear interior contribution making transfer reactions
dominantly peripheral if |ki − kf |/ki � 1 and the energy is
large enough to have many open channels at li,f � ki,f Ri,f .

Using (2.45) the conventional DWBA amplitude is
parametrized in terms of the product of the SFs of the initial
and final nuclei leading to the DWBA differential cross section

dσ

d�
=

∑
jF ja

SF(sp)

nF lF jF JF
SF(sp)

na lajaJa
σ DW

nF lF jF JF nalajaJa
, (2.53)

where σ DW
nF lF jF JF nalajaJa

is the reduced DWBA cross section. For
simplicity, we assumed that only one value of l contributes to
the reaction at each vertex. Since σ DW

nF lF jF JF nalajaJa
depends on

the optical potential parameters and the geometric parameters
of the Woods–Saxon potentials used to calculate the bound
states, the extracted values of the phenomenological SFs are
also model dependent. The parameters of the optical potentials
are usually fixed by analysis of elastic scattering data. It is well
known that the results of such an analysis are ambiguous. But if
the reaction is peripheral, the influence of the ambiguity of the
optical model parameters on the value of the phenomenological
SFs is not very significant. The largest uncertainty in the
absolute value of the SFs arises from the strong dependence
of the calculated DWBA cross section σ DW

nF lF jF JF nalajaJa
on

the geometric parameters, r0 and a, of the bound-state
Woods–Saxon potentials used to determine the single-particle
orbitals, which cannot be determined unambiguously from
experimental data. The normalization of the DWBA cross
section in terms of SFs has another problem, especially
manifested for surface reactions. The SF is defined mainly
by the behavior of the overlap function in the nuclear interior,
while the dominant contribution to peripheral reactions comes
from the surface and outer regions of nuclei. Hence the
parametrization of the DWBA cross section in terms of SFs
is not justified for peripheral reactions. For these reactions
only rsx > Rsx and rxA > RxA contribute to the DWBA
radial integrals, that is, bound-state wave functions can be
approximated by their asymptotic forms (2.46) as

ϕnF lF jF JF
(rxA)

bnF lF jF JF

≈ W−ηbs
xA, lF +1/2(2κF

xArxA)

rxA

,

ϕnalajaJa
(rsx)

bnalajaJa

≈ W−ηbs
xA, la+1/2(2κa

sxrsx)

rsx

, (2.54)
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and do not depend on the geometrical parameters of the bound-
state potentials. Taking into account (2.47) and (2.53), we can
rewrite the DWBA cross section for the peripheral transfer in
the form

dσ

d�
=

∑
jF ja

(CF
xAlF jF JF

)2 (Ca
sxlajaJa

)2
σ DW

nF lF jF JF nalajaJa

b2
nF lF jF JF

b2
nalajaJa

.

(2.55)

Due to (2.54),

RlF jF JF lajaJa
= σ DW

nF lF jF JF nalajaJa

b2
nF lF jF JF

b2
nalajaJa

(2.56)

is nearly independent of the single-particle ANCs bnalajaJa
and

bnF lF jF JF
for peripheral reactions. Thus the introduction of

condition (2.47) into the standard DWBA analysis guarantees
the correct absolute normalization of the peripheral reaction
cross section; it is actually parametrized in terms of the product
of the square of the ANCs of the initial and final nuclei
(CF

xAlF jF JF
)2 (Ca

sxlajaJa
)2, rather than SFs. Furthermore, in this

form, it is insensitive to the assumed geometries of the bound-
state potentials.

The angular distributions of the heavy ion induced
reactions at energies well above the Coulomb barrier are
forward peaked and reactions are peripheral near the main
peak in the angular distribution, where they are dominated
by the peripheral partial waves li > kiRi, lf > kf Rf .
Normalization of the DWBA differential cross section to the
experimental one in the region of the main peak in the angular
distribution allows one to determine (CF

xAlF jF JF
)2 (Ca

sxlajaJa
)2.

Equation (2.55) represents the basis for the determination of
the product of the ANCs involved in a transfer reaction. In
transfer reactions, two possibilities can occur. If a and F

are the same nuclei, that is, we have an elastic exchange
reaction, the DWBA cross section is expressed in terms of
(Ca

sxlajaJa
)4 and this ANC can be determined by normalizing

the DWBA cross section to the experimental one. If aand F are
different nuclei, then to determine CF

xAlF jF JF
, one has to know

Ca
sxlajaJa

from an independent measurement. Since the ANC is
a model independent quantity, the ANC Ca

sxlajaJa
found from

any other reliable experimental source—including those found
from transfer reactions involving light or heavy ions or from
analysis of elastic scattering—can be used in the subsequent
DWBA analysis. Besides the ambiguity of the optical potential
parameters, the ANCs determined from experiments using the
DWBA analysis can be affected by coupling of the different
channels which should be taken into account explicitly. It has
been investigated in Nunes and Mukhamedzhanov (2001) and
taken into account in Mukhamedzhanov et al (2003a).

2.2. Introduction to the THM

The THM is a powerful indirect technique that allows one to
determine the astrophysical factor for rearrangement reactions.
The THM, first suggested by Baur (1986), involves obtaining
the cross section of the binary process x + A → b + B

at astrophysical energies by measuring the Trojan Horse
(TH) reaction (the two-body to three-body process (2 → 3

Figure 2. The diagram describing the TH reaction
a + A → b + B + s in the QF kinematics.

particles)) a +A → b+B + s in the quasi-free (QF) kinematics
regime, where the ‘Trojan Horse’ particle, a = (s x), which
has a dominant cluster structure, is accelerated at energies
above the Coulomb barrier. After penetrating the barrier, the
TH-nucleus a undergoes breakup leaving particle x to interact
with target A while projectile s, also called a spectator, flies
away. From the measured cross section of TH reaction, the
energy dependence of the binary sub-process is determined.

The reaction used in the THM can proceed through
different reaction mechanisms. The TH reaction mechanism
shown schematically in figure 2, gives the dominant
contribution to the cross section in a restricted region of the
three-body phase space when the relative momentum of the
fragments s and x is zero (the QF kinematical condition) or
small compared to the bound state (s x) wave number. Since
the transferred particle x in the TH reaction is virtual, its
energy and momentum are not related by the on-shell equation
Ex = k2

x/(2mx).
In the THM the initial channel is a + A, where a = (sx),

rather than just x + A. This results in three particles in the
final state of the TH reaction, b + B + s, rather than the two-
particle final state b + B in the binary reaction. To increase the
TH triple differential cross section the relative kinetic energy
EaA in the initial channel of the TH reaction should be higher
than the Coulomb barrier between particles a and A. Then
the probability to find nucleus a near A, which is given by
the modulus square of the scattering wave function describing
their relative motion, is not suppressed by the Coulomb barrier,
leading to a finite probability that A can be in the proximity of
x. Thus there is no additional Coulomb barrier between A and
the constituent particle x of the TH-nucleus a, once the initial
kinetic energy of the TH reaction is chosen to be above the
a + A Coulomb barrier. Usually the TH process is described
as follows: the projectile a (or A), which is accelerated to an
energy above the Coulomb barrier in the initial state of the
TH reaction V CB

aA , approaches A and then breaks down in the
vicinity of A. Particle x remains to interact with A while s

leaves the scene as a spectator. To realize this, two additional
conditions should be fulfilled. First, QF kinematics must be
chosen so that the relative momentum of particles s and x is
close to zero. This provides the best condition to treat s as a
spectator because it minimizes the interaction between s and
x by favoring the maximal distance between these particles.
Second, the relative momentum kaA of nuclei a and A in the
entry channel of the TH reaction should be large enough that
A will probe distances smaller than the distance between s and
x available in the QF kinematics.
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As we have noted, the Coulomb barrier suppresses the
cross section at astrophysical energies making it difficult
or practically impossible to measure in the laboratory.
Yet another problem arises at low energies. Due to the
electron screening, the Coulomb barrier penetrability increases
compared to collisions of bare nuclei. Hence the results of
direct measurements will be distorted by the electron screening
(Assenbaum et al 1987, Strieder et al 2001). The advantage
of the THM is that the extracted cross section of the binary
sub-process does not contain the Coulomb barrier factor and
electron screening does not play a role in the cross section.
Consequently the TH cross section can be used to determine
the energy dependence of the astrophysical factor, S(ExA), of
the binary process down to zero relative kinetic energy ExA

of the particles x and A without distortion due to electron
screening (Spitaleri et al 2001, Lattuada et al 2001, La Cognata
et al 2005). The absolute value of S(ExA) can be found by
normalization of TH data to available direct measurements at
higher energies. At low energies where electron screening
becomes important, comparison of the astrophysical factor
determined from the THM to the direct result provides a
determination of the screening potential (Spitaleri et al 2001,
Lattuada et al 2001, La Cognata et al 2005).

The THM has been successfully applied to the bare-
nucleus cross section measurements of reactions between
charged particles at sub-Coulomb energies, as is discussed in
a later section. The history leading to the THM comes from
the theory of direct reactions (Shapiro 1967a, 1967b, 1968)
and studies of the QF reaction mechanisms (Chew and Wick
1952, Furic et al 1972). It is an extension of the measurements
of the excitation function of the three-body cross sections for
QF reaction at low projectile incident energies (<70 MeV)
(Lattuada et al 1984, 1985, Zadro et al 1989, Calvi et al 1990).
A recent application of the THM has addressed the possibility
of studying neutron-induced reactions at low energies on
radioactive nuclei. This idea has been tested with stable beams
(Tumino et al 2005, Gulino et al 2010, 2013). However, for
neutron interactions, only the centrifugal barrier between the
interacting nuclei exists.

In the next sections we present the theory of the TH
reactions proceeding through direct and resonance binary
sub-reactions. The first attempt to deliver the TH reaction
theory has been done by Typel and Baur (2003), where they
introduced the surface approximation. Although the idea
of the surface approximation is quite attractive its practical
realization requires the surface integral formalism developed
in Kadyrov et al (2009), and has been applied to deuteron
stripping reactions populating bound states and resonances
by Mukhamedzhanov (2011). The developed theory of the
deuteron stripping was based on DWBA and post continuum
discretized coupled channels (CDCC) formalism, the surface
integral formulation of the reaction theory, and the R−matrix
method. This theory can be directly applied for analysis of the
TH reactions, in which the TH-nucleus is a deuteron. It can be
also extended for other TH-nuclei.

In the THM only the energy dependences and angular
distribution of the three-body cross sections are measured.
Normalization of the TH data is made to direct measurements

available at higher energies. It allows one to determine the
absolute cross sections at lower energies where direct data
are not available. The absence of the absolute measurements
allows us to consider the theory of the TH reactions in the plane-
wave approximation (PWA), which often predicts reasonable
energy dependence of the three-body cross sections (Dolinsky
et al 1973) but is much simpler then the DWBA and CDCC
approaches. In recent years, efforts have been devoted to the
development of an improved THM approach that does not need
the existence of direct data for normalization (La Cognata
et al 2010a). This is of utmost importance in the case of
reactions involving radioactive nuclei, since direct data are
often missing or are plagued with large uncertainties. The
equations presented here are obtained for the s-wave bound
state a = (sx).

2.2.1. Physics of the THM: QF kinematics. Here, we describe
some introductory physics of the THM, focusing on the
kinematics of the 2→3 reaction A + a → b + B + s (see
figure 2) that is used to determine the cross section of the
A + x → b + B astrophysical reaction. To make the THM
mechanism workable two conditions should be fulfilled. First,
the QF kinematics should be chosen. At QF kinematics,
the relative momentum of particles s and x vanishes. It
provides the best condition to treat s as a spectator because
it minimizes the interaction between s and x by favoring the
maximal distances between these particles. The detection
angles at the QF kinematics are called QF angles, and represent
the best angular conditions where place detectors in a THM
experiment, the probability to observe the QF mechanism
being enhanced in comparison with non-QF processes.

This can be justified quantitatively. The amplitude of
the diagram in figure 2 (equation (2.68)) depends on five
independent Galilean invariant variables, but one of them,
the rotation angle around the incident beam is not significant
and can be excluded leaving only four independent invariants
in the amplitude of the diagram in figure 2. These four
invariants determine the complete kinematics of the THM
reaction A + a → b + B + s. Usually in THM experiments
the angles and momenta of the final state particles b and B are
measured.

Let us consider the diagram in figure 2 describing the
THM mechanism. In what follows the momentum of the
virtual particle x is denoted by px to distinguish it from on-the-
energy-shell (OES) momentum kx . Also relative momentum
of particles 1 and 2, where one of them is the virtual particle x,
is denoted by p12 to distinguish it from the OES momentum k12

of particles 1 and 2. Then the relative kinetic energy between
particles 1 and 2 is E12 = k2

12/2µ12 �= p2
12/2µ12, where µ12 is

their reduced mass, kj (Ej) stands for the momentum (energy)
of the real particle j (Ej = k2

j /2mj).
From the energy and momentum conservation in the three-

ray vertex a → s + x we get

σx = Ex − p2
x

2mx

= Ea − Es − εa
sx − (ka − ks)

2

2mx

= −
[

p2
sx

2µsx

+ εa
sx

]
= Esx − p2

sx

2µsx

= − [p2
sx + (κa

sx)
2]

2µsx

,

(2.57)
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where σx is the measure of the deviation of particle x from OES
(for the real particle σx = 0), Esx = −εa

sx , κa
sx = √

2µsxεa
sx

is the bound state a = (s x) wave number, εa
sx is the binding

energy for the virtual decay a → s + x.
Similarly, from the energy and momentum conservation

law in the A + x → b + B four-ray vertex we obtain

σx = ExA − p2
xA

2µxA

. (2.58)

Then it is evident that, due to the virtual character of particle
x, Esx �= p2

sx/2µsx and ExA �= p2
xA/2µxA. The real particles

are a and A in the entry channel and particles s, b and B in the
exit channel, see figure 2. The relative momenta psx and pxA

are given by

psx = mxks − mspx

msx

, (2.59)

and

pxA = mApx − mxkA

mxA

. (2.60)

The relative momentum of real particles is

k12 = m2k1 − m1k2

m12
. (2.61)

From equations (2.57) and (2.58) we get one of the important
energy–momentum relationships of THM:

ExA = p2
xA

2µxA

− p2
sx

2µsx

− εa
sx. (2.62)

Thus in the THM, due to the virtual character of particle x,
always we have p2

xA/(2µxA) > ExA. In the QF kinematics,
psx = 0 and the x − A relative kinetic energy is

ExA = p
(0)2
xA

2µxA

− εa
sx, (2.63)

where p
(0)
xA is the x − A relative momentum in the QF

kinematics.
We introduce the form factor (Blokhintsev et al 1977,

1984)

Wa(psx) = 1√
4π

Wa(psx) =
∫

drsxeipsx ·rsx Vsx(rsx) ϕa(rsx)

= −p2
sx + (κa

sx)
2

2 µsx

ϕa(psx), (2.64)

where ϕa(psx) is the Fourier transform of the bound-state
wave function ϕa(rsx) of the bound state a = (sx), rsx is
the radius-vector connecting the centers of mass of nuclei s

and x, Vsx(rsx) is their interaction potential.
If one of the particles s or x is a neutron, the form factor

is regular at p2
sx + (κa

sx)
2 = 0, that is

ϕa(psx) = − 2 µsx

Wa(psx)

p2
sx + (κa

sx)
2

(2.65)

has a pole at p2
sx + (κa

sx)
2 = 0. However, if both particles s

and x are charged, the potential Vsx includes both nuclear and

Coulomb parts. The latter modifies the behavior of the form
factor at p2

sx + (κa
sx)

2 = 0:

Wa(psx)
p2

sx+(κa
sx )

2→0−−−−−−−→ [p2
sx + (κa

sx)
2]ηsx W̃a(psx), (2.66)

where W̃a(psx) is regular at the singular point, ηsx =
ZsZxe

2µsx/κ
a
sx is the Coulomb parameter of the bound state

(sx), Zie is the charge of particle i. We remind that we
use the system of units in which � = c = 1. Hence,
the Fourier component of the bound-state wave function and,
correspondingly, the amplitude of the diagram in figure 2 have
the branching point singularity rather than the pole one:

ϕa(psx)
p2

sx+(κa
sx )

2→0−−−−−−−→ −2 µsx

W̃a(psx)

[p2
sx + (κa

sx)
2]1−ηsx

. (2.67)

Hence the amplitude of the diagram 2.2 is not a pole one in the
presence of the Coulomb interaction in the vertex a → s + x.
Only if one of the particles s or x is a neutron, that is ηsx = 0,
the singularity at p2

sx + (κa
sx)

2 = 0 turns into a pole, and in this
case the diagram 2.2 can be called a pole diagram.

Although the singularity at p2
sx + (κa

sx)
2 = 0 is located

in the unphysical region, owing to its presence for the orbital
angular momentum of the bound state lsx = 0 (this is the most
common condition in the application of THM, compare table 6)
the amplitude M(kbB, pxA; psx) has a maximum at psx = 0,
although the Coulomb s −x interaction decreases the QF peak
making it even disappear at ηsx > 1. Thus the QF kinematics
provides the best condition for the dominance of the diagram
in figure 2.

The second condition is that the relative momentum kaA of
nuclei a and A in the entry channel of the THM reaction should
be large enough (typically kaA > κa

sx), so that A will probe
distances smaller than the distances between s and x available
in the QF kinematics. However, astrophysical energies ExA

still can be reached and even the negative (sub-threshold)
energy region can be investigated using the THM that follows
from equation (2.60). We can see that the binding energy εa

sx

of the Trojan Horse particle a = (sx) plays an important role
compensating the first term p

(0)2
xA /2µxA and bringing down ExA

so that we can reach the astrophysical region.

2.2.2. Theory of the THM for direct binary sub-reactions.
Starting with the PWA in the prior form, let us consider the
TH reactions proceeding through direct binary sub-reactions.
First we neglect the spins of the particles, which will be taken
into account later. We start from the prior form of the PWA:

MPWA(prior)(P , kaA) =
〈
χ

(0)
sF �

(−)
bB |VxA|ϕaϕAχ

(0)
aA

〉
, (2.68)

where χ
(0)
aA = ei kaA·raA and χ

(0)
sF = ei ksF ·rsF , �

(−)
bB is the

scattering wave function of the fragments b and B in the exit
channel, F = b + B. The prior form looks more preferable
than the post-form because it does not contain the interaction
potential of the exiting particle s, allowing us to treat it as a
spectator. Expressing raA and rsF in terms of rsx and rxA

raA = rxA +
ms

ma

rsx, rsF = mA

mF

rxA + rsx, (2.69)
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we get

MPWA(prior)(P , kaA) = MHOES
xA→bB(kbB, pxA)ϕa(psx). (2.70)

Here

MHOES
xA→bB(kbB, pxA) =

〈
�

(−)
bB |VxA|ϕAei pxA· rxA

〉
(2.71)

is the HOES (half-off the energy shell) amplitude of the binary
sub-reaction x + A → b + B,

psx = ksF − ms

ma

kaA, pxA = kaA − mA

mF

ksF . (2.72)

This HOES amplitude should be compared with the OES (on
the energy shell) amplitude of the sub-reaction

MOES
xA→bB(kbB, pxA) =

〈
�

(−)
bB |VxA|ϕAeikxA·rxA

〉
. (2.73)

Here we assume that the Coulomb x−A interaction is screened
so that we can avoid the distorted wave in the initial channel
of the reaction. Equation (2.71) is exact if �

(−)
bB is the exact

scattering wave function in the exit channel b +B of the binary
sub-reaction and antisymmetrization is neglected.

Compare now equations (2.71) and (2.73) near the QF
kinematics. At ExA � εa

sx from equation (2.63) we get that
ExA ≈ p2

xA/2µxA and pxA ≈ kxA = √
2µxAExA. Hence the

HOES amplitude MHOES
xA→bB(kbB, pxA) ≈ MOES

xA→bB(kbB, kxA).
However, practical applications of the THM are most important
at ExA → 0. At low energies the barrier penetrability
factor becomes one of the most crucial factors determining
the behavior of the OES reaction amplitude. Using the two-
potential equation we can rewrite (2.73) as

MOES
xA→bB(kbB, kxA) =

〈
�

(−)
bB |VxA − UxA|ϕA χ

(+)
kxA

〉
, (2.74)

where χ
(+)
kxA

is x − A distorted wave generated by the optical
potential UxA. Now after introducing the distorted wave in the
initial channel we can use in equation (2.74) the unscreened
Coulomb potential UC

xA. Applying the partial wave expansion
of MOES

xA→bB(kbB, kxA), we immediately see that each partial
wave amplitude contains the penetrability factor in the initial
x − A channel generated by the distorted waves χ

(+)
kxA,l . At low

ExA energies the penetrability factors suppress the contribution
of higher partial waves singling out only one or a few lowest
partial waves. However we cannot use the two-potential
formula in (2.71) because pxA �= kxA and the penetrability
factors do not appear in the HOES amplitude (2.71). Hence,
the number of the partial waves contributing to the HOES
amplitude may be much larger than the ones contributing to the
OES. Only in special cases such as resonant binary reactions,
when only one or a few partial waves do contribute, or for
direct reactions when a large Q = mx + mA − mb − mB

singles out only the lowest allowed partial wave, can the HOES
amplitude provide the same information as the OES one even
at low energies. In many papers devoted to the analysis of
the THM data, a simplified version of the theory is used (see
Pizzone et al (2013) and Gulino et al (2013) and references
therein). Assume that only one partial wave in the initial x +A

channel does contribute to the reaction (it is the case for the
resonant x + A → b + B reaction). The HOES amplitude
obtained from equation (2.69) by partial wave expansion of

the initial plane wave eipxArxA contains the spherical Bessel
function jl(pxArxA) at the resonant partial wave l. At small
ExA(ExA � εd

pn), according to equations (2.63), pxA � kxA

and jl(pxArxA) changes little when ExA → 0 practically
not affecting the energy dependence of the HOES matrix
element. The OES matrix element contains the distorted
wave χ

(+)
kxAl(rxA) in the initial state, whose energy behavior at

small ExA is almost entirely determined by the penetrability
factor Pl(kxArxA). Removing this penetrability factor, which
is needed to obtain the astrophysical factor, we obtain a weak
energy dependence of the initial distorted wave, as in the case
of the HOES matrix element. Because both the HOES and
OES matrix elements contain the same final channel scattering
wave function, one expects that the energy behavior at small
ExA of the HOES matrix element is similar to the OES one
with the penetrability removed from the OES cross section.
Furthermore the absolute values of the HOES and OES cross
sections under this condition may be quite different but in the
THM only the energy dependence of the binary sub-reaction
cross section is measured and its absolute value is determined
by normalization of the TH differential cross section to the
available direct experimental data at higher energies. This
discussion provides a qualitative justification for the simplified
analysis of the TH data, in which the TH triple differential
cross section of the TH reaction x + A → s + b + B is related
to the differential cross section for the binary sub-reaction
x +A → b+B as shown in section 4 below, see equation (4.1).

Now we outline a more accurate approach, which is based
on the surface integral formalism and the PWA. At low ExA we
need to consider the TH amplitude in more detail to investigate
whether we can single out the OES shell amplitude of the
binary sub-reaction from the TH amplitude of the actual TH
reaction and estimate how important the off-shell effects are.
To this end the surface integral formalism (Kadyrov et al
2009, Mukhamedzhanov 2011) can be used, which allows us
to express the TH amplitude in terms of the OES amplitude for
the binary sub-reaction and the HOES term.

Following Mukhamedzhanov (2011) we can get for the
prior HOES reaction amplitude in the PWA:

MPWA(prior)(P , kaA) ≈ −i4π2

√
RxA

kbBµbBµxA

ϕa(psx)

×
∑

JF MF j ′ll′mj ′ mlml′ Mx

il+l′ 〈jmj lml|JF MF 〉

× 〈
j ′mj ′ l′ml′ |JF MF

〉 〈
JxMxJAMA|j ′mj ′

〉
× 〈JsMsJxMx |JaMa〉 Ylml

(−k̂bB)Y ∗
l′ml′ (p̂xA) (2.75)

S
JF

bBjl;xAj ′l′P
−1/2
l′ (kxA, RxA)eiδhs

xAl′

{
jl′(pxARxA)

×
[
[BxAl′(kxA, RxA) − 1] − DxAl′(pxA, RxA)

]
+ 2ZxZAe2µxA

∫ ∞

RxA

drxA

Ol′(kxA, rxA)

Ol′(kxA, RxA)
jl′(pxArxA)

}
.

Here, S
JF

bBjl;xAj ′l′ is the OES S-matrix elements for the binary
sub-reaction x + A → b + B, RxA is the channel radius in the
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channel x + A and

BxAl′ = RxA

∂Ol′ (kxA,rxA)

∂rxA
|rxA=RxA

Ol′(kxA, RxA)
(2.76)

is the logarithmic derivative like in the R-matrix method.
Recall that we use the system with � = c = 1.

We also used the equation for the outgoing spherical wave

Ol′(kxA, RxA) =
√

F 2
l′ (kxA, RxA) + G2

l′(kxA, RxA)

×e
i tan−1

[
F
l′ (kxA,RxA)

G
l′ (kxA,RxA)

]
e−iωxAl′ =

√
kxARxA

Pl′(kxA, RxA)
eiδhs

xAl′ .

(2.77)

The logarithmic derivative is

DxA l′(pxA, RxA) = RxA

∂jl′ (pxA,rxA)

∂rxA
|rxA=RxA

jl′(pxA, RxA)
,

where Fl(kxA, RxA) and Gl(kxA, RxA) are the Coulomb
regular and singular solutions, correspondingly, jl(p, r) is the
spherical Bessel function,

Pl(kxA, RxA) = kxARxA

F 2
l′ (kxA, RxA) + G2

l′(kxA, RxA)
(2.78)

is the barrier penetrability factor. Also the factor ωxAl =∑l
n=1 ηxA/ηxA, and the term

δhs
xAl = tan−1

[
Fl(kxA, RxA)

Gl(kxA, RxA)

]
− ωxAl

is the solid sphere scattering phase shift, ηxA is the Coulomb
parameter in the x +A channel. Note that this definition differs
from the one used in Lane and Thomas (1958).

Thus using the surface integral formalism we succeeded
to transform the TH reaction amplitude in the PWA into the
sum of two amplitudes, the surface term and the external
term containing the integral over rxA in the external region.
Both terms are expressed in terms of the OES S-matrix
elements for the binary sub-reaction. The surface term contains
the logarithmic derivative of the outgoing spherical wave
resembling the R-matrix method. A small internal term was
neglected. Equation (2.75) can be used to analyze the TH
reaction proceeding through direct binary sub-reaction.

There is one important point to discuss. As one can
see from (2.75), the presence of the factor P

−1/2
l′ (kxA, RxA)

eliminates the penetrability factor in the channel x + A of the
S-matrix element S

JF

bBjl;xAj ′l′ , which is the entry channel of the
binary sub-reaction. The absence of the penetrability factor
in this entry channel is the main advantage of the TH method,
which allows one to measure the astrophysical factor of the
binary reaction down to zero ExA energy.

However, the absence of the penetrability factor has a
negative side. The penetrability factor in the entry channel of
the binary reaction singles out only one or a few of the smallest
partial waves l′. Its absence leads to the contribution of many
partial waves. Hence, the astrophysical factor determined
from the TH reaction for direct binary sub-reactions may
deviate from the OES astrophysical factor extracted from direct

measurements. Hence, only if there are special kinematical
conditions, which single out only the lowest partial waves l′ in
the binary sub-reaction of the TH reaction, the TH method can
provide the same astrophysical factor as direct measurements.

2.2.3. Theory of the THM for resonant binary sub-reactions.
In this section we consider reactions proceeding through
resonant binary sub-reactions. A general formalism for
(d, p) reactions populating resonance states based on the
CDCC/DWBA and the surface integral formalism is given
by Mukhamedzhanov (2011). Here we present the TH
reaction amplitude in the PWA using the surface integral
formalism previously applied in Kadyrov et al (2009) and
Mukhamedzhanov (2011). While only neutron transfer was
considered by Mukhamedzhanov (2011), here we consider
transfer of a charged particle.

As in the previous section, we consider only the s-wave
bound state a = (sx) and neglect the internal degrees of
freedom of the transferred particle x. Because only the energy
dependence of the TH cross sections has been measured,
often a simple PWA is enough to analyze the TH reactions.
Following Mukhamedzhanov (2011) we get for the prior PWA
amplitude of the TH reaction proceeding through the resonance
binary sub-reaction:

MPWA(prior)(P , kaA) = (2π)2

√
1

µbBkbB

ϕa(psx)

×
∑

JF MF j ′ll′mj ′ mlml′ Mn

il+l′ 〈jmj lml|JF MF

〉 〈
j ′mj ′ l′ml′ |JF MF

〉
× 〈

JxMxJAMA|j ′mj ′
〉 〈JsMsJxMx |JaMa〉 e−iδhs

bBl Ylml
(−k̂bB)

×
N∑

ν,τ=1

[	νbBjlJF
(EbB)]1/2[A−1]ντ Y

∗
l′ml′ (p̂xA)

×
√

RxA

µxA

[	νxAl′j ′JF
(ExA)]1/2P

−1/2
l′ (kxA, RxA)(jl′(pxARxA)

×[(BxAl′(kxA, RxA) − 1) − DxAl′(pxA, RxA)]

+ 2ZxZAe2µxA

∞∫
RxA

drxA

Ol′(kxA, rxA)

Ol′(kxA, RxA)
jl′(pxArxA)).

(2.79)

Here, N is the number of the levels included, 	νbBjlJF
(EbB)

is the partial resonance width of the νth level in the channel
(b + B)ljJF

. The internal part contribution is neglected in
equation (2.79). This equation allows one to treat both multi-
level (interfering) and single-level two-channel cases (non-
interfering resonances). It expresses the TH resonance reaction
amplitude in terms of partial resonance widths (reduced
widths amplitudes), boundary conditions and matrix elements
[A−1]ντ of the inverse level matrix A−1 used in the R-matrix
approach (Lane and Thomas 1958). The generalization of the
R-matrix approach is evident because we consider 2 → 3
particles TH resonant reactions, which are more complicated
than resonant binary reactions, for which a conventional
R-matrix approach has been developed. In the TH reaction
the complication is caused by the presence of the TH-nucleus
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a in the initial states, which carries the transferred particle x,
and the spectator s in the final state. The a − A interaction in
the initial state and the s − F interaction in the final state can
be conventionally treated within the distorted wave (DWBA)
or more advanced CDCC formalism, but here, aiming for
the application for the THM, we presented the TH resonance
reaction amplitude in the PWA, where the initial and final
state distorted waves are replaced by the corresponding plane
waves. This implies the need to normalize the THM-extracted
cross section to the direct one to get the absolute indirect cross
section.

2.3. Coulomb excitation and dissociation

The theory of Coulomb excitation at low energies (Elab <

20 MeV/nucleon) is very well understood (Alder and Winther
1975), and has been used for a long time to analyze experiments
on multiple excitations and reorientation effects (Cline 1988).
For Coulomb excitation of relativistic heavy ions another
accurate semiclassical theory exists (Winther and Alder 1979).
In this case, the kinematics is characterized by straight-line
trajectories and retardation effects due to special relativity
are fully taken into account. A quantum mechanical theory
for relativistic Coulomb excitation has also been developed
(Bertulani and Baur 1985, Bertulani and Nathan 1993), which
includes diffraction and absorptive effects. For collisions at
intermediate energies (20 < Elab < 200 MeV/nucleon) a
combination of retardation effects and relativistic corrections
of the Rutherford trajectories are necessary for a proper
description of the Coulomb excitation mechanism (Aleixo and
Bertulani 1989).

In Coulomb excitation experiments at energies above the
Coulomb barrier, one indirectly selects impact parameters b

that exceed the sum of the radii of the two colliding nuclei,
often via restrictions to observe scattering at small angles.
This allows the selection of collisions at ‘safe’ distances,
minimizing possible contributions to the excitation from
nuclear interactions. Most Coulomb excitation experiments
performed at rare isotope beam facilities to date have
been done at intermediate bombarding energies, around
50–100 MeV/nucleon. Then both relativistic and quantum
scattering effects are of relevance. At these facilities, Coulomb
excitation has been proven to be a very important tool to
extract information on electromagnetic properties of nuclear
transitions with relevance for nuclear structure as well as for
nuclear astrophysics (Aumann 2006).

2.3.1. First-order perturbation theory. Because nuclei
are nearly spherical, the theory of Coulomb excitation is
best described by performing a multipole expansion of the
electromagnetic field of a projectile nucleus with charge ZP

as it evolves along a classical Rutherford trajectory. In most
situations of interest, the Coulomb excitation process can
be treated in perturbation theory. Using first-order time-

dependent perturbation theory one gets

dσi→f

d�
=

(
dσelastic

d�

)
16π2Z2

P e2

�2

×
∑
�LM

B
(
�L; Ii → If

)
(2L + 1)3

|S (�LM)|2 (2.80)

where B
(
�L, Ii → If

)
is the reduced transition probability

for the target nucleus, �L = E1, E2, M1, . . . is the
multipolarity of the excitation, and M = −L, −L + 1, . . .,
L is the total magnetic quantum number.

The reduced transition probabilities are given by

B
(
�L; Ii → If

)= 1

2Ii + 1

∑
MiMf

∣∣〈If Mf |m(�LM)| IiMi

〉∣∣2

(2.81)

where M = Mi − Mf .
The nuclear matrix elements, with nuclear structure

information for the transition from the initial to the final state is

M (ELM) = (2L + 1)!!

κL+1c (L + 1)

×
∫

j(r) · ∇ × L
[
jL(κr)YLM(r̂)

]
d3r (2.82)

for electric (E) transitions, and

M (MLM) = −i
(2L + 1)!!

κLc (L + 1)

×
∫

j(r) · L
[
jL(κr)YLM(r̂)

]
d3r (2.83)

for magnetic (M) transitions.
Here κ = ω/c is the photon wavenumber, j(r) is the

electric current density in the excited nucleus, jL are spherical
Bessel functions and YLM are spherical harmonics.

The orbital integrals S(�LM) contain the information
on the dynamics of the reaction (Alder and Winther 1975,
Bertulani and Baur 1985). Later, it was shown that including
retardation and Coulomb recoil, they become (Aleixo and
Bertulani 1989)

S(ELM) = − iκL+1

L (2L − 1)!!

×
∫

∂

∂r ′
{
r ′(t)h(1)

L [κr ′(t)]
}

YLM

[
θ ′(t), φ′(t)

]
eiωt dt

− κL+2

cL (2L − 1)!!

∫
v′(t) · r′(t)h(1)

L [κr ′(t)]

× YLM

[
θ ′(t), φ′(t)

]
eiωt dt, (2.84)

and

S(ELM) = − i

γµc

κL+1

L (2L − 1)!!

·L0

∫
∇′

{
h

(1)
L [κr ′(t)]YLM

[
θ ′(t), φ′(t)

]}
eiωt dt, (2.85)

where v is the relative velocity, r ′(t) is the classical relative
motion trajectory as a function of time,

L0 = γ aµv cot (ϑ/2) (2.86)
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is the (constant) relative angular momentum, ϑ is the center-
of-mass scattering angle, γ = (

1 − v2/c2
)−1/2

is the Lorentz
factor, µ is the reduced mass, and a = ZP ZT e2/

(
γµv2

)
is

the distance of closest approach in a head-on collision.
Inclusion of absorption effects in S(�LM) due to the

imaginary part of an optical nucleus–nucleus potential were
worked out by Bertulani and Nathan (1993). This allows
the description of diffraction patterns in the differential cross
sections. The orbital integrals depend on the multipolarity
�LM and on the adiabaticity parameter ξ (b) = ωb/γ v, where
ω = Ex/� and Ex is the excitation energy, and b is the impact
parameter. It is worthwhile to mention that in rare isotope
facilities one is interested in the excitation of the projectile,
which is often a radioactive nucleus. In this case, the variables
associated to the projectile and the target are exchanged in the
above equations—the target is the source of the time-dependent
electromagnetic interaction.

Because the Coulomb excitation process is an external
process, i.e., it occurs when the nuclei are outside the range of
the nuclear forces between them, the matrix elements probed
in Coulomb excitation are the same as those probed with real
photons (except for the E0 multipolarity, which contributes
very little). Therefore, Coulomb excitation cross sections are
directly related to the photonuclear cross sections by means of
the equation (Bertulani and Baur 1985),

dσ

dEx

= 1

Ex

∑
L

[
nγEL (Ex) σγEL (Ex)

+ nγML(Ex)σγML (Ex)
]
, (2.87)

where σγEL (Ex) and σγML (Ex) are the photonuclear cross
sections for EL and ML excitations with photon energy Ex ,
respectively. The functions nγ�L (Ex) are known as virtual
photon numbers for the �L multipolarity. While for a real
photon all multipolarities are mixed with the same weight, in
Coulomb excitation they are weighted with the virtual photon
numbers.

The photonuclear cross sections are related to the reduced
matrix elements, and the excitation energy Ex , through the
relation (Bertulani and Baur 1985)

σγ�L (Ex, θ) = (2π)3 (L + 1)

L [(2L + 1)!!]2

(
Ex

�c

)2L−1 dB (�L, Ex)

dEx

,

(2.88)

where dB/dEx are the electromagnetic response functions
dependent for each excitation energy Ex and related to the
transition reduced matrix elements by

B
(
�LM; Ii → If

) =
∫

dEx

dB (�L, Ex)

dEx

. (2.89)

A similar expression is valid for the angle differential cross
sections
dσ(Ex)

d�
= 1

Ex

∑
L

[
dnγEL (Ex, θ)

d�
σγEL (Ex)

+
dnγML (Ex, θ)

d�
σγML (Ex)

]
, (2.90)

where � denotes the solid scattering angle.

Due to the common use of high-energy (above the
Coulomb barrier) projectiles in rare isotope facilities, it
is important to account for strong absorption properly.
The proper formalism for Coulomb excitation in high-
energy collisions was developed by Bertulani and Nathan
(1993). They have shown that the virtual photon numbers
in equation (2.90) are given by

dnγ�L (Ex, θ)

d�
= Z2

P α

(
ωk

γ v

)2 L [(2L + 1)!!]2

(2π)3 (L + 1)

×
∑
M

|G�LM (c/v)|2 |�M(q)|2 , (2.91)

where α = e2/�c and

�M(q) =
∞∫

0

db b JM (qb) KM

(
ωb

γ v

)
eiχ(b). (2.92)

In these equations, k is the projectile momentum, q =
2k sin(ϑ/2) is the momentum transfer (assumed to be much
smaller than k), ϑ is the scattering angle, G�LM (v/c) are
functions defined by Winther and Alder (1979), JM is the
Bessel function of order M and KM is the modified Bessel
function of order M . The eikonal phase is given by

χ(b) = − 1

�v

∫
dzUnuc (r) +

2ZP ZT e2

�v
ln (kb) , (2.93)

where r = (b, z) and Unuc is the nuclear optical potential. The
integral in equation (2.92) runs over the impact parameter b.
The total number of virtual photons is obtained by an integral
of equation (2.91) over scattering angles.

For the E1, E2 and M1 multipolarities, the functions
G�LM (v/c) are given by (Winther and Alder 1979)

GE11(x) = −GE1−1(x) = x

√
8π

3
,

GE10(x) = −4i

√
π

(
x2 − 1

)
3

GM11(x) = GM1−1(x) = −i

√
8π

3
,

GM10(x) = 0

GE22 (x) = GE2−2(x) = −2x

√
π

(
x2 − 1

)
/6

5
,

GE20 (x) = 2x

√
π

(
x2 − 1

)
5

GE21(x) = −GE2−1 (x) = 2i

√
π

6

(
2x2 − 1

)
5

. (2.94)

In figure 3 we plot the virtual photon numbers for energy
Eγ ≡ Ex and E1 multipolarity, ‘as seen’ by a projectile
passing by a lead target at impact parameters larger than
b = 12.3 fm, corresponding to a ‘safe’ impact parameter above
which the nuclear interaction becomes irrelevant. The figure
displays the results for three typical bombarding energies. As
the projectile energy increases, more virtual photons of large
energy Ex are available for the reaction. This increases the
number of states accessed in the excitation process.
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Figure 3. Total number of virtual photons for the E1 multipolarity,
‘as seen’ by a projectile passing by a lead target at impact parameters
bmin = 12.3 fm and larger, for three typical bombarding energies.

2.3.2. Coulomb dissociation. The CD method is based on
the breakup of a projectile in the Coulomb field of a large
Z target A. The (differential, or angle-integrated) Coulomb
breakup cross section for a + A → b + c + A follows from
equation (2.90). It can be rewritten as

dσa+A→b+c+A

d�
= 1

Ex

∑
�L

dnγ�L (Ex, θ)

d�
σ

γ�L

γ +a→b+c (Ex) ,

(2.95)

where Ex is the energy transferred from the relative motion to
the breakup, and σ

γ�L

γ +a→b+c (Ex) is the photo-dissociation cross
section for the multipolarity �L and photon energy Ex .

Time reversal, expressed in the form of the the detailed
balance theorem, allows one to deduce the radiative capture
cross section b + c → a + γ from the disintegration cross
section, σ

γ�L

γ +a→b+c (Ex),

σ
γ�L

b+c→a+γ (Ex) = 2 (2ja + 1)

(2jb + 1) (2jc + 1)

q2
x

q2
σ

γ�L

γ +a→b+c (Ex) ,

(2.96)

where q2 = 2m (Ex − S) /�
2, with S equal to the separation

energy, and qx = Ex/�c.
The CD method was proposed by Baur et al (1986),

and has been tested successfully in a number of reactions
of interest to astrophysics. The most celebrated case is the
reaction 7Be(p, γ )8B, first studied by Motobayashi et al (1994),
followed by numerous experiments in the last two decades
(see figure 4). Due to its importance for the solar neutrino
problem (see Adelberger et al 2011) this reaction has been
measured experimentally down to about 110 keV, with the
Gamow peak being located around 20 keV. Extrapolations
based on the experimental data to the Gamow window have
been difficult and CD has been used as a complementary tool
to help extrapolations to the low energies. It is worthwhile
mentioning that, as already mentioned in section 2.3.3, and
emphasized by Esbensen and Bertsch (1996), Bertulani (1996),
Typel and Baur (2001), Esbensen et al (2005), Capel and Baye
(2005), Bertulani (2005) and Goldstein et al (2007), higher
order and relativistic effects and the contribution of higher
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Figure 4. Selected data on 7Be(p,γ )8B compared to theoretical
calculations. The filled circles show results obtained with the CD
method (GSI-1&2). Data are from Hammache et al (1999),
Junghans et al (2002), Baby et al (2003), Iwasa et al (1999), and this
work;—Schümann et al (2003).

multipoles have a significant influence on the reaction process,
which makes it difficult to directly use equation (2.95). A more
detailed analysis of the reaction process is necessary.

2.3.3. Final state interactions. Equation (2.95) is based on
first-order perturbation theory. It also assumes that the nuclear
contribution to the breakup is small, or that it can be separated
under certain experimental conditions. The contribution of
the nuclear breakup has been examined by several authors (see,
e.g., Bertulani and Gai 1998). 8B has a small proton separation
energy (S = 140 keV). For such loosely bound systems it was
shown by Bertulani and Canto (1992) that multiple step, or
higher order effects are important. These effects occur due
to multiple continuum–continuum transitions (see figure 5).
Detailed studies of dynamic contributions to the breakup have
been explored (Bertulani and Canto 1992, Baur et al 1992,
Bertsch and Bertulani 1993, Bertulani 1994, 1995, 1996,
Bertulani and Bertsch 1994, Esbensen et al 1995, Gai and
Bertulani 1995, Bertulani and Gai 1998) and in several other
later works. Three-body Coulomb interaction effects in the
final state have been investigated by Alt et al (2005). The role
of higher multipolarities, e.g., E2 contributions in the reaction
7Be(p,γ )8B and the coupling to high-lying states have also to
be investigated carefully (Bertulani 1994, Gai and Bertulani
1995, Esbensen and Bertsch 1995, 1996, Bertulani and Gai
1998). It has been shown that the influence of giant resonance
states on the dissociation channel is small (Bertulani 2002).

Bertulani and Canto (1992) were the first to notice
that the CD of a weakly bound neutron-rich nucleus
can lead to incursions in the continuum with continuum–
continuum couplings becoming of large relevance. They
developed a semiclassical continuum discretized coupled-
channels (S-CDCC) method for the Coulomb breakup, with the
assumption that the projectile wavefunction can be expanded
on a discrete basis as � (r, t) = ∑

k ak(t)�k(r), where ak(t)

are time-dependent expansion parameters, �k are the basis
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Figure 5. Schematic representation of (left) CD of projectile a into fragments b and c and (right) a multistep process involving E1 and E2
excitations, including continuum–continuum transitions.

functions and r is the relative coordinates of the fragments
after the breakup. Besides the bound-state wavefunctions �

(b)
k ,

the basis also includes continuum–discretized functions �
(c)
k .

The discretization is done by bunching the continuum solutions
for the relative motion of the fragments around a continuum
energy Ej so that

�
(c)
k =

Ej +�∫
Ej

	j (E) ψ
(c)
k (E) dE, (2.97)

where ψ
(c)
k is the continuum solution for the relative motion of

the fragments under the influence of a potential U (r) and �

is an energy window around the discretized energy Ej .
The orthogonal functions 	j (E) are centered around Ej

and are chosen conveniently to allow for a quick convergence
of the matrix elements of continuum–continuum couplings
(Bertulani and Canto 1992). For each impact parameter one
then solves the coupled-channels equations

dak

dt
= 1

i�

∑
j�LM

aj (t)
〈
�k|V�LM(t)|�j

〉
exp

[
i

�

(
Ek− Ej

)
t

]
,

(2.98)

where V�LM is the time-dependent electromagnetic field
generated by the target for multipolarity�LM. The observables
such as momentum, energy and angular distributions
of the fragments are obtained from the time-evolved
wavefunction � (r, t).

An analysis of the Coulomb breakup of 8B to extract the
astrophysical S-factor for the reaction 7Be(p,γ )8B was done
by Bertulani (1996). The continuum–continuum couplings
were indeed proven relevant for an accurate description of the
breakup cross section.

The eikonal CDCC method (E-CDCC) developed by
Ogata et al (2003, 2006) is an extension of the semiclassical
CDCC that enables one to efficiently treat the nuclear and
Coulomb breakup reactions at Elab > 30 MeV/nucleon. It
is easy to see how the E-CDCC equations arise from equation
(2.98) by the replacement t → z/v, where z is the projectile
coordinate (v is its velocity) along the beam axis and the
replacement of the exponential by S(b) exp

[
i
(
pk − pj

)
z/�

]
,

where pi is the projectile momentum in energy bin i and

S(b) is the eikonal scattering matrix. A proper relativistic
treatment of the continuum–continuum couplings is necessary,
as shown by Bertulani (2005) where the role of scalar and
vector nuclear potentials has also been explored. This work has
been further extended by Ogata and Bertulani (2009, 2010) and
the effect of Lorentz transformations on the nuclear potentials
was further accessed. The left panel of figure 6 shows the
double differential breakup cross section of 8B by 208Pb at
250 MeV/nucleon. Here θ is the scattering angle of the center
mass of the 7Be and p, and ε is the breakup energy between
the two fragments. In the right panel, the relative difference
between the relativistic and non-relativistic results is shown.
One sees significant increase of the cross section by several tens
of percent. It should be noted that these dynamical relativistic
effects are important not in the tail of the cross section but
near the peak. Thus, the relativistic treatment of Coulomb
interaction in continuum–continuum couplings is necessary
to analyze Coulomb breakup processes in rare isotope beam
facilities.

A proper relativistic treatment of nuclear potentials
in breakup reactions at intermediate energies (Elab >

30 MeV/nucleon) requires the use of an effective meson-
exchange theory combined with proper Lorentz transforma-
tions, as shown by Long and Bertulani (2011). This theory
leads to appreciable deviations from the standard optical model
method widely used in low-energy reactions. The Osaka group
(Ogata et al 2011) has summarized the major theoretical re-
sults in CDCC calculations applied to nuclear astrophysics and
to reaction with rare isotopes.

Another method to study higher order processes in CD was
introduced by Bertsch and Bertulani (1993) and Bertulani and
Bertsch (1994). In this method time and space are discretized
and the Schrödinger initial wavefunction is propagated in time
by the evolution equation

� (r, t) = exp [−iH(t − t0)/�] � (r, t0) , (2.99)

where H is the total Hamiltonian for the system. This
method is equivalent to CDCC. The method of choice to
tackle the higher order effects depends on the convenience and
accuracy of computational algorithms at hand. The simplest
starting point to solve the Schrodinger equation using the time-
evolution operator exp [−iH(t − t0)/�] is to assume that the
wavefunction can be expanded in a spherical basis: � (r, t) =
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Figure 6. Double differential breakup cross section for 8B+208Pb at 250 MeV/nucleon including dynamical relativistic corrections (left
panel) and its relative difference from the calculation without relativistic corrections (right panel).
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. Then the discretization is only needed

for the radial coordinate with the equation to be solved for the
radial wavefunction being of the form[
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where U(r) is the interaction between the fragments and

S
(lml′m′)
�LM is a function of angular momentum algebraic

coefficients and the Coulomb multipole potentials V�LM(t)

due to the interaction of the fragments with the target. The
easiest way to solve this equation on the radial lattice is to
use a three point derivative for the operator d2/dr2. The time
evolution can be obtained by simple inversions of tri-diagonal
matrices on the lattice at each time step (Bertsch and Bertulani
1993). The computation is limited by the number of points in
the lattice and by the number of angular momenta lm needed
for convergence.

With the appearance of faster computers, the lattice
calculations have been extended to reach higher accuracy
and more complex situations. A true discretization in three
dimensions can also be done without need of expansion of
the wavefunction in spherical coordinates. For more details
on the different algorithms used in lattice calculations of the
CD problem see Esbensen et al (1995), Kido et al (1996),
Melezhik (1997), Capel et al (2003), Baye et al (2005) and
Esbensen (2009). The Tsukuba group (Nakatsukasa et al
2008) has developed the most advanced lattice calculations
for CD including absorbing boundary conditions (to simulate
wave propagation outside the lattice) in order to study several
reaction cases, extending the method to tackle problems in
atomic and nuclear physics, including an extension to time-
dependent density functional theory.

Coulomb excitation and CD experiments are now
routinely a tool of choice to assess several nuclear properties
and information of astrophysical interest in radioactive beam
facilities. It is routinely used in laboratories worldwide and
planned for future facilities, too (see, e.g., Reifarth 2013).

3. ANCs—experimental considerations

While the connection between the tail of the overlap function
and low-energy direct capture had been recognized for some
time, the use of a peripheral transfer reaction to measure an
ANC was first suggested in 1994 by Xu et al (1994) as a way
to determine the astrophysical S-factor, S17 from the ANC for
8B → 7Be + p, which is equivalent to the 7Be(p,γ )8B reaction
rate at stellar energies since the cross section is completely
dominated by direct capture at very low energy. When this
was proposed, the uncertainty in S17 was one of the largest in
the standard solar model prediction for the flux of multi-MeV
neutrinos from the Sun. As preparations were being made
to measure the ANC to determine S17, a Workshop on Solar
Fusion Reactions was held at the Institute for Nuclear Theory
at the University of Washington. Reaction measurements with
both direct and indirect techniques were discussed at length
during the workshop. In a follow-up publication (Adelberger
et al 1998), a test case was proposed in order to verify that
an ANC obtained by a peripheral transfer would correctly
predict a direct capture reaction rate. The case that was chosen
was a determination of the S-factor for direct capture to the
ground and first excited state of 17F, which could be compared
to direct data from the 16O(p,γ )17F reaction. Extensions of
the ANC technique now include measurements of neutron
ANCs to obtain proton ANCs for the mirror reaction and the
extraction of ANCs from nuclear breakup reactions. Below
we will discuss each of these topics starting with the test case.

3.1. 16O(p,γ )17F as a test case

In order to extract the ANCs for 17F → 16O+p, a measurement
of the transfer reaction 16O(3He,d)17F was carried out at a 3He
beam energy of 29.75 MeV where the reaction would be highly
peripheral. Combining this with a previous measurement that
had been carried out at a beam energy of 25 MeV (Vernotte
et al 1994), allowed for a more reliable extraction of the
ANCs. Data at laboratory scattering angles between 6.5◦

and 25◦ were obtained using Si solid-state detector telescopes
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and a 3He beam from the U-120M isochronous cyclotron of
the Nuclear Physics Institute (NPI) of the Czech Academy
of Sciences, while data at laboratory angles between 1◦ and
11◦ were obtained using the MDM magnetic spectrometer and
a molecular 3He-d beam from the Texas A&M University
K500 superconducting cyclotron. Both experiments used
conventional nuclear physics techniques for measuring transfer
reaction angular distributions. More details of the experiments
can be found in Gagliardi et al (1999).

The ANCs were extracted from the angular distribu-
tions by comparison to DWBA calculations according to
equation (2.55). The calculations were carried out with the
finite-range code PTOLEMY (Rho des-Brown et al 1980)
using the full transition operator. The single-particle orbitals
were calculated in Woods–Saxon potentials with a radius pa-
rameter, r0, in the range 1.15–1.35 fm and a diffusivity param-
eter, a0, in the range 0.55–0.75 fm. The results indicated that
the DWBA cross section divided by the square of the single-
particle ANCs is insensitive to parameters of the Woods–Saxon
potential. Indeed, this is a key signature of a peripheral transfer
reaction. A range of optical model parameter sets were studied
for both the entrance and exit channels, as detailed in Gagliardi
et al (1999), and the resulting fits to the ground and excited
state angular distributions are shown in figure 7. Normalizing
the DWBA calculations to the data and dividing by the squares
of the ANCs for the single-particle orbitals yields the product
of the ANC’s for the 17F → 16O+p and 3He → d+p. Dividing
this product by the known ANC for 3He → d + p (Kamimura
and Kameyama 1990, Mukhamedzhanov et al 1995) yields C2

for 17F → 16O + p. The final adopted squares of the ANCs are
1.08±0.01 fm−1 for the ground state and 6490±680 fm−1 for
the first excited state. The uncertainty for the ground state ANC
includes ±4.8% from the absolute normalization and angle ac-
curacies, plus the statistics of the fits, and ±7.6% associated
with the choice of optical model parameters and single-particle
orbital. The corresponding contributions to its uncertainty are
±5.4% and ±9.0%.

The relation of the ANCs to the direct capture rate at low
energies was discussed in section 2.1.1. Since there is no
resonant capture contribution at low energy for this system,
the S-factors describing the capture to both the ground and
first excited states are straightforward to calculate and require
no additional normalization constants. The results are shown
in figure 8 compared to the two previous measurements of
16O(p,γ )17F (Morlock et al 1997, Chow et al 1975). Both E1
and E2 contributions have been included in the calculations,
but the E1 components dominate the results. The theoretical
uncertainty in the S-factors is less than 2% for energies below
1 MeV. The agreement between the measured S-factors and
those calculated from our measured ANCs is quite good,
especially for energies below 1 MeV where the approximation
of ignoring contributions from the nuclear interior should be
very reliable. Due to a very small yield at low energies, the
measured S-factor for the ground state may have background
contamination that causes it to deviate from the predicted shape
below about 0.5 MeV as discussed in Gagliardi et al (1999).

Figure 7. Angular distributions from the 16O(3He,d)17F reaction
with DWBA fits. The extracted ANCs were used to calculate the
direct capture astrophysical S-factor.

Figure 8. The direct capture astrophysical S-factor for 16O(p,γ )17F
calculated from the ANCs and compared to experimental data. The
dashed lines are based on the 1σ uncertainties of the ANCs. See text
for data sources.

3.2. ANCs from peripheral transfer reactions—additional tests

In order to verify the ANC technique, two issues needed to
be addressed: (1) the extraction of the ANC for a system
should be independent of the transfer reaction used to measure
it; (2) ANCs correctly predict direct capture cross sections.
The second issue was verified for the test case as discussed
above. In order to understand the first issue, proton ANCs for
14 N → 13 C + p and neutron ANCs for 13C → 12C + n were
extracted from different reactions.

With a 3He beam of about 8 MeV/nucleon from the U120
cyclotron at the NPI, angular distributions, normalized to
absolute cross sections, were measured for the 13C(3He,d)14 N
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13C(14N,13C)14N 

Figure 9. The left panel gives angular distributions and DWBA fits for the 13C(3He,d)14N reaction. The right panel shows the
proton-exchange reaction, 13C(14N,13C)14N angular distribution to the ground state of 13C. The ANCs determined from these different
reactions are compared in table 1.

reaction (Bem et al 2000). The reaction products were
observed in silicon solid-state particle detectors using a
setup that was optimized for determining absolute reaction
cross sections. Transitions to the ground and excited states
were measured. The ANCs for the stronger transitions
were extracted by comparison to DWBA calculations, carried
out with the code DWUCK5 (Kunz unpublished), properly
normalized with single-particle ANCs. Elastic scattering
data also was obtained to constrain optical model parameters.
Results for the transition to the ground and excited states of 14N
are shown in the left panel of figure 9 along with the DWBA
predictions. In these comparisons, the important region is at
very forward angles where the extraction of the ANC is most
reliable.

The same ANCs were measured using a heavy-ion
beam through the 13C(14N,13C)14N (Trache et al 1998)
one-proton-exchange reactions using an 14N beam at about
10 MeV/nucleon from the TAMU K500 superconducting
cyclotron. For the heavy-ion induced reaction, the outgoing
reaction products were observed at the focal plane of the MDM
magnetic spectrometer with the Oxford detector (Pringle et
al 1986). The detector provided four consecutive position
determinations along the dispersive direction for particles as
they traversed the ion chamber, which contained pure isobutane
gas. The position determinations were done by measuring
the charge on each end of resistive wires that were separated
consecutively through the counter depth by about 16 cm. A
plastic scintillator at the end of the gas volume was used
to measure a residual energy. Particles were then identified
from the signals corresponding to �Egas and Eplastic. By
combining the four position readouts, the particle trajectory
was reconstructed and then ray tracing was used to determine
the scattering angle on a particle by particle basis. An
advantage of the proton-exchange reaction for determining

ANCs is that the ground state to ground state transition has the
same ANC in the entrance and exit channels. Thus the cross
section for the transition is proportional to C4. Furthermore,
the optical model parameters used in the DWBA calculation
are identical for the entrance and exit channels. The optical
model analysis for these reactions was carried out using the
code PTOLEMY (Rho des-Brown et al 1980). The results for
the angular distributions for the ground state to ground state
transition for 13C(14N,13C)14N is compared to the DWBA fit in
the right panel of figure 9. The results for the ANCs obtained
in the different reactions are given in table 1. Note that the
agreement between them is excellent.

The neutron ANC for 13C → 12C + n has been
determined from light-ion stripping reactions and from a
heavy-ion transfer reaction. The results for the ANC from
stripping reactions were summarized by Mukhamedzhanov
and Timofeyuk (1990) and the value for the ANC is given
in table 1. The ANC was also determined from the transfer
reaction 13C(12C,13C)12C using a 12C beam from the TAMU
K500 cyclotron at around 10 MeV/nucleon. The technique
used to measure the transfer reaction was very similar to that
used for the proton ANCs. The results from the measurement
are given in table 1. The agreement between the light- and
heavy-ion reactions is once again quite good.

3.3. Proton ANCs from transfer reactions with stable beams
and targets

Following techniques similar to those described in sections 3.1
and 3.2, additional proton ANCs have been measured for p
and s–d shell nuclei using (3He,d) and heavy-ion reactions
on stable targets at beam energies around 8 MeV/nucleon.
The additional reactions that have been studied at the
NPI in Rez include 14N(3He,d)15O (Mukhamedzhanov et
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Table 1. Results from two different reactions measuring the same ANCs for ground state to ground state transitions. Note that the quantum
numbers and other labels have been dropped here for simplicity.

Reaction (ANC) C2 (fm−1) Reference

13C(3He,d)14N; (14N → 13C + p) 18.7 ± 1.3 Bem et al (2000)
13C(14N,13C)14N; (14N → 13C + p) 19.5 ± 1.2 Trache et al (1998)
Average for 13C → 12C + n 2.40 ± 0.12 Gubler et al (1977);

from light-ion reactions Mukhamedzhanov and Timofeyuk (1990)
13C(12C,13C)12C; (13C → 12C + n) 2.24 ± 0.11 Al-Abdullah et al (2010)

Table 2. Other proton ANC measurements of ground states with stable beams and targets. Note that the quantum numbers and other labels
have been dropped here for simplicity.

Reaction (ANC) C2 (fm−1) Reference

9Be(10B,9Be)10B; (9Be + p → 10B) 5.06 ± 0.46 Mukhamedzhanov et al (1997)
14N(3He,d)15O; (14N + p → 15O) 54.0 ± 5.4 Mukhamedzhanov et al (2003a)
15N(3He,d)16O; (15N + p → 16O) 192.0 ± 26.0 Mukhamedzhanov et al (2008a, 2008b)
20Ne(3He,d)21Na; (20Ne + p → 21Na) 0.21 ± 0.04 Mukhamedzhanov et al (2006)

al 2003a), 15N(3He,d)16O (Mukhamedzhanov et al 2008a,
2008b), 17O(3He,d)18F (Burjan 2013), 18O(3He,d)19F (Burjan
2013), and 20Ne(3He,d)21Na (Mukhamedzhanov et al 2006).
The ANCs have been used to fix the (p,γ ) direct capture rate
for ground and excited state transitions and to determine the
proton capture rate through sub-threshold states in 15O and
21Na. The measurements at the NPI have been carried out
with 3He beams of about 8 MeV/nucleon. A special gas cell
was built to carry out the experiments with 15N, 17−18O and
20Ne. The gas cell temperature and pressure were monitored
continuously throughout the experiments in order to be able
to obtain absolute cross sections for the reactions. The results
of the measurements that have been published are summarized
in table 2. Below we provide the astrophysical motivation for
two of these measurements.

The ANCs for 14N + p → 15O were measured to
better determine the low-energy S-factor for the 14N(p,γ )15O
reaction. This is the slowest reaction in the CNO cycle (Rolfs
and Rodney 1988) and thus it determines the amount of energy
produced in the cycle as well as the rate of hydrogen burning by
CNO material. Prior to this work, one direct measurement of
the reaction rate had been carried out to energies slightly below
the lowest resonance (Schroeder et al 1987). The primary
contribution to the S-factor at stellar energies comes from the
sub-threshold state in 15O at 6.79 MeV. The direct data from
Schroeder et al (1987) had to be extrapolated to small energies
and thus was very sensitive to the parameters that were used
for this state. Around the same time that the measurement of
the 14N(3He,d)15O reaction occurred, an attempt was made to
determine the gamma width of this state. The results (Bertone
et al 2001) showed that the gamma width was much smaller
than the value that had been found in the previous fit to the
direct data in Schroeder et al (1987). The ANC for the sub-
threshold state determined the overall normalization of the
direct capture through the state and its proton width. With this
information, an R-matrix fit was carried out to determine the S-
factor. The result was nearly a factor of 2 smaller than the value
obtained from extrapolating the direct data to low energy. The
discrepancy in rates led to new direct measurements. Definitive
results were obtained by the LUNA collaboration (see Marta

Figure 10. The astrophysical S-factor for the 15N(p,γ )16O reaction.
The black squares are experimental data from Le Blanc et al (2010).
The solid red line is an unconstrained R-matrix fit that includes
interfering amplitudes from resonances, a non-resonant term and a
background term. See Mukhamedzhanov et al (2011) for details.

et al (2008) for the most recent results) using the underground
facility at the Gran Sasso laboratory, where background in the
gamma-detector array is much reduced over that in terrestrial
laboratories. The new data, which extended to much lower
proton energy than the previous direct measurements, agreed
very well with the ANC result. As an indication of the
importance of this new value, it increased the age estimate
for globular clusters by 109 years.

The ANCs for 16O → 15N + p constrain the direct capture
contribution to the 15N(p,γ )16O reaction, which provides a
path for producing 16O in the stellar hydrogen burning CN
cycle. The ANCs were measured in an experiment with
the 15N(3He,d)16O reaction (Mukhamedzhanov et al 2008a,
2008b) and the results are given in table 2. A recent
R-matrix calculation for the 15N(p,γ )16O reaction was carried
out and is detailed in Mukhamedzhanov et al (2011). The
S-factor obtained from the calculation is plotted in figure 10.
The result fits the recent data obtained from the LUNA

22



Rep. Prog. Phys. 77 (2014) 106901 Review Article

Table 3. Proton ANCs from RIB measurements. Note that the quantum numbers and other labels have been dropped here for simplicity.

Reaction and ANC system C2 (fm−1) Reference

d(7Be,8B)n; 8B → 7Be + p 0.60 ± 0.17 Liu et al (1996);
Gagliardi et al (1998)

10B(7Be,8B)9Be; 8B → 7Be + p 0.460 ± 0.046 Azhari et al (2001)
14N(7Be,8B)13C; 8B → 7Be + p 0.466 ± 0.049 Tabacaru et al (2006)
14N(11C,12N)13C; 12N → 11C + p 1.73 ± 0.25 Tang et al (2003)
14N(12N,13O)13C; 13O → 12 N + p 2.53 ± 0.30 Banu et al (2009)
14N(13N,14O)13C; 14O → 13N + p 29.0 ± 4.3 Tang et al (2004)

collaboration using the ANC found in Mukhamedzhanov et
al (2008a, 2008b).

The 21Na → 20Ne + p ANCs provide the direct capture
contribution to the 20Ne(p,γ )21Na reaction and in particular
they help determine the contribution from the sub-threshold
state that dominates the rate at stellar energies. This reaction is
the first one in the Ne–Na cycle, which leads to the production
of 21Na, 21Ne, 22Na, 22Ne and 23Na. One of the important
products out of this cycle is 21Ne, which can then generate
neutrons via the 21Ne(α,n)24Mg reaction. The ANC results
were used to calculate the S-factor for the reaction. Capture
through the sub-threshold state depends on both the ANC
and the gamma width of the state. Using data from direct
measurements and the ANC provide the information needed to
predict the gamma width. The result found from this approach
was in good agreement with the direct measurement of the
width as described in Mukhamedzhanov et al (2006).

3.4. Proton ANCs from transfer reactions with radioactive
beams

A major advantage of the ANC technique, and one of the
primary motivations for developing it, is that it can be used
effectively to obtain information about proton direct capture
on radioactive nuclei. The measurements that have been done
to date with radioactive beams are summarized in table 3.

The first ANC measurements for radioactive systems
were for 8B → 7Be + p. The ANC for this reaction fixes
the direct capture rate at low energy for the 7Be(p,γ )8B
reaction. The decay of 8B is the primary source for high-
energy solar neutrinos so determining the rate of the reaction
is important for pinning down the solar neutrino flux observed
in large underground detectors such as Super-Kamiokande
and the Sudbury Neutrino Observatory (SNO). The first of
these measurements was reported by the group at the China
Institute for Atomic Energy in Beijing who carried out a
d(7Be,n)8B reaction with a secondary beam of 7Be at 26 MeV
that was produced by the 7Li(p,n)7Be reaction using their
Tandem Van de Graff accelerator (Liu et al 1996) to produce
a 34 MeV 7Li beam. The secondary beam was separated
from the primary beam by its difference in magnetic rigidity.
The reaction was studied by measuring the reaction products
produced in a deuterated polyethylene target. One problem
that quickly surfaced with the analysis of this data was the lack
of neutron optical model parameters at energies appropriate
for the outgoing channel. This led to large uncertainties
in the extracted ANC (Gagliardi et al 1998). Soon after
this measurement was published, the first results for this

ANC from a heavy-ion transfer reaction were published based
upon the 10B(7Be,8B)9Be reaction (Azhari et al 1999a). The
10 MeV/nucleon 7Be beam for this experiment was produced
again by the 7Li(p,n)7Be reaction using a gas cell at 2 atm
of H2 gas that was cooled to LN2 temperature and a primary
beam from the TAMU K500 cyclotron. The reaction products
were separated by the MARS recoil spectrometer (Tribble et
al 1991) at TAMU and resulted in a 7Be beam that was >99%
pure. A silicon detector telescope was used to measure the
outgoing 8B particles. Several improvements were made to the
detection system and the primary beam intensity for a second
measurement of this ANC via the 14N(7Be,8B)13C reaction
(Azhari et al 1999b) where a melamine target was used for
14N. The flux of 7Be that provided the normalization for the
two reactions was obtained by measuring the production rate at
low beam intensity and then assuming a linear extrapolation to
higher intensity. The primary beam current was then measured
to obtain the rate. In later experiments with a different detector
geometry, we found that this extrapolation procedure was not
valid for the higher intensity primary beam that was used
for the 14N(7Be,8B)13C reaction. A follow-up measurement
was carried out with a new detector geometry that provided
a direct measurement of the secondary beam particles. The
results from that measurement represent the final ANCs that
were obtained from proton transfer for this reaction and yield
an astrophysical S-factor of S(0) = 18.6 ± 1.8 eV-b for
7Be(p,γ )8B (Tabacaru et al 2006), which is a bit lower than
the recommended value of 20.8±0.7 (expt)±1.4 (theor) eV-b
from the second solar fusion workshop (Adelberger et al 2011).
The angular distribution for the transfer reaction from Azhari
et al (1999b) is shown in figure 11 along with the DWBA
calculation that was used to extract the ANC.

Transfer reactions with 11C (Tang et al 2003), and 12−13N
radioactive beams (Banu et al 2009, Tang et al 2004) have
been used to study other (p,γ ) reactions on radioactive nuclei
that have a significant direct capture contribution. A melamine
target was used in these studies as well since the 14N → 13C+p
ANC is well known. The general techniques that were used
for the studies are similar those for the 7Be reaction studies.
Angular distributions for the transfer reactions (11C,12N) and
(13N,14O) along with DWBA predictions, and resulting S-
factors for the reactions are shown in figures 12 and 13. The
results for the ANCs between the ground states of the initial
and final nuclei are given in table 3.

The ANC for 12N → 11C + p fixes the rate for the
11C(p,γ )12N reaction. This is one of the reactions in the
rapid alpha-proton chain that can bypass the 3α reaction to
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Figure 11. The angular distribution from the 14N(7Be,8B)13C
reaction and the DWBA prediction. The ANC from the
measurement was used to determine the astrophysical S-factor,
S17(0).

produce 12C in a star (Wiescher et al 1989). The carbon is
needed to provide fuel for the CNO cycle, which generates
significantly more heat than the p–p reaction chain and can
help stabilize very metal poor giant stars from rapid collapse.
The S-factor at energies important for this process is primarily
due to direct capture. The ANC for 13N + p → 14O gives the
direct capture contribution to the 13N(p,γ )14O reaction, which
signals the onset of the (β-limited) hot-CNO reaction cycle.
Direct capture interferes with resonant capture in this reaction
and substantially modifies the low-energy S-factor for the
reaction. The difference between destructive and constructive
interference is a factor of 4 based on the ANC found in Tang
et al (2004). The increase for constructive interference, which
is expected, relative to the resonant contribution is more than a
factor of 2 at stellar energies as is shown in figure 13 (Tang et al
2004). The 13O → 12N + p ANC fixes the direct capture rate
for the 12N(p,γ )13O reaction, which is a termination reaction
in the rapid alpha-proton chain.

3.5. Proton ANCs determined from neutron ANCs in mirror
symmetric reactions

Heavy-ion reactions involving neutron transfer at energies
around 10 MeV/nucleon are highly peripheral and they provide
an optimum way for determining neutron ANCs. Neutron
ANCs are useful for understanding the direct capture part of
(n,γ ) reactions if an angular momentum barrier exists. They
are not useful for s-wave capture. However, neutron ANCs can
be used to infer proton ANCs through charge symmetry (see
Mukhamedzhanov et al (2012), and references therein). Up
to charge symmetry breaking effects, the connection between
mirror symmetric proton and neutron ANCs is made through
the relationship between the ANC and the SF. By mirror
symmetry, the SFs for the proton and neutron systems are the

same. Then to relate the mirror nucleon ANCs we can use
equation (2.48).

The charge symmetry relationship has been used to
determine proton ANCs for several important reactions. The
first measurement that was carried out was the 13C(7Li,8Li)12C
reaction with a 7Li beam at 9 MeV/nucleon (Trache et al 2003).
The angular distribution obtained for this reaction is shown
in figure 14. The 13C target was chosen for this reaction
since the 13C → 12C + n ANC is well known as shown in
table 1. Invoking mirror symmetry, the proton ANCs that
were determined were for 8B → 7Be + p. Since the beam and
target are both stable isotopes, the measurement was carried
out in the MDM magnetic spectrometer at TAMU. This has
several advantages over the radioactive beam experiments.
The stable beam intensity is much higher than that for the
radioactive beam so measurements can be made over a much
larger angular range. Also by using the MDM spectrometer,
measurements at very small center-of-mass angles can be
made. This is particularly important for separating the different
angular momentum components that contribute to the cross
section. As can be seen in figure 14, the contribution from the
p1/2 and p3/2 orbitals can be separated in the reaction with the
very forward angle data. The proton ANCs that were obtained
from the neutron transfer reaction are given in table 4. The
agreement is very good with the ANCs that were obtained
using the 7Be beam on the melamine target.

Other proton ANCs that have been determined by this
technique include 18Ne → 17F + p from 18O → 17O + n ANCs
(Al-Abdullah et al 2014), 23Al → 22Mg + p from 23Ne →
22Ne + n (Al-Abdullah et al 2010), and 27P → 26Si + p from
27Mg → 26Mg+n (McCleskey 2013). The measurements were
carried out with stable beams of 17O, 22Ne and 26Mg at about
10 MeV/nucleon from the K500 superconducting cyclotron on
13C targets using the MDM spectrometer to measure elastic
scattering and transfer reaction products. The results for
ground state to ground state transitions from the reactions that
have been published are summarized in table 4. Note that the
large number for the proton ANC in 23Al → 22Mg + p is due
to the very low binding energy of the proton in 22Mg.

3.6. ANCs from single nucleon removal reactions

A process that is similar to CD involves the removal of a
loosely bound single nucleon from a heavy-ion projectile
at energies of about a hundred MeV/nucleon or more that
interacts with a low-Z target. Since the core nucleus must
survive following the nucleon removal, this process is highly
peripheral and consequently its cross section depends on the
ANC for the system. The first application of this approach
involved determining the ANC for 9C → 8B + p from data for
9C breakup in Trache et al (2002). The underlying analysis
process is similar to what is done to extract ANCs from
transfer reactions. The cross section for the one-nucleon
removal depends on the reaction dynamics and the ANC. In
the case of nucleon removal, the dynamics has been calculated
using an extended Glauber model approach as discussed in
Trache et al (2002).

The details of the calculations for 9C breakup on four
targets, carbon, aluminum, tin and lead, can be found in Trache
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Figure 12. The left panel gives the angular distribution for the 14N(11C,12N)13C reaction along with the DWBA prediction and the right
panel shows the resulting S-factor calculation. The direct capture contribution is shown as the solid red line, which dominates at low energy.
The magenta solid lines are the contributions of the first and second resonances. The blue solid line is the total S-factor contributed by the
interfering resonant and direct capture terms.
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Figure 13. The angular distribution for the 14N(13N,14O)13C reaction and the DWBA fit. The right panel gives the S-factor for 13N(p,γ )14O.
The contributions from resonant and direct capture are shown as dashed blue lines. The S-factor assuming destructive interference is shown
as the dotted blue line and the solid red line shows the result for constructive interference, which is preferred by theory.

et al (2002). The ANC for the 9C → 8B + p system was
determined by comparing the calculations for each target to
the measured cross section. For the case of 9C, two different
configurations contribute to the breakup, p3/2 and p1/2. The
authors of Trache et al (2002) noted that since the removal cross
section is dominated by peripheral interactions, the dynamical
cross section for the two configurations and the asymptotic
form of the single-particle ANCs would be the same. Then the
sum of the squares of the ANCs for the two configurations
could be obtained from the data by the relation σ−1p =
((C

9C
p8B 1 3/2 3/2)

2 +(C
9C
p8B 1 1/2 3/2)

2)σsp/b
2
1 1 3/2 3/2, where σ−1p

is the measured cross section, σsp is the calculated single-
particle removal cross section for particle pj and b1 1 3/2 3/2 is
the ANC for the particle removed from the core. The same
form for the combined ANCs appears in the astrophysical
S-factor for 8B(p,γ )9C.

Following the initial work on 9C breakup, the ANCs for
8B → 7Be + p (Trache et al 2004) and 24Si → 23Al + p (Banu
et al 2012) have been determined from the breakup of 8B and
24Si, respectively. With the availability of exotic beams from
rare isotope facilities, more ANC measurements will be done
by this approach. Because of this, more effort is now being put
into the theoretical approach for calculating the single-particle
removal cross sections.

3.7. ANCs and radiative widths in an R-matrix analysis for
radiative capture

TheR-matrix formalism provides a consistent way to analyze
radiative capture reactions, such as x + A → F + γ . The
R-matrix radiative capture cross section to a state of nucleus
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Figure 14. Angular distribution for the 13C(7Li,8Li)12C reaction
along with the DWBA prediction. The dotted line corresponds to
the p1/2 → p1/2 contribution and the dashed line is the p1/2 → p3/2

contribution. The extracted neutron ANC is given in table 4 along
with the proton ANC that was determined using charge symmetry.

F with a given spin Jf is given by Barker and Kajino (1991) as

σJf
(ExA) = π

k2
xA

∑
Ji li I

Ĵi

Ĵx ĴA

|Ulf li IJf Ji
(ExA)|2. (3.1)

Here, Ĵ = 2J + 1, Ji is the total angular momentum of the
colliding nuclei x and A in the initial state Jx and JA are
their spins, I and li are their channel spin and orbital angular
momentum, and kxA is the relative x − A momentum related
to their relative kinetic energy ExA as kxA = √

2µxAExA, with
µxA the reduced mass of x and A. Note that in this section
we use the LS-coupling scheme rather than jj-coupling used
in the previous sections. Here we once again use the system
of units in which � = c = 1. In (3.1) Ulf li IJf Ji

(ExA) is the
transition amplitude from the initial continuum state (li , I, Ji)

to the final bound state (lf , I, Jf ). It is given by the sum of
the resonant UR

I lf liJf Ji
(ExA) and non-resonant UNR

I lf liJf Ji
(ExA)

transition amplitudes:

UIlf liJf Ji
(ExA) = UR

I lf liJf Ji
(ExA) + UNR

I lf liJf Ji
(ExA). (3.2)

The resonant amplitude itself can have contributions from a
few resonances. The resonant and non-resonant amplitudes
with the same quantum numbers do interfere. In the one-
level, one channel R-matrix approach, the resonant amplitude
UR

lf li I Jf Ji
(ExA) for the capture into the resonance with energy

ER and spin Ji , and subsequent decay into the bound state with
spin Jf , is given by

UR
lf li I Jf Ji

(ExA)

= −iei(ωli
−φli

)
[	xAliIJi

(ExA)]1/2[	Ji

γ Jf
(ExA)]1/2

ExA − ER + i
	Ji

(ExA)

2

. (3.3)

The phase factor φli is the solid sphere scattering phase shift
in the li th partial wave and ωli is given by

ωli =
li∑

n=1

tan−1

(
ηi

n

)
, (3.4)

where ηi = ZxZAµxA/kxA is the Coulomb parameter
in the initial state, Zj is the charge of the particle j .
[	xAliIJi

(ExA)]1/2 is real and its square, 	xAliIJi
(ExA), is the

observable partial width of the resonance in the channel x + A

with the given set of quantum numbers, and 	Ji
(ExA) is the

total resonance width which we approximate as 	Ji
(ExA) ≈∑

I 	xAli IJi
(ExA); [	Ji

γ Jf
(ExA)]1/2 is complex and its modulus

square is the observable radiative width:

	
Ji

γ Jf
(ExA) = |[	Ji

γ Jf
(ExA)]1/2|2. (3.5)

The energy dependence of the partial and radiative widths are
given by

	xAliIJi
(ExA) = Pli (E)

Pli (ER)
	xAliIJi

(ER) (3.6)

and

	
Ji

γ Jf
(ExA) =

(
ExA + εF

xA

ER + εF
xA

)2L+1

	
Ji

γ Jf
(ER) (3.7)

respectively. Here, 	xAliIJi
(ER) and 	

Ji

γ Jf
(ER) are the

experimental partial and radiative resonance widths, εF
xA is the

binding energy of the bound state F = (xA) for the virtual
decay F → x + A, and L is the multipolarity of the gamma-
quanta emitted during the transition.

In a strict R-matrix approach the radiative width
	

Ji

γ Jf
(ExA) can be expressed in terms of the real internal and

complex external channel radiative widths amplitudes (Barker
and Kajino 1991) as

	
Ji

γ Jf
(ExA) = | − [	Ji

γ (int)Jf
(ExA)]1/2 + [	Ji

γ (ch)Jf
(ExA)]1/2|2

= (Re[	Ji

γ (ch)Jf
(ExA)]1/2 − [	Ji

γ (int)Jf
(ExA)]1/2)2

+(Im[	Ji

γ (ch)Jf
(ExA)]1/2)2. (3.8)

The channel radiative width amplitude is given by (Barker and
Kajino 1991)

[	Ji

γ (ch)Jf
(ExA)]1/2 =

√
2ili+L−lf +1 1

k
µ

L+1/2
xA

×
(

Zxe

mL
x

+ (−1)L
ZAe

mL
A

)√
(L + 1)L̂

L

1

L̂!!
(kγ RxA)L+1/2

×CF
xA lf IJf

√
	

Ji

xAI li
(ER)

√
Pli (ExA)([Fli (k, RxA)]2

+[Gli (k, RxA)]2)

W−ηbs
xA,lf +1/2(2κF

xARxA)

×(li0L0|lf 0)U(Llf JiI ; liJf )JL(lf , li), (3.9)

with

JL(lf , li) = J ′′
L(lf , li)

+i
Fli (k, RxA)Gli (k, RxA)

F 2
li
(k, RxA) + G2

li
(k, RxA)

J ′
L(lf , li), (3.10)
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Table 4. Summary of neutron transfer studies with ground state to ground state ANCs. Note that the quantum numbers and other labels have
been dropped here for simplicity.

Reaction and n ANC C2(fm−1) p ANC C2 (fm−1) Reference

13C(7Li,8Li)12C; 8Li → 7Li + n 0.432 ± 0.039 8B → 7Be + p 0.455 ± 0.047 Trache et al (2003)
13C(17O,18O)12C; 18O → 17O + n 8.18 ± 0.76 18Ne → 17F + p 12.15 ± 1.19 Al-Abdullah et al (2014)
13C(22Ne,23Ne)12C; 0.86 ± 0.08 ± 0.12 23Al → 22Mg + p 4.63 ± 0.77 × 103 Al-Abdullah et al (2010)

23Ne → 22Ne + n

J "L(lf , li) = 1

RL+1
xA

∞∫
RxA

drrL
W−ηbs

xA,lf +1/2(2κF
xAr)

W−ηbs
xA,lf +1/2(2κF

xARxA)

×Fli (k, r)Fli (k, RxA) + Gli (k, r)Gli (k, RxA)

F 2
li
(k, RxA) + G2

li
(k, RxA)

, (3.11)

J
′
L(lf , li) = 1

RL+1
xA

∞∫
RxA

drrL
W−ηbs

xA,lf +1/2(2κF
xAr)

W−ηbs
xA,lf +1/2(2κF

xARxA)

×
[

Fli (k, r)

Fli (k, RxA)
− Gli (k, r)

Gli (k, RxA)

]
. (3.12)

In (3.9),CF
xA lf IJf

is ANC for the virtual decay F → x + A,RxA

is the channel radius, which determines the border dividing
the internal and external regions, and U(Llf JiI ; liJf ) is a
6j -symbol. Also Fli (k, r) and Gli (k, r) are the regular and
singular (at the origin) solutions of the radial Schrödinger
equation with the pure Coulomb potentials. The penetrability
Pli (ExA) is given by equation (2.78) and the momentum of the
emitted photon is

kγ = ExA + εF
xA. (3.13)

It is clear from equation (3.9) that to calculate the
channel radiative width amplitude [	Ji

γ (ch)Jf
(ExA)]1/2 we need

to know only two experimentally measurable quantities,
the ANC, CF

xA lf IJf
, and the partial resonance width

	xAliIJi
(ExA). The relative phase of Re [	Ji

γ (ch)Jf
(ExA)]1/2 and

[	Ji

γ (int)Jf
(ExA)]1/2 is, a priori, unknown, so these real parts

may interfere either constructively or destructively. Hence,
(Im [	Ji

γ (ch)Jf
(ExA)]1/2)2 always provides a lower limit for the

radiative width, and additional stronger limits may be obtained
if assumptions are made about the interference between the
two real contributions. For constructive interference of the
real parts the channel contribution gives a stronger low limit as

	
Ji

γ Jf
(ExA) � (Re[	Ji

γ (ch)Jf
(ExA)]1/2)2

+(Im[	Ji

γ (ch)Jf
(ExA)]1/2)2 =

∣∣∣[	Ji

γ (ch)Jf
(ExA)]1/2

∣∣∣2
.

(3.14)

In the case of the destructive interference of the real parts,
if |Re [	Ji

γ (ch)Jf
(ExA)]1/2| > |[	Ji

γ (int)Jf
(ExA)]1/2|, the channel

contribution gives an upper limit for the radiative width. These
limits depend only on one model parameter, the channel
radius as

	
Ji

γ Jf
(ExA) � (Re [	Ji

γ (ch)Jf
(ExA)]1/2)2

+(Im [	Ji

γ (ch)Jf
(ExA)]1/2)2 =

∣∣∣[	Ji

γ (ch)Jf
(ExA)]1/2

∣∣∣2
.

(3.15)

Thus the ANC plays an important role in determination of
the radiative width because the normalization of the channel
contribution is determined by the ANC.

Assuming that the experimental radiative width	
Ji

γ Jf
(ER),

the ANC of the bound state, and the resonance width
	xAliIJi

(ER) are known, we can determine the internal
radiative width

	
Ji

γ (int)Jf
(ExA) = [Re[	Ji

γ (ch)Jf
(ExA)]1/2

±
√

	
Ji

γ Jf
(ExA) − (Im[	Ji

γ (ch)Jf
(ExA)]1/2)2]2 (3.16)

with two possible solutions.
In the R-matrix method the internal non-resonant

amplitude is absorbed into the internal resonance term, so
that the non-resonant capture amplitude is entirely determined
by the channel (external) term (Barker and Kajino 1991,
Sobotka et al 2013):

UNR
I lf liJf Ji

(ExA) = −i(2)3/2ili+L−lf +1ei(ωli
−φli

) 1

k
µ

L+1/2
xA

×
(

Zxe

mL
x

+ (−1)L
ZAe

mL
A

)√
(L + 1)L̂

L

1

L̂!!
(kγ RxA)L+1/2

×CF

xA lf IJf
Fli (k, RxA)Gli (k, RxA)W−ηbs

xA,lf +1/2(2κF
xARxA)

×√
Pli (ExA)(li0L0|lf 0)U(Llf JiI ; liJf )J ′L(li lf ),

(3.17)

which contains the same ANC as the channel radiative
width amplitude [	Ji

γ (ch)Jf
(E)]1/2. Such a normalization of

the channel radiative width and non-resonant amplitudes is
physically transparent. Both quantities describe peripheral
processes and, hence, contain the tail of the overlap function,
whose normalization is given by the corresponding ANC.

The sum of the interfering resonant and non-resonant
amplitudes is given by (Barker and Kajino 1991)

UR
lf li I Jf Ji

(ExA) = U
R(int)
lf li I Jf Ji

(ExA) + U
R(ch)
lf li I Jf Ji

(ExA)

+UNR
lf li I Jf Ji

(ExA). (3.18)

The internal and external resonant radiative capture
amplitudes, describing the capture of the incident particle x by
A into the resonant state with subsequent decay to the bound
state at distances r � RxA and r > RxA, correspondingly, are
given by

U
R(int)
lf li I Jf Ji

(ExA) = iei(ωli
−φli

)

×
[	xAliIJi

(ExA)]1/2[	Ji

γ (int)Jf
(ExA)]1/2

ER − ExA − i
	Ji (ExA)

2

(3.19)
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and

U
R(ch)
lf li I Jf Ji

(ExA)

= −iei(ωli
−φli

)
[	xAliI Ji

(ExA)]1/2[	Ji

γ (ch)Jf
(ExA)]1/2

ER − ExA − i
	Ji

(ExA)

2

.

(3.20)

The relative sign of the U
R(ch)
lf li I Jf Ji

(ExA) and UNR
lf li I Jf Ji

(ExA),
which determines the pattern of their interference, is well
known because both contain the same factor [	xAliIJi

(ExA)]1/2

×[	Ji

γ (ch)Jf
(ExA)]1/2. The sign of the internal part, which

dictates the interference pattern with the channel and non-
resonant amplitudes, is not known and can be determined only
from the microscopic calculations. If the channel resonance
amplitude |UR(ch)

lf li I Jf Ji
(ExA)| dominates over the internal part,

the interference character of the resonant and non-resonant
amplitudes can be easily determined. This constitutes another
important role of the ANC in the analysis of the radiative
capture reactions when the interference of the resonant and
non-resonant mechanisms occur.

In Sobotka et al (2013) the radiative capture in
11C(p, γ )12N, in which interference of direct and resonance
mechanisms occur, was analyzed. The channel radiative
width amplitude of the second resonance of 12N decaying to
the ground state was estimated to be [	Ji

γ (ch)Jf
(ExA)]1/2 =

0.000 154 + i0.000 0273 MeV1/2. This value was obtained
using the ANC measured in Tang et al (2003) and the
resonance width determined in Sobotka et al (2013).. A
simple single-particle estimate gives [	Ji

γ (int)Jf
(ExA)]1/2 =

0.000 043 MeV1/2, which is significantly smaller than
the real part of the channel radiative width amplitude
and from the single-particle estimates we find that the
channel U

R(ch)
lf li I Jf Ji

(ExA)and the internal resonant amplitude

U
R(int)
lf li I Jf Ji

(ExA) have constructive interference. Hence

|[	Ji

γ (ch)Jf
(ExA)]1/2|2 = 24.5 meV<	

Ji

γ Jf
(ExA) gives the lower

limit of the radiative width.
In Banu et al (2009) the astrophysical factor for the

12N(p, γ )13O reaction was calculated using the measured
ANC. This S factor has contributions from the interfering
resonant and non-resonant amplitudes. The radiative width
of the resonance energy, ER = 2.75 MeV, decaying to the
ground state via an E1 transition is dominated by the channel
radiative width amplitude, which is about of a factor of 3
larger than the internal width calculated in the single-particle
model. The calculated radiative width of this resonance
based on the measured ANC is 0.95 eV (for a channel radius
4.25 fm) is significantly larger than the value of 24 meV used
in Wiescher et al (1989). From equation (3.8) we conclude
that 	

Ji

γ Jf
(ER) > (Im[	Ji

γ (ch)Jf
(ER)]1/2)2 = 40 meV, which

indicates that the radiative width of 24 meV was undervalued.

4. Applications of the THM

The THM has been successfully applied to several reactions
that are important in astrophysics, nuclear, and atomic physics.
The reactions studied by means of the THM are summarized
in table 5. Some of the results were included in the

recent compilation of astrophysical factors of interest for
nucleosynthesis and energy production in the Sun (Adelberger
et al 2011).

These reactions can be divided into two broad categories,
as discussed in the theoretical section, namely resonant
and non-resonant processes. A large number of indirect
investigations with the THM have been focused on the study
of (p,α) reactions at stellar energies since they play a key
role in many stellar nucleosynthesis scenarios. Most of these
measurements were performed in inverse kinematics with a
deuterated polyethylene target to supply virtual protons from
the deuteron. An alternative source of virtual protons (and
deuterons) is represented by 3He, as shown by several indirect
measurements (Tumino et al 2006, 2011 and Pizzone et al
2011). All the TH-nuclei used so far in experiments are
characterized by an orbital angular momentum l = 0 for the
x–s intercluster motion, though other systems with l = 1
orbital angular momentum are available, like 7Li = t + α.

Below we will review the basic requirements to be fulfilled
to effectively apply the THM.

4.1. THM: from theory to experiments

In section 2.2 devoted to the illustration of the theoretical
framework of the THM, it has been shown that under QF
kinematical conditions non-THM reaction mechanisms are
suppressed, as the M

PWA(post)
int (P, kaA) term, containing the

interaction potential Vsx involving the spectator, may be small
and so only the terms in the total amplitude proportional to the
OES S-matrix elements S

JF

bBjl;xAj ′l′ can be retained. The second
important feature pointed out by equation (2.75), in the case of
direct reactions, and by equation (2.79) in the case of resonant
reactions, is that the total prior PWA amplitude is proportional
to the wave function of the TH-nucleus a in momentum
space, ϕa(psx). Therefore, the advanced THM formalism
based on the surface integral approach (Kadyrov et al 2009,
Mukhamedzhanov 2011) can be regarded as an extension and
generalization of the simplified THM formulas based on the
impulse approximation (Chew and Wick 1952), which have
been used in the original works focused on the investigation
of QF reactions (see Spitaleri (1991) and references therein).
This is a consequence of the historical development of the
method, as an extension of the measurements of the excitation
function of 2 → 3 reaction cross sections for QF reactions at
low energies (Lattuada et al 1985, Zadro et al 1989, Calvi et al
1990). In these works, a simple PWA expression for the TH
cross section was adopted:

d3σ

d�b d�B dEb

∝ KF |ϕa (psx)|2 dσxA→bB

d�

∣∣∣∣
HOES

, (4.1)

showing a straightforward connection between the 2 → 3 cross
section and the one of the binary reaction. In this formula, KF is
a kinematical factor containing the final state phase space factor
and it is a function of the masses mi , momenta ki and angles
θi of the outgoing particles (see Spitaleri et al (2004) for its
explicit expression). |ϕa(psx)|2, which is the squared Fourier
transform of the radial wave function of the a = (sx) system,
represents the momentum distribution of the s–x intercluster
motion, usually described in terms of Hänkel, Eckart or
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Table 5. Two-body reactions studied via the THM (first column). In the next columns, the THM reaction, the beam energy and the Q−value
of the three-body reactions (Q3) are shown, respectively. In the fifth column the THM nucleus and the transferred cluster are reported.
Finally, in the last column the reference for each reaction is given.

Reaction THM reaction Ebeam (MeV) Q3 (MeV) THM nucleus (x-cluster) Reference

7Li(p,α)4He 2H(7Li,αα)n 19–22, 28–48 15.122 2H (p) Zadro et al (1989)
Spitaleri et al (1999)
Lattuada et al (2001)
Aliotta et al (2000)

7Li(p,α)4He 7Li(3He,αα)2H 33 11.853 3He (p) Tumino et al (2006)
6Li(p,α)3He 2H(6Li,α3He)n 14.25, 1.795 2H (p) Tumino et al (2003)

21.6–33.6 Tumino et al (2004)
25 Calvi et al (1990)

Lamia et al (2013)
6Li(d,α)4He 6Li(3He,αα)1H 17.5 16.879 3He (p) Pizzone et al (2011)
6Li(d,α)4He 6Li(6Li,αα)4He 5 22.372 6Li (d) Cherubini et al (1996)

Spitaleri et al (2001)
9Be(p,α)6Li 2H(9Be,α6Li)n 22.35 −0.099 2H (p) Romano et al (2006)

Wen et al (2008)
10B(p,α)7Be 2H(10B,α7Be)n 27 −1.079 2H (p) Lamia et al (2009, 2010)
11B(p,α)8Be 2H(11B,α8Be)n 27 6.366 2H (p) Spitaleri et al (2004)

Lamia et al (2012a)
15N(p,α)12C 2H(15N,α12C)n 60 2.741 2H (p) La Cognata et al (2006, 2007, 2009)
18O(p,α)15N 2H(18O,α15N)n 54 1.755 2H (p) La Cognata et al (2008a, 2008b,

2010a, 2010b)
Palmerini et al (2013)

19F(p,α)16O 2H(19F,α16O)n 50 5.889 2H (p) La Cognata et al (2011)
17O(p,α)14N 2H(17O,α14N)n 45 −1.033 2 H (p) Sergi et al (2010)

Palmerini et al (2013)
3He(d,p)4He 6Li(3He,pα)4He 5.6 16.879 6Li (d) La Cognata et al (2005)
2H(d,p)3H 2H(6Li,p3H)4He 14 2.559 6Li (d) Rinollo et al (2005)

Pizzone et al (2013)
2H(d,p)3H 2H(3He,p3H)1H 18 −1.461 3He (d) Tumino et al (2011)
2H(d,n)3He 2H(3He,n3He)1H 18 −2.225 3He (d) Tumino et al (2011)
12C(α,α)12C 6Li(12C,α12C)2H 16, 20 −1.474 6Li (α) Spitaleri et al (2000)
6Li(n, α)3H 2H(6Li,α3H)1H 14 2.559 2H (n) Tumino et al (2005)

Gulino et al (2010)
17O(n,α)14C 2H(17O,α14C)1H 41, 43.5 −0.407 2H (n) Gulino et al (2013)
1H(p,p)1H 2H(p,pp)n 5.6 2.224 2H (p) Tumino et al (2007, 2008)
12C(12C,α)20Ne 12C(16O,α20Ne)4He 25 −2.545 16O (12C) —
19F(α,p)22Ne 19F(6Li,p22Ne)2H 6 0.199 6Li (α) —
13C(α,n)16O 13C(6Li,n16O)2H 7.82 0.742 6Li (α) La Cognata et al (2012, 2013)

Hulthén functions depending on the s–x system properties.
Finally, dσxA→bB

d�
|HOES, which is essentially the modulus square

of equation (2.71), is the HOES cross section. As it has
been pointed out in section 2.2.2, where a short derivation of
equation (4.1) is given (compare equations (2.70) and (2.71)),
the HOES cross section approaches the OES one only when
ExA � εa

sx as pxA ≈ kxA. In the case ExA → 0, which
is the most interesting for astrophysics, the HOES amplitude
does not contain penetrability factors making it possible to
extend the measurement of the binary reaction cross section
down to astrophysical energies. However, HOES effects
are sizeable under this hypothesis, making it necessary to
introduce correction factors to retrieve the energy dependence
of the binary sub-reaction cross section. Moreover, a number
of validity tests were necessary to verify the applicability of
equation (4.1).

In the early applications, the HOES cross section was
linked to the OES one by introducing the correct penetration
factor that, in the case of charged particle induced reactions,
is given by equation (2.78). In the case of neutron-induced

reactions (x = n), where the Coulomb barrier is obviously
absent in the entrance channel, if the n + A → b + B reaction
occurs with l > 0, the cross section can be suppressed due
to the centrifugal barrier. Thus appropriate penetration factors
had to be introduced to deduce the OES cross section from the
experimental HOES one. For the charged particles x and A,
the penetrability factor is given by equation (2.78). For x = n

Pl(ExA) = 1

kxARxA

(
j 2
l (kxARxA) + n2

l (kxARxA)
) , (4.2)

with jl and nl the spherical Bessel function and the Neumann
function, respectively. Then, the OES cross section was
obtained taking the product:

dσxA→bB

d�

∣∣∣∣
OES

= Pl(ExA)
dσxA→bB

d�

∣∣∣∣
HOES

, (4.3)

which is expressed, however, in arbitrary units owing to the
PWA that allows one to deduce the energy dependence of the
cross section but not its absolute value.
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More recently, the modified R-matrix method has led to
a more sophisticated treatment of the triple differential cross
section, in the case of both direct and resonant reactions. The
total prior PWA amplitude in the case of direct reactions was
given in equation (2.75) and in the case of resonant reactions
in equation (2.79). The amplitudes of the 2 → 3 reactions
are proportional to the OES S-matrix elements and to the OES
[A−1]ντ inverse level matrix elements, respectively. However,

both total prior PWA amplitudes contain the P
− 1

2
l (kxARxA)

factor, namely, the inverse square root of the penetration factor
for the xA entrance channel compensating for the Coulomb
barrier suppression effect on the cross section and making
it possible to extend the measurement of the binary cross
section down to astrophysical energies with no suppression.
In the modified R-matrix approach the link between the
triple differential cross section d3σ

d�b d�B dEb
and the OES one

is ensured by the presence in the total PWA amplitudes of
the same matrix elements (S-matrix or level matrix, for direct
and resonant reaction, respectively) as in the OES binary
reaction cross section. These parameters can be deduced by
fitting the measured d3σ

d�b d�B dEb
cross section using the TH

cross section calculated from the PWA amplitudes mentioned
above. The obtained matrix elements (that is, in the case
of resonant reactions, the reduced widths γ ) are then used
to calculate the OES cross section to be compared with
the results of direct measurements. This approach has the
advantage of permitting to account for HOES effects, due
to the virtual nature of the transferred particle x, which can
be treated only heuristically when equation (4.1) is used in
the data analysis. Moreover, when sub-threshold resonances
contribute to the astrophysical reactions, as the 6.356 MeV
state in 17O determining an enhancement of the astrophysical
factor right at astrophysical energies, the modified R-matrix
approach allows us to determine the ANC of such states
(La Cognata et al 2012, 2013).

4.2. THM experiment preparation

A necessary condition for the application of THM equations
is that the QF mechanism yields a dominant contribution to
the 2 → 3 cross section. This means that only the diagram
in figure 2 can be used to depict the TH data and higher order
diagrams are negligible (pole approximation). The intercluster
momentum range where the pole diagram is expected to be
dominant in the reaction mechanism was suggested to be psx <

κa
sx (Shapiro 1967a, 1967b, La Cognata et al 2007, Spitaleri

et al 2011). However, competing reaction mechanisms such
as direct breakup and sequential processes might contribute as
well or even be dominant inside this relative momentum region
(La Cognata et al 2005). For this reason, careful experiment
planning and off-line validity tests are necessary to identify
and single out the kinematic region where the pole diagram
is mostly contributing and where the theoretical formalism
discussed in the previous sections can be applied to deduce
the OES cross section.

A first task in planning a THM measurement is the
selection of an appropriate a + A → b + B + s reaction and
therefore of a suitable TH-nucleus that has a large amplitude for

Table 6. Structure (x–s cluster structure), orbital angular momentum
for the x–s relative motion and binding energy of some TH-nuclei.

TH x–s cluster Orbital angular Binding
nucleus structure momentum energy (MeV)

2H p–n 0 2.225
3H d–n 0 6.257
3He d–p 0 5.493
6Li d–α 0 1.474
9Be 5He–α 0 2.464
16O 12C–α 0 7.162
20Ne 16O–α 0 4.730

the a = (xs) cluster configuration. In table 6 a list of possible
TH-nuclei, many of them already used in THM experiments, is
shown with the corresponding cluster x (participant). In some
cases, different choices of TH-nuclei are available to get the
same virtual particle x. We note from table 6 that a participant
proton, for example, can be transferred either off a deuteron
2H = (pn), in which case neutron acts as a spectator (binding
energy εd

pn = 2.225 MeV) or off 3He = (pd) with deuteron as
spectator (ε3He

pd = 5.493 MeV). A virtual participant α-particle
can be transferred off different nuclei, such as 6Li, 9Be or 16O.

The choice of an appropriate TH-nucleus among those
made up of the same participant cluster x but different spectator
s is mainly linked to (Chew and Wick 1952, Barbarino et al
1980, Spitaleri et al 2011):

• the minimum value of binding energy for the a = (xs)

system;
• the population of kinematic regions where sequential

processes, namely multistep reactions proceeding through
decay of intermediate compound systems instead of direct
transfer are minimized;

• theQ-value of thea+A → b+B+s reaction and, therefore,
the value of the transferred momentum;

• the knowledge of the x–s momentum distribution.

In particular, the choice of deuteron as a TH-nucleus to obtain
a virtual proton beam is suggested by a number of reasons:

• it has a simple structure (proton plus neutron) and its wave
function is well known;

• binding energy is low (see table 6);
• the spectator cluster is a neutral particle (neutron),

reducing the probability of rescattering in the exit channel;
• the momentum distribution of the p–n intercluster motion

has a maximum at psx = 0 MeV/c, the intercluster motion
taking place in s-wave.

In addition, the deuteron can be used as a source of both virtual
protons and neutrons (Tumino et al 2005, Gulino et al 2010,
2013), thus allowing for investigations of neutron-induced
reactions avoiding the experimental problems connected to the
use of neutron beams, at the same time as p-induced reactions
are measured (as in the case of the 6Li + d interaction).

Beam energies are chosen with the aim to maximize the QF
contribution in comparison with other reaction mechanisms,
such as sequential processes, and to overcome the Coulomb
barrier in the A + a channel, V C

aA. In this way, the cluster x is
brought inside the x + A nuclear interaction region to induce
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the x(A, b)B reaction without being affected by Coulomb
suppression of the cross section due to the Coulomb penetration
factor. Also the incident energy in the center-of-mass system
EaA as well as the detection angles have to be chosen so
that the relative energy ExA can span the astrophysical region
of interest below the Coulomb barrier,ExA < V C

xA. This is
possible because the initial projectile energy is compensated
for by the binding energy εa

xs of particle x inside a as shown
by equation (2.63). Moreover, if the QF condition is slightly
relaxed, the intercluster motion can be used to cover a limited
ExA region (La Cognata et al 2007), thus allowing one to
explore the Gamow window even using comparatively large
beam energies. This property might be very useful in the
investigations of reactions induced by unstable nuclei, since
in these cases the energy presently available at most facilities
can be too large for the THM application (see, for instance,
Cherubini et al (2012)).

It is worth noting that, thanks to the energy associated to
the x–s intercluster motion, by using a single beam energy
Ebeam the whole excitation function of the x + A → b + B

reaction can be measured, spanning the entire interval of
astrophysical importance.

Energy resolution in the x–A channel is a crucial issue
especially in the resonant reaction case as resolution has to
be good enough to separate the contribution of each level
to the THM cross section. The kinematical variable mostly
influencing energy resolution is the relative angle of emission
of the two detected particles. Indeed, in a typical experiment
two out of the three emitted particles in a reaction event are
detected in coincidence in two or more pairs of coincidence
telescopes arranged on opposite sides of the beam direction,
often located at quite forward QF angles as the experiments are
usually performed in inverse kinematics. QF angles are defined
as those at which the QF condition is best fulfilled, e.g. those
at which psx = 0 in the case of a dominant s-wave in the x–s

relative motion. The uncertainty affecting the measured angles
can be kept below 0.2◦ by using a well collimated beam coupled
to position sensitive detectors (PSDs), leading to an energy
resolution as good as 17 keV (La Cognata et al 2010a), which
is usually adequate to isolate resonances in the A = 20 mass
region. However, for some applications better resolution is
necessary, for instance in the case of neutron-induced reactions
at very low energies (Gulino et al 2010).

The ‘magnifying glass’ effect (Baur et al 1986) can be used
to improve the relative energy resolution in reactions having
three particles in the exit channel and so, as a particular case, it
can be useful in the extraction of x–A relative energy spectra
in THM reactions. Under peculiar kinematic conditions,
ExA shows weak dependence on the energies of the detected
particles, thus their uncertainties give a small contribution to
the ExA total error budget, as can be demonstrated by applying
standard error propagation formulas.

4.3. From the a + A → b + B + s cross section to the
x + A → b + B one

Several different reactions can be induced on the same
target owing to the presence of contaminants or several

Figure 15. Q-value spectrum obtained in La Cognata et al (2007).
It shows two peaks, corresponding to two reaction channels, namely
(0) the 2H(15N,α12

0 C)n reaction, in which 12C is emitted in its ground
state, and (1) the 2H(15N,α12

1 C)n reaction, where the first excited
state of 12C is populated in the reaction.

open channels. These parasitic reactions might introduce
background that has to be identified and removed. The 2 → 3
reactions allow for a number of kinematic tests suited to
disentangle the a + A → b + B + schannel from others, which
complement the standard particle identification approaches,
such as the �E−E technique. Since both the angle of emission
and the kinetic energy of two of the three outgoing particles
are detected and these lay on the same plane as the impinging
nucleus, the Q−value spectrum for the coincidence events can
be deduced and compared with the theoretical value, calculated
taking the mass of the undetected particle from the energy–
momentum plot, as discussed in Costanzo et al (1990).

Figure 15 shows a typical Q-value spectrum for a
2 → 3 reaction, in this case for the 2H(15N,α12C)n reaction
(La Cognata et al 2007). In the spectrum two peaks are
apparent, corresponding to two reaction channels, in which
12C is emitted with different excitation energies. In this case,
particle identification cannot be used to single out the channel
of interest while they appear well separated in the Q-value
spectrum. The Q-value spectrum is also a good test to check
the accuracy of detector calibration, as peak position is very
sensitive to changes on the position and energy calibration
parameters.

The same a + A → b + B + s channel can be fed through
different reaction mechanisms. Apart from the diagram in
figure 2, other processes might be needed to describe the
reaction and kinematics cannot be used to disentangle them.
However, the analysis of reaction dynamics can be used to shed
light on the dominant reaction mechanism. Some of them are
shown in figure 16 for the case of the 2H(18O,α15N)n reaction
(La Cognata et al 2007). Panel (a) describes a QF process,
as the one given in figure 2, that is, the reaction mechanism
of interest for the THM application. Panels (b)–(d) show,
instead, two-step sequential decays where the neutron cannot
be regarded as a spectator in the 18O(p,α)15N sub-reaction, the
one of astrophysical interest. The processes marked with (c)

31



Rep. Prog. Phys. 77 (2014) 106901 Review Article

18O

p

15N

d n

18O

19F*d

n

15N

18O

16N*

n

d
15N

18O

5He*

n

d

15N

(a)

(b)

(c)

(d)

Figure 16. Diagrams representing different reaction mechanisms
leading to the population of the same α +15 N + n channel in the
2H(18O,α15N)n reaction (La Cognata et al 2007). (a) depicts a QF
process, the other panels display sequential processes proceeding
through the population of intermediate compound nuclei, 19F (b),
16N (c) and 5He (d).

and (d) in figure 16 can be singled out by analyzing the relative
energy spectra of any two out of the three emitted particles. If
compound nuclei form, different from F = bB (19F in the
case of the 2H(18O,α15N)n reaction), later decaying to the
observed final state, peaks should appear that correspond to
levels populated following the a + A interaction. For example,
in the case of figure 16(c), a spectrum of the n–15N relative
energy should show evidence of a resonance if 16N excited
states are populated. Figure 17 is an example of this reaction
mechanism investigation applied to the 2H(18O,α15N)n process
(La Cognata et al 2010a). In this case, two-dimensional
energy correlation spectra display only loci corresponding
to 19F states, ruling out sequential decays of 5He or 16N.
However, this approach cannot establish whether resonances
in the F = bB system are populated through a QF process or
a sequential decay.

An observable very sensitive to the reaction mechanism
is the shape of the experimental momentum distribution of
the cluster s in the TH-nucleus a. Indeed, if the a + A →
b + B + s reaction is direct and can be described by the
diagram in figure 2, s should keep the same momentum

Figure 17. Energy correlation spectra for the 2H(18O,α15N)n
reaction (La Cognata et al 2010a). Horizontal loci in the lower panel
correspond to 19F excited states. No additional loci appear, thus no
sequential decay proceeding through the population of 5He or 16N
excited states are present.

as inside A, thus the comparison of the experimental and
theoretical momentum distributions can be used to disentangle
the QF reaction mechanism from others (as, for instance, in
La Cognata et al (2005)). Moreover, the investigation of
the x–s relative motion momentum distribution constitutes an
important validity test of the theoretical formalism adopted in
the data analysis (La Cognata et al 2010c).

The recoil momentum of cluster s can be determined from
kinematics of the 2 → 3 reaction, even though this particle is
not detected, as in the case s is a neutron (Ohlsen 1965). The
experimental momentum distribution can be deduced using
different approaches, the angular correlation and the energy
sharing techniques, for instance (Kasagi et al 1975). Here we
will discuss about the latter, which has been adopted in most of
the recent THM works. Equations (2.75) and (2.79), describing
the 2 → 3 process under QF kinematic conditions, show that
in a restricted range of ExA and of θcm = cos−1 k̂xA · k̂bB ,
the total PWA amplitudes for direct and resonant reactions are
proportional to the x–s wave function in momentum space
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Figure 18. Experimental momentum distribution (full circles and
open squares) of n inside d from the 2H(11B, α8

0Be)n reaction
(Lamia et al 2012a). The red dotted line is the theoretical
momentum distribution in PWA, the squared Hulthén function in
momentum space. The black solid line is a fit of the momentum
distribution leaving as free parameters coefficients aand b appearing
in the analytical expression equation (4.4).

through a constant factor, describing the binary sub-reaction.
Therefore, the analysis of the 2 → 3 reaction yield leads to
the determination of the experimental momentum distribution
if the appropriate kinematical cuts are imposed onto the data
and if the kinematic factor KF, describing the population of the
phase space in the 2 → 3 process, is divided out.

In figure 18 the experimental spectrum of neutron
momenta, divided by the kinematic factor KF, is displayed,
as obtained from the 2H(11B, α8

0Be)n reaction introducing a
narrow gate on the p–11B relative energy and on the θcm

parameter (Lamia et al 2012a). The subscript 0 is used to
mark the events where the emitted alpha particle leaves 8Be in
its ground state. Experimental data are reported as full circles
and open squares. The experimental momentum distribution
is compared with the expected theoretical shape, given by the
square of Fourier transform of the radial bound-state wave
function for the x–s system in the PWA approach. In the case
of the deuteron, the theoretical distribution is given in terms of
the squared Hulthén wave function in momentum space:

ϕa (psx) = 1

π

√
ab(a + b)

(a − b)2

[
1

a2 + p2
sx

− 1

b2 + p2
sx

]
, (4.4)

with parameters a = 0.2317 fm−1 and b = 1.202 fm−1 for
the deuteron. The squared Hulthén function in momentum
space is superimposed onto the data (red dotted line). The two
parameters characterizing the Hulthén momentum distribution
are determined by the deuteron mass, binding energy and
triplet effective range parameter. If a and b are left free to
vary, to get a best-fit curve, the black line in figure 18 is
obtained that is in very good agreement with the theoretical

Figure 19. Same as figure 18, where the red dotted line highlights
the momentum distribution obtained in the DWBA framework, using
the computer code FRESCO (see Lamia et al (2012a) for details).

expression within the experimental uncertainties. In particular,
the experimental full-width at half-maximum (FWHM) is
65 ± 10 MeV/c, in good agreement with the theoretical value
of 58 MeV/c. In figure 19 the PWA momentum distribution
is replaced by the one evaluated using a DWBA calculation
performed by means of the FRESCO code (Thompson 1988),
taking the optical model potential parameters from Perey and
Perey (1976). The single free parameter, i.e. the normalization
factor, is obtained by scaling the calculated distribution to the
experimental one. The agreement between PWA and DWBA
is very good for the neutron momenta |psx | < 30 MeV/c,
that is, within the validity interval of the pole approximation,
while for larger momenta the PWA function departs from the
DWBA curve. This is a well-known result, as a number of
works has proved that the shape of the momentum distribution
close to the |psx | = 0 MeV/c condition is quite insensitive
to the theoretical framework used for its derivation. Also
the influence of the d-state component of the deuteron wave
function is absolutely negligible in such a momentum window
(Lamia et al 2012b). Figures 18 and 19 clearly show this
effect for |psx | < 30 MeV/c (vertical dotted–dashed line) as
the different curves (fit, Hulthén and DWBA) depart from one
another by few percent.

Equations (2.75) and (2.79), used in the derivation of
the physical parameters, allow us to fully account for the
HOES character of the binary sub-process. Such effects
are treated only in approximate way when equation (4.1)
is used in the derivation of the A + x → b + Bcross
section. In detail, since equation (4.1) derives from the
application of the impulse approximation, good agreement
is found if the momentum transfer, defined by the Galilean
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Figure 20. Behavior of FWHM for the p–n momentum distribution
as a function of the transferred momentum qt . The FWHM is
deduced from the experimental p–n momentum distribution, while
the qt value is calculated from the reaction kinematics. Open
symbols are used for the experimental data in Margaziotis et al
(1970), Valkovic et al (1971), Pan et al (1970), Lambert et al (1982).
Black circles marks the FWHM determined from p–n momentum
distributions measured with THM under different kinematical
conditions, as listed in table II of Pizzone et al (2009). The line
represents an empirical fit described in Pizzone et al (2009).

invariant equation (Pizzone et al 2009)

qt =
(

mF

mA

)1/2

pA −
(

mA

mF

)1/2

pF , (4.5)

is large enough to make distortions negligible (Pizzone et
al 2005, 2009). However, even in those cases when the
momentum transfer is small, so that the impulse approximation
requirements are not wholly fulfilled, equation (4.1) still holds
but the momentum distribution |ϕa(psx)|2 does not match
the theoretical one, given by the squared Fourier transform
of the x–s relative motion wave function inside a (Pizzone
et al 2005, 2009). For instance, in the case of the 11B + d →
α +8 Be+n reaction, the incident 11B energy is 27 MeV and the
transferred momentum corresponding to the QF condition is
370 MeV/c, leading to an experimental FWHM that matches
the value characterizing the Hulthén function, which can be
regarded as the asymptotic value achieved only for large
transferred momenta. This is clearly presented in figure 20,
where the trend of the experimentally measured FWHM of
the deuteron momentum distribution as a function of the
transferred momentum is displayed.

In general, the experimental momentum distribution
FWHM departs from the theoretical value because of
deviations from the simple PWA; anyway, these effects
can be accounted for by using the experimental momentum
distribution to extract the HOES cross section of the x + A →
b + B sub reaction, with the correct width for the transfer
momentum characterizing the TH reaction under investigation.
However, within the psx < κa

sx interval the change of FWHM
has a small influence on the THM astrophysical factor. For
instance, in the case of the 6Li(6Li,αα)4He reaction used to
determine the 6Li(d,α)4He cross section (Pizzone et al 2005),

the S(E) factor undergoes a variation of about 6% by changing
the width with respect to the theoretical value, which for
6Li = αd equals 73 MeV/c, well below other sources of error
such as the statistical uncertainty. Therefore, there is no need
to use sophisticated momentum distributions, computed using
advanced s–x wave functions, to deduce the astrophysical
factor using the THM, as the effect is usually of the order
of few percent. In this respect, the dependence on the choice
of the momentum distribution has been analyzed in depth in
the deuteron case, as the deuteron has been adopted very often
as TH-nucleus. In detail, the Hulthén wave function is usually
used to describe deuteron s-state wave function, while the d-
state component is usually neglected for THM application as it
amounts to about 4% of the total deuteron ground-state wave
function. However, if is used to extract the THM astrophysical
factor, its effect is absolutely negligible. For instance, in
the case of the 11B(p,α)8Be reaction measured using the
2H(11B, α8

0Be)n process, the change in the S-factor is smaller
than 1% even taking psx < 50 MeV/c in the data reduction.
This is because the maximum of the d-wave contribution lies
at r ∼ 2 fm, thus having its maximum corresponding to
pxs ∼ 100 MeV/c. Such a value is large if compared with
the usual THM momentum window (see Lamia et al (2012b)
for a detailed discussion).

Indirect methods aim at deducing the cross section of a
reaction by investigating another process, whose cross section
can be linked to the one of interest. Validity tests are necessary
to check experimentally whether the hypotheses underlying the
equations reviewed in the previous sections can be applied. To
this purpose, the indirect angular distributions are compared
with the ones for direct reactions, where available, as well as the
excitation functions above the Coulomb barrier, where HOES
effects are smaller. Figures 21 and 22 show the THM angular
distributions for the 11B(p, α0)

8Be (Spitaleri et al 2004) and the
15N(p,α)12C reactions (La Cognata et al 2007), respectively.
They are examples of non-resonant and resonant reactions,
respectively. Since the HOES nature of the measured cross
section has no influence on the angular distributions as they are
extracted for fixed energies and in arbitrary units, the THM data
are compared with the direct angular distributions in figures 21
and 22. In both cases, the good agreement provides confidence
that background mechanisms, such as sequential decay or
direct breakup, do not contribute or have been appropriately
separated from the QF reaction yield.

Figure 23 shows the HOES cross section for pp scattering
(black symbols) superimposed onto the direct cross section,
marked by a black line (Tumino et al 2007, 2008). The
red line stands for the theoretical pp scattering cross section
evaluated under HOES conditions. Clearly, good agreement is
found between the HOES cross section and the direct (OES)
one at energies above the Coulomb barrier, about 0.5 MeV,
thus we can conclude that HOES effects are negligible in
this region. Below about 500 keV HOES effects cannot be
neglected and the THM cross section departs from the direct
one, being devoid of the deep minimum it shows owing to
the interference between the Coulomb and nuclear scattering
amplitudes (Jackson and Blatt 1950, Dombrowski et al 1997).
Under such simple conditions, pp scattering, it is apparent that
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Figure 21. Angular distributions of the 11B(p, α0)
8Be reaction

extracted for fixed energies indicated in the figure using the THM
(Spitaleri et al 2004). For each energy, the black line shows the
behavior of the experimental angular distributions from direct
measurement, as parametrized by the authors using Legendre
polynomials (Becker et al 1987).

THM essentially probes the nuclear cross section. This can
be understood using equations (2.75) and (2.79), which shows
that the Coulomb barrier penetration factor is compensated for
by the P

−1/2
l (kxA, RxA) factor present in both equations. These

considerations led to the use of equation (2.78) to account for
HOES effects.

In the PWA framework only the energy behavior of
cross sections can be well reproduced, though absolute values
significantly depart from the experimental ones (see Spitaleri
et al (2011) and references therein). DWBA has proved
more realistic, though many more parameters are necessary
in calculations (for instance, La Cognata et al (2010a, 2010b,
2010c)). As far as direct data are available for normalization,
smaller model dependence characterizes THM cross sections
adopting PWA in data reduction.

Figure 22. Angular distributions of the 15N(p,α)12C reaction
extracted using the THM for indicated energies (La Cognata et al
2007). For each energy, a dashed line is used to indicate the
corresponding angular distributions from Redder et al (1982).

When the PWA equation (4.1) was used to deduce the cross
section of the astrophysical reaction of interest, normalization
to direct data to get the absolute value of the two-body
cross section and thus of the astrophysical S-factor was
performed by scaling the THM cross section to direct data
above the Coulomb barrier, where HOES effects and the
electron screening enhancement are negligible (as shown in
figure 23). To minimize the normalization error, the trends of
THM and direct data were compared over an energy range as
broad as possible, where several direct data sets are available to
reduce the effect of systematic uncertainties affecting a single
data set. When more partial waves contribute to the total cross
section, normalization constants are necessary for each partial
wave contribution (see, for instance, the procedure described
in Tumino et al (2003, 2011), Lamia et al (2012a)), as it
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Figure 23. pp scattering cross section above and below the Coulomb
barrier (500 keV). Black circles are used for the THM experimental
data (Tumino et al 2007, 2008). The black line is the free p–p cross
section, calculated using the formalism reported in Jackson and
Blatt (1950) with scattering length ap = −7.806 fm and effective
radius r0 = 2.794 fm. Finally, the theoretical HOES cross section is
shown as a red line (Tumino et al 2007, 2008). The clear
disagreement between the THM data and the free p–p cross section
is explained by the suppression of the Coulomb barrier in THM
data, which is accounted for in the theoretical HOES cross section.

descends from the considerations in the theoretical section.
This procedure is effective when a few partial waves contribute
and it is not viable when, for instance, several resonances
show up, each populated in a different l-wave, since in this
case a normalization performed at high energies could not be
attributed to low-energy resonances.

In the case of multi-resonant reactions, a different
approach has been developed in the last years to account for
HOES effects and get absolute values. Two cases have to be
singled out, namely, the narrow and the broad resonance cases.
In the narrow resonance case, when the width of the resonance
is much smaller than the resonance energy or of the same order,
the nuclear parameters of astrophysical interest are resonance
strengths and energies, as they only appear in the reaction rate
formula. The resonance strength of the ith resonance is defined
as (Rolfs and Rodney 1988, Iliadis 2007)

(ωγ )i = 2Ji + 1

(2Jx + 1) (2JA + 1)

	i
xA	i

bB

	i
tot

, (4.6)

where Ji, JxandJA are the spins of the ith resonance, of
nucleus x and A, respectively, and 	i

xA, 	i
bB and 	i

tot the
partial widths for the entrance and exit channels and the
total width of the ith resonance. The OES and the HOES
strength are connected through the following expression
(La Cognata et al 2008a, 2010a):

(ωγ )THM
i ∝ (ωγ )HOES

i

	
i sp
xA(

dσa+A→Fi +s

d�

)
sp

, (4.7)

where the denominator, the cross section for the a+A → Fi +s

transfer reaction populating the ith level of the F compound

nucleus is necessary to account for the l dependence of the
normalization constant, in order to have a single normalization
parameter for any number of resonances and l’s contributing to
the total cross section. The index sp is used to underscore that
both 	

i sp
xA and (

dσa+A→Fi +s

d�
)sp have to be calculated in the single-

particle approach, namely, using shell model wave functions
without introducing SFs. Normalization is then achieved
choosing a suitable resonance (marked by the index 0), well
known from previous studies and measured also in the THM
experiment, and scaling the THM resonance strength from
equation (4.7) to (ωγ )0:

(ωγ )THM
i = 	

i sp
xA(

dσa+A→Fi +s

d�

)
sp

(
dσa+A→F0+s

d�

)
sp

	
0 sp
xA

(ωγ )HOES
i

(ωγ )HOES
0

(ωγ )0 .

(4.8)

The double ratio appearing in the previous equation allows for
a substantial reduction of the model dependence of the THM
resonance strength, leading to very accurate determination
of low-energy resonance strengths (La Cognata et al 2008a,
2010a and Sergi et al 2010).

In the case of broad resonances, the energy dependence
of the partial widths cannot be ignored and a more complex
approach is necessary. Equation (2.79) is used to fit the
2 → 3 QF cross section, leaving as free parameters the
reduced widths of the low-energy resonances, entering the level
matrix, whose investigation is the goal of the THM experiment
(check La Cognata et al (2007, 2009, 2010b, 2011, 2012)
about the application of THM to broad resonance reactions).
The reduced widths of the known resonances are taken from
a standard R-matrix fit of direct data. This is possible as
the same reduced widths appear in the R-matrix formula
for OES and HOES cross sections (La Cognata et al 2011).
The reduced widths deduced from the modified R-matrix fit
of the 2 → 3 QF cross section using equation (2.79) are
then introduced in a standard R-matrix function to infer the
energy trend of the astrophysical factor in absolute units inside
the Gamow window. Therefore, normalization is relative to
observed resonances. This has two important advantages, as
normalization is performed by comparison with more than
one level and the use of R-matrix allows us to take into
consideration not only the x + A → b + B channel, but all the
channels leading to the population of the F compound nucleus
resonances covered both in the THM experiment and by direct
data. Thanks to this procedure, both the model dependence
and the impact of systematic errors affecting direct data are
significantly reduced, as the use of a large pool of direct data
for normalization minimizes the effect of a biased data set.

4.3.1. Considerations on uncertainties. Apart from statistical
error, several sources of uncertainties have to be considered
in the evaluation of the THM astrophysical factor, coming
from the different stages bringing from the 2 → 3 cross
section to the OES one, to be compared with direct data.
Background is a primary source of uncertainty. Two different
origins should be examined: noise, which can come from
electronics, from spurious coincidence events or beam induced
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background, much the same as in direct measurements, and
background from non-QF processes, that is, the occurrence
of reaction mechanisms for which the theoretical apparatus
we have developed is not a suitable description. This is an
additional source of background peculiar of indirect methods
and in particular of the THM. Concerning the former, as we
have discussed, the use of reactions with three particles in
the exit channel makes background subtraction easier than in
direct measurements in most of the cases. If the presence
of sequential decay processes is ascertained by inspecting, for
instance, the experimental momentum distribution, subtraction
of the sequential decay mechanism is necessary as this process
might be dominant in the phase space under examination. In
the case of the 3He(d,p)4He reaction measured by applying
the THM to the 6Li(3He,p4He)4He reaction (La Cognata et
al 2005), the population of 8Be states (in particular the 2+

level at 3 MeV excitation energy) was much more likely
than decay through the 5Li level of astrophysical importance
(at 16.87 MeV). The rejection of the dominant 8Be → 2α

sequential decay implied an additional uncertainty on the
3He(d,p)4He S-factor ranging from 10% to 20%, the largest
value corresponding to the lowest energy region where the SD
contribution dominates.

The theoretical framework adopted in the data analysis
introduces additional uncertainties through the approximations
exploited to express the cross section of the 2 → 3 reaction as
a function of the cross section of the binary sub-reaction. For
instance, equations (2.75) and (2.79) were derived assuming
that the PWA holds, while a more realistic approach such as the
DWBA would be advisable. This is possible if distorted waves
are introduced in equations (2.74) and (2.75) in the place of the
plane wave of the relative motion of particles i and j , χ(0)

ij . This
has been performed in several cases to evaluate the contribution
of systematic uncertainties. For instance, in the case of the
13C(α,n)16O reaction studied using the 13C(6Li,n16O)d THM
reaction (La Cognata et al 2012, 2013), the THM cross section
is dominated above 500 keV by two resonances at 806 keV
and 1019 keV. Their relative strength has been estimated in
the PWA and DWBA models, taking optical model potential
parameters from Johnson et al (2006). The DWBA and PWA
calculations coincide within 9%, well within normalization and
statistical errors (La Cognata et al 2012, 2013). Similarly, the
change in the channel radius RxA, a free parameter entering the
modified R-matrix calculation (equations (2.97) and (2.108)),
is responsible of a change of a few percent of the zero-energy
astrophysical factor of the binary sub-reaction, provided that
the channel radius is modified within reasonable values (for
instance, ±1 fm) (La Cognata et al 2007). Note that to check
the validity of the PWA the initial and final state interactions
were also taken into account (La Cognata et al 2010a, 2010b,
2010c, 2011, Gulino 2013).

The largest source of uncertainty in THM experiments
should be usually attributed to normalization to direct data,
even though different normalization procedures have been
devised in the attempt to reduce its contribution to the total
uncertainty. As discussed above, usually THM data are
scaled to direct data inside a broad energy range or to known
resonances. In any case, we attempt to collect as many data sets

Figure 24. The S(E) factor of the 6Li(d,α)α reaction extracted with
the THM (Spitaleri et al 2001) (full dots) is compared with direct
data from Engstler et al (1992a) (open symbols); a fit to the indirect
data with a second-order polynomial is shown as a solid line. The fit
to determine Ue is also shown (dotted line).

as possible, or we try to cover an energy window where more
than a single data set is available, since averaging out over a
pool of direct data sets makes the influence of a single biased
data set less relevant. However, normalization uncertainties
ranging between 10% and 20% are usually found owing to
a mismatch between different data sets or to their statistical
uncertainties. By introducing a DWBA formulation of THM
we aim to remove the need to scale THM data to direct data,
which is especially important for the application of THM to
reactions induced by unstable nuclei, as direct data are often
missing or characterized by very large errors.

4.4. Electron screening effects

Once the OES S-factor has been extracted, its comparison
with direct data usually shows good agreement down to
a center-of-mass energy where the presence of electrons
cannot be neglected. Indeed, atomic electrons shield nuclear
electric charges, causing an artificial increase of the measured
astrophysical factor at low energies due to a reduced Coulomb
repulsion (Assenbaum et al 1987, Rolfs and Rodney 1988,
Balantekin et al 1997, Strieder et al 2001). This is clearly
apparent in figure 24. Down to about 100 keV, the THM
S-factor of the 6Li(d,α)α reaction (filled circles) perfectly
matches the direct one (empty symbols). The two data sets
depart from one another below 100 keV, as the THM S-factor
(Spitaleri et al 2001) is not affected by electron screening
enhancement while direct data are (Engstler et al 1992a).

The 6Li(d,α)α reaction has been extensively measured
in the past, using both the THM and direct approaches, for
several reasons, besides nuclear astrophysics (where it occurs
in the pre-main sequence and in the inhomogeneous Big
Bang nucleosynthesis (Pizzone et al (2011) and references
therein)). In the THM framework, it has been measured
for checking the TH particle invariance, the influence of a
charged spectator on the extracted binary cross section and
the projectile breakup–target breakup invariance. Moreover,

37



Rep. Prog. Phys. 77 (2014) 106901 Review Article

it has been used to evaluate the isotopic independence of
the electron screening potential, by comparing the deduced
electron screening potential with those for the 7Li(p,α)α and
6Li(p,α)3He processes. Very good agreement was found
between the S(0) value extrapolated from high-energy direct
data, S(0) = 17.4 MeV b (Engstler et al 1992a), and the value
obtained through the THM, free of electron screening and not
extrapolated, S(0) = 16.9 ± 0.5 MeV b (Spitaleri et al 2001).

The fact that THM can provide for electron-screening
free astrophysical factor has two major consequences. One
is that since electron screening acts differently in stars and
in the laboratory, the S-factor from direct data has to be
corrected two times as the laboratory screening has to be
removed and the plasma screening factor has to be accounted
for. THM instead supplies the bare-nucleus S-factor, thus
only the plasma screening factor (Rolfs and Rodney 1988)
has to be introduced for astrophysical applications making it
possible to reduce systematic uncertainties related to electron
screening corrections. This is even more important as we
presently have an incomplete understanding of the electron
screening effect; the enhancement, as predicted by models,
usually underestimates the experimental value evaluated by
comparing the experimental S-factor with the bare nucleus
one (see La Cognata et al (2005) for the 3He(d,p)4He case and
references therein).

The second important consequence is the possibility to
deduce the electron screening potential Ue by using the
THM S-factor as that appropriate for a bare nucleus. In
the standard approach, the bare nucleus astrophysical factor
Sbare(Ecm) is obtained by extrapolating the direct S-factor
from high energies, where the enhancement is negligible,
down to zero energy. Then the electron screening potential
is deduced by fitting direct data through the formula (Rolfs
and Rodney 1988):

S(Ecm) = Sbare(Ecm) exp

(
πη

Ue

Ecm

)
. (4.9)

As we have already discussed, extrapolation might introduce
systematic errors due to, for instance, the presence of
sub-threshold resonances determining an increase of the
astrophysical factor at low energies, in the same way as electron
screening (La Cognata et al 2012, 2013). The use of THM to
provide for Sbare(Ecm) might help to reduce uncertainties on
Ue and, therefore, to improve our current understanding of
electron screening. This approach is exemplified in figure 24
where the THM data are parameterized using a second-order
polynomial (full line), thus obtaining Sbare(Ecm), which is the
input in equation (4.9) that is used to fit direct data (dotted
line). In the case of the 6Li(d,α)α reaction, Ue = 340 ± 51 eV
is obtained (Spitaleri et al 2001), in agreement with the results
in the literature (Engstler et al 1992a) (350 eV) but much larger
than 186 eV, that is, the upper limit for Ue predicted by the
adiabatic approximation (Bracci et al 1990).

4.5. Experimental THM applications to non-resonant reactions

As an example of the THM used for direct reactions,
consider the case of 7Li abundance, which is a key isotope

Table 7. Zero-energy astrophysical factor S(0) of the 7Li(p,α)4He
reaction obtained through extrapolation from high-energy direct
data and by means of the THM.

S(0) (keV b) Ref. Method

52 ± 8 Rolfs and Kavanagh (1986) Extrapolation
59.3 Engstler et al (1992a) Extrapolation
55 ± 3 Spitaleri et al (1999), THM

Lattuada et al (2001)
55.60.8

−1.7 Cruz et al (2008) R-matrix
58 Barker (2000) R-matrix
60–66.2 Barker (2002) R-matrix
59.3 Angulo et al (1999) Compilation
52 ± 11 Xu et al (2013) Compilation

in astrophysics as its abundance is a signature of the
nucleosynthesis process that took place during the Big Bang
and still occurs in stars (Fields 2011). Indeed, the Big Bang
essentially produced light nuclei up to 7Li, because of the
absence of stable A = 8 nuclei. Primordial 7Li abundances can
be retrieved by observing very old stars, formed from material
closely resembling the ashes of primordial nucleosynthesis
(Meléndez et al 2010). However, when comparing 7Li
abundance with model predictions, based on the WMAP
measurement of the baryon-to-photon ratio η (Dunkley et al
2009), it turns out that theoretical evaluations overestimate 7Li
pristine abundance (Fields 2011). This mismatch might be
linked to 7Li stellar processing; due to mixing affecting star
outer layers, 7Li on a star surface might be brought to high-
temperature regions where 7Li is burnt through the 7Li(p,α)4He
reaction. Therefore, if 7Li primordial abundance was well
known, the measured abundance could be used to constrain
mixing model, working as a probe of star inner layers (Lamia
et al (2012c) and references therein).

In this context, the 7Li(p,α)4He reaction plays a key role,
especially at energies of <10 keV typical of the bottom of the
convective region (Lamia et al 2012c). Table 7 displays the
zero-energy astrophysical factor reported by different authors,
showing a broad range of extrapolated values. In fact, direct
measurements cannot access the energy region of astrophysical
importance, thus extrapolations are necessary to spread over
the Gamow window. These have been performed using both
simple polynomial fitting of high-energy data (Engstler et al
1992a, Rolfs and Kavenagh 1986) and the more accurate
R-matrix approach (Cruz et al 2008, Barker 2000, 2002),
allowing one to account for all the levels contributing to the
astrophysical factor. Compilations have collected these results
to supply a best estimate of S(0) for astrophysical applications
(Angulo et al 1999).

Direct data from Engstler et al (1992a) are shown in
figure 25 as open symbols. They clearly demonstrate the effect
of electron screening as the astrophysical factor undergoes
a steep increase below ∼100 keV. As already discussed, our
current limited understanding of the effect of electron clouds
on fusion reactions might introduce systematic uncertainties
right at astrophysical energies. For this reason, the 7Li(p,α)4He
reaction was investigated by means of the THM, selecting the
QF yield from the measured 2H(7Li,αα)n cross section. The
bare-nucleus S(E)-factor was extracted in the energy range
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Figure 25. 7Li(p,α)α S(E) factor extracted using the THM
(Lattuada et al 2001) (full dots), compared with direct data from
Engstler et al (1992a) (open symbols); a fit to the indirect data with
a second-order polynomial is shown as a dotted–dashed line. The fit
to determine Ue is also displayed (full line).

Ecm = 10−300 keV and normalized to direct data in Engstler
et al (1992a). THM data are superimposed on the direct S-
factor in figure 25 (black circles). Good agreement is found
above Ecm ∼ 100 keV, where the effect of electron screening
is negligible, while at low energies THM data departs from
the direct ones that are affected by the electron shielding.
STHM(0) was deduced by fitting THM data with a polynomial.
Since the THM S-factor reaches 10 keV and it is devoid of
electron screening effects, STHM(0) can be determined with
a much better accuracy, leading to STHM(0) = 55 ± 3 keV b
(table7). The fitting curve used to determine STHM(0) is visible
in figure 25 as a dotted–dashed line.

The interpolated THM S-factor (dotted–dashed line in
figure 25) was introduced into equation (4.9) as it represents the
bare-nucleus astrophysical factor Sbare(Ecm); then, equation
(4.9) was used to fit direct data to determine the electron
screening potential Ue = 330±40 eV (Lamia et al 2012a).
This result matches the Ue parameter deduced taking as
Sbare(Ecm) the extrapolated astrophysical factor, Ue =
300±160 eV (Engstler et al 1992a). The advantage of the
THM approach is that the uncertainty on the electron screening
potential is reduced by a factor 2 to 4 with respect to that
obtained from direct measurements (Engstler et al 1992a).
This is linked to the reduced uncertainty affecting the THM
bare-nucleus S-factor. The THM measurement confirms the
disagreement of the experimental Ue values and the upper limit
of 175 eV set by the adiabatic limit. The electron screening
potential obtained from the comparison between THM and
direct data is compared with other results in the literature
collated in table 8.

Another example is boron abundance, which is a probe of
the internal stellar structure, as it allows us to evaluate to what
depth mixing extends, in a way similar to what we have briefly
mentioned about lithium (Boesgaard 2004). In particular,
boron isotopes, 11B (<80%) and 10B (<20%), are mainly
destroyed via (p,α) reactions at temperatures of ∼5×106 K,
corresponding to energies of a few keV (Lamia et al 2012a,

Table 8. Summary of the electron screening potentials Ue reported
in the literature, obtained from the investigation of the 7Li(p,α)α
reaction, compared with the THM value. For reference, the
adiabatic limit yields an upper limit Ue = 175 eV.

Ue (eV) Ref. Method

300 ± 280 Engstler et al (1992b) Extrapolation
300 ± 160 Engstler et al (1992b) Extrapolation
330 ± 40 Lattuada et al (2001) THM
237133

−77 Cruz et al (2008) R-matrix
242 Barker (2002) R-matrix
155 Barker (2002) R-matrix
300 Engstler et al (1992a) Compilation
245 ± 45 Cyburt (2004) Compilation

2012b, 2012c). The burning cross sections have to be known
with good accuracy to implement accurate models of mixing.

The 11B(p,α)8Be S-factor has been measured from Ecm =
18.73 keV up to Ecm > 1 MeV (Segel et al 1965, Davidson
et al 1979, Becker et al 1987, Angulo et al 1993). However,
such measurements do not cover the energy region of interest
for astrophysics, the Gamow peak lying at about 10 keV. This
energy is much lower than the 11B–p Coulomb barrier, about
1.7 MeV, thus the cross section is vanishingly small and the
bare-nucleus astrophysical factor Sb(0) of the 11B(p,α)8Be
reaction was obtained through extrapolation from high-energy
direct data.

Below 1 MeV, the 11B(p,α)8Be astrophysical factor is
characterized by a broad resonance at about 600 keV, due to
the 16.57 MeV, Jπ = 2− 12C state and by a sharp resonance
at about 150 keV, corresponding to the 16.106 MeV level of
12 C (Jπ = 2+, 	 = 5.2 ± 0.3 keV) (Lamia et al (2012a) and
references therein). In the 11B(p,α)8Be reaction the emitted
α-particle mostly leaves 8Be in its first excited state, thus α1 is
the main reaction channel, about 100 times more likely than the
α0 one. In the case of 11B(p,α0)

8Be the S(E)-factor shows the
presence of the 150 keV peak (fed in p-wave) superimposed
onto an s-wave non-resonant contribution while the 600 keV
level cannot contribute due to its Jπ value.

Below about 100 keV, the presence of atomic electrons
cannot be neglected as it determines an enhancement of the
astrophysical factor and electron screening has to be accounted
for in the extrapolation. The extrapolated zero-energy
astrophysical factors are S(0) = 2.1 MeV b (α0 channel) and
S(0) = 195 MeV b (α1 channel) (Angulo et al 1993). By
comparing the extrapolated S-factor with the screened one, an
electron screening potential Ue = 430 ± 80 eV was found.
Such a value is higher than the upper limit provided by the
adiabatic model of 340 eV (Angulo et al 1993), confirming the
systematic discrepancy between experimental and theoretical
values for the electron screening potential. The origin of the
discrepancy can be traced back both to the trend of low-energy
direct data or to extrapolation. The THM approach allows
us to determine the trend of the bare-nucleus astrophysical
factor down to zero energy, making it possible to independently
extract the electron screening potential and the 11B(p,α)8Be
reaction rate for astrophysical application.

To extract the 11B + p → α0 +8 Be reaction cross section,
two measurements of the QF 2H(11B, α8

0Be)nreaction were
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Figure 26. Comparison of the THM 11B(p,α0)
8Be astrophysical

factor (full circles) (Lamia et al 2012a) with the direct one (Becker
et al 1987), shown as an histogram, smeared to match the THM data
energy resolution.

carried out via the THM (Spitaleri et al 2004, Lamia et al
2012a). Both experiments were performed at the Laboratori
Nazionali del Sud of Catania (Italy) by using the SMP Tandem
Van de Graaf accelerator supplying a 27 MeV11B beam.
The detection setup consisted of one dual position sensitive
detector (DPSD) and standard, charge-partition, PSDs. Due
to its instability against α-decay and the short lifetime (about
10−18 s), the ground state of 8Be was selected by reconstructing
the relative energies between two alpha particles hitting in
coincidence the upper and lower part of the DPSD. The trigger
for the event acquisition was given by the triple coincidences
between the upper and lower part of the DPSD and one of
the three PSDs. This unequivocally led to the identification
of the 2H(11B, α8

0Be)n channel. The second experiment was
performed to improve the previous study in the astrophysical
region. We focused on the α0 channel, though it is less favored
than the α1, since the detection efficiency for the latter in the
THM measurement strongly suppressed the reaction yield.

Figure 26 shows the extracted S-factor (Lamia et al 2012a)
(black symbols) superimposed on the direct one (Becker
et al 1987), smeared to match the THM energy resolution
(∼100 keV FWHM) and displayed as a histogram. Since
two partial waves contribute to the total S-factor, l = 0 for
the non-resonant part and l = 1 for the 150 keV resonance,
two normalization constants were necessary to attain the THM
astrophysical factor in absolute units. These were deduced by
equaling the areas subtended by the 150 keV peak in direct
and indirect data for the p-wave contribution, and by scaling
the indirect data to the direct ones in the 400–600 keV energy
range for the non-resonance contribution. The resulting S(E)

agrees very well with the data in the literature (figure 26). The
non-resonant part, which is the most important component
at astrophysical energies, could then be established and in
particular the zero-energy S-factor, 2.07±0.41 MeV b (Lamia
et al 2012a), is fairly consistent with the extrapolated value of
2.1 MeV b found by Becker et al (1987).

Figure 27. Direct data for the α1 channel (Angulo et al 1993),
scaled to match the α0S-factor (open circles), for the α0 channel
(filled circles) (Becker et al 1987) and THM direct contribution
(dotted line) (Lamia et al 2012a). The solid line is the fit of screened
direct data using equation (4.9), where we have taken for Sbare the
THM direct contribution (dotted line).

The low-energy trend was used to assess the electron
screening potential Ue by comparing direct data with the
THM S-factor below ∼100 keV. However, direct data have
poor coverage in this region for the α0 channel, while the
11B(p,α1)

8Be S-factor has been measured with good accuracy
down to ∼19 keV (Angulo et al 1993). Therefore, the S-factor
for the α1 channel (empty circles in figure 27) has been
scaled to match the astrophysical factor of the 11B(p,α0)

8Be
reaction (filled circles in figure 27). The electron screening
potential was then deduced by fitting the scaled S-factor using
equation (4.9), where we assumed the direct component of
the THM astrophysical factor (dotted line in figure 27) as
the bare-nucleus S-factor. Ue = 472 ± 160 eV (Lamia et al
2012a) was then obtained, in good agreement with 430±80 eV,
deduced using as bare-nucleus S-factor the extrapolation from
higher energies (Angulo et al 1993), and overlapping with the
upper limit of 340 eV predicted by the adiabatic approximation
(Angulo et al 1993) because of the large error bar. Even though
uncertainties are large, the derived Ue suggests a possible
departure from the adiabatic limit, confirming once again the
systematic discrepancy between experimental and theoretical
values for the electron screening potential.

4.6. THM applications to resonant reactions

Two examples are provided here to show how the THM can be
used to study reaction rates that are dominated by low-energy
resonances. The abundance of 19F is very important in the
Asymptotic Giant Branch (AGB) stage of stellar evolution,
which represents the final nucleosynthesis phase for low- and
intermediate-mass stars (Herwig 2005). AGB stars play an
extremely important role in astrophysics as possible site for
stable-, heavy-element production in their interiors through
slow-neutron captures (s-process) (Busso et al 1999). The
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Table 9. Summary of the S(0) factors of the 15N(p,α)12C reaction
deduced by different authors, compared with the THM results.

S(0) (MeV b) Ref. Method

64 Schardt et al (1952) Breit–Wigner
extrapolation

78 ± 6 Zyskind and Parker (1979) Breit–Wigner
extrapolation

65 ± 4 Redder et al (1982) Breit–Wigner
extrapolation

68 ± 11 La Cognata et al (2007) THM
70 ± 14 La Cognata et al (2009) THM
73 ± 5 La Cognata et al (2009) R-matrix
80 Barker (2008) R-matrix
65 ± 7 Angulo et al (1999) Compilation
67.5 ± 4 Adelberger et al (2011) Compilation
67 ± 14 Xu et al (2013) Compilation

abundance of 19F is very sensitive to the internal stellar
structure and therefore provides a key parameter to constrain
AGB-star models, and ultimately the s-process (Lugaro et al
2004). However, when theoretical abundances are compared
to observed ones, remarkable discrepancies (up to one order
of magnitude) emerge, revealing a poor understanding of the
physical conditions under which 19F is synthesized (Jorissen
et al 1992, Abia et al 2010, 2011, Lucatello et al 2011). Thus,
the study of the nuclear reactions involved in the production and
destruction of 19F is of critical importance. The 15N(p,α)12C
reaction removes both 15N and protons from the 19F production
chain in AGB stars. The reaction is also a key CNO cycle
reaction as it marks the branching between the CN and NO
cycles. However, the available reaction rates yield at least
an 8% uncertainty on fluorine surface abundance, due to a
difference of a factor of 2 between the NACRE (Angulo et
al 1999) and CF88 (Coughlan and Fowler 1988) rates usually
employed in calculations (La Cognata et al 2007).

The cross section has been measured down to 70 keV
(Schardt et al 1952, Zyskind and Parker 1979, Redder
et al 1982), while only extrapolations are available at lower
energies, which are needed for quiescent CNO burning where
the Gamow energy can be as small as 26 keV. Extrapolations
were performed using both Breit–Wigner functions and
R-matrix calculations. For reference, the extrapolated zero-
energy S-factors by different authors are listed in table 9.
The results show some dispersion between the different
extrapolated values, motivating the THM investigation of the
15N(p,α)12C reaction.

The THM experiment was performed at the Cyclotron
Institute at Texas A&M University (TX, USA) using a 60 MeV
15N beam impinging onto a deuterated polyethylene target
about 100 µg cm−2 thick (La Cognata et al 2007, 2009). The
THM S(E) factor is given in figures 28 and 29 as red full
symbols. The astrophysical factor is dominated by a resonance
lying at about 300 keV due to the 12.44 MeV 16O state, making
it necessary to analyze the THM result using the modified R-
matrix approach (equation (2.79)). In the case of a single
resonance, normalization is achieved by equaling the areas
under the same resonance as it appears in direct and indirect
data, thus accounting for energy resolution effects that might
introduce differences in the resonance shape owing to possible

Figure 28. Comparison of the THM 15N(p,α)12C astrophysical
factor (red circles) with the direct ones, shown as black symbols
(black circles (Zyskind and Parker 1979), empty squares (Redder et
al 1982) and empty triangles (Schardt et al 1952)).

Figure 29. Same as the previous figure, but only the low-energy tail
is shown to emphasize the scatter of direct data at low energies.

difference in resolution in direct and indirect measurements.
From figures 28 and 29, it is clear that the 312 keV resonance is
well reproduced by the THM measurement as well as the low-
energy tail, where direct data are available (Schardt et al 1952,
Zyskind and Parker 1979, Redder et al 1982). At energies
above about 500 keV, beyond the range of astrophysical
importance and of normalization, the THM S-factor deviates
from the direct one due to the occurrence of sequential decay
processes.

As discussed in the theoretical section, the modified
R-matrix approach (equation (2.79)) has been developed
to account for the off-shell nature of the transferred
participant particle (in this case a proton), to extract the
resonance parameters from the THM data and to provide
rigorous parameterization of the S(E) factor for reaction rate
calculations. By means of the modified R-matrix approach,
the THM yielded S(0) = 70.0±13.5, in good agreement with
previous extrapolations (table 9). Good agreement between
the Sb(0) values from different approaches represents a strong
validation of the THM when applied to resonant reactions.
Moreover, it is worth noticing that the THM has allowed to
significantly reduce the scatter of low-energy S-factor data
(figure 29), reducing considerably the uncertainty affecting
S(0) as no extrapolation or theoretical estimates are needed.
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The second example is the 18O(p,α)15N reaction, which
is of primary importance to pin down the uncertainties, due to
nuclear physics input, affecting present-day models of AGB
stars (Lugaro et al 2004). Its reaction rate can modify the
fluorine yield due to the peculiar nucleosynthesis inside such
stars as well as oxygen and nitrogen isotopic ratios, which
allow one to constrain the proposed astrophysical scenarios.
Since the internal layers of AGB stars are the environment
where the s-process takes place, a more accurate measurement
of the 18O(p,α)15N reaction cross section might provide a
better understanding of the s-process (Nollett et al 2003). A
more accurate measurement of the 18O(p,α)15N reaction cross
section also might provide a better understanding of the so-
called R-Coronae Borealis (RCB) stars (Clayton et al 2007,
Pandey et al 2008). In these stars, peculiar 18O and 19F
abundances have been observed, for instance 16O/18O � 1
is found, which is about one hundred times smaller than the
Galactic ratio. The 18O(p,α)15N reaction cross section has
been the subject of several investigations, including direct
and indirect measurements, the latter aiming to determine the
resonance parameters (Champagne and Pitt 1986, Wiescher
and Kettner 1982, Lorentz-Wirzba et al 1979).

Below 1 MeV the cross section is dominated by three
resonances at 20, 144 and 656 keV, with the one at the
lowest energy being known only through spectroscopic
measurements. Indeed, the cross section at 20 keV is about
1011 times smaller than the one at 70 keV, which is the lowest
measured energy, thus making it impossible to observe the
20 keV peak with present-day facilities. Therefore, an indirect
measurement of the low-energy region of the 18O(p,α)15N
cross section has been performed by means of the THM to
extract the resonance strengths of the 20 and 90 keV resonances
(La Cognata et al 2008a, 2010a). It is important to note that
the low-energy resonances at 20, 90 and 144 keV are narrow
(their width being much smaller than the resonance energy),
calling for the application of the resonant THM approach.

The cross section of the 2H(18O,α15N)n reaction was
measured at the Cyclotron Institute, Texas A&M University
(La Cognata et al 2008a) and at the Laboratori Nazionali
del Sud (Italy) (La Cognata et al 2008b, 2010a) using a
54 MeV 18O beam impinging on a CD2 target, 100 µg cm−2

thick. The α and 15N nuclei were detected in coincidence
in PSDs to determine their relative energy spectra. As
a first step in the analysis, angular distributions of the
18O(p,α)15N reaction were extracted to establish the spin
parity of the 90 keV resonance and to infer the total cross
section from the measured d3σ

d�b d�B dEb
triple differential cross

section (2.79). The resulting angular distributions are shown
in figure 30 as black symbols, as a function of the p–18O center-
of-mass angle, superimposed onto the theoretical angular
distribution obtained using standard equations given in Blatt
and Biedenharn (1952). For the 20 and 144 keV resonances,
for which the spin-parities are well known, we found good
agreement between experimental and theoretical angular
distributions. In the case of the 90 keV peak, coming from
the 8.084 MeV state in 19F, we were able to assess its spin
parity to be 3/2+.

Figure 30. Angular distributions of the 18O(p,α)15N reaction,
deduced from the THM reaction yield for the three resonances in the
0–250 keV interval (La Cognata et al 2008a, 2010a). The full lines
are the theoretical angular distributions for the OES 18O(p,α)15N
reaction, calculated according to the equations of Blatt and
Biedenharn (1952).

The angle-integrated 2H(18O,α15N)n cross section is
shown in figure 31. According to the modified R-matrix
approach equation (2.79), which can be simplified in the case of
narrow resonances, the area under each peak is related to the
resonance strength by easily calculable factors (La Cognata
et al 2010a). Therefore, THM resonance strengths were
deduced by fitting the d2σ

d�n dEcm
cross section (figure 31) and

normalized as discussed in section 4.3 (equation (4.8)). In
detail, the strengths of the 20 and 90 keV resonances were
scaled to the one of the 144 keV peak, which had been well
established in previous experiments (Becker et al 1995) to
be (ωγ )3 = 0.167 ± 0.012 eV. The THM leads to (ωγ )1 =
8.3+3.8

−2.6 × 10−19 eV for the 20 keV resonance, which is well
within the upper and lower limits given by NACRE (Angulo
et al 1999), 6+17

−5 × 10−19 eV. The THM central value is about
35% larger than the NACRE one, while the uncertainty has
been significantly reduced (the upper bound has been lowered
by a factor of 4.5) because no SF is needed to evaluate the
resonance strength. The largest contribution to the error
is due to the uncertainty on the resonance energy, while
statistical, systematic, and normalization errors add up to 9.5%
(compare Becker et al (1995) about the normalization error).
The same procedure applied to the 90 keV resonance gives
ωγ = 1.76 ± 0.33 × 10−7 eV, in agreement with the NACRE
result, 1.6 ± 0.5 × 10−7 eV, providing for a cross check of the
method.
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Figure 31. Cross section of the of the TH reaction (full circles) (La
Cognata et al 2008a, 2010a). The full line represents the result of a
fit including three Gaussian curves (short-dashed, dotted, and
short-dashed–dotted lines) and a first-order polynomial
(long-dashed–dotted line) to take into account the three resonances
at 20, 90, and 144 keV and background, respectively. The area
subtended by each resonance is proportional to the resonance
strength.

4.7. Neutron-induced reactions: the 6Li(n,t)4He process

Neutron-induced reactions play a fundamental role in nuclear
astrophysics, in particular in the nucleosynthesis of elements
heavier than iron through the s-process or the r-process (Busso
et al 1999, Käppeler et al 1998). However, their measurement
is quite complicated because neutron beams are necessary. As
an indirect approach, the THM turns out to be very effective
since deuterons can act as a virtual neutron source if neutron
transfer is selected. Moreover, the THM can be applied also
to the investigation of neutron-induced reactions on unstable
nuclei, which would be otherwise impossible with present-day
facilities. The 6Li(n,α)3H reaction has been chosen to validate
the THM in the case of neutron-induced reactions (Tumino et
al 2005, Gulino et al 2010), as direct data are available over a
broad energy range, from a few tens of eV up to several MeV
(Overley et al 1974). At low energies (below ∼0.6 keV) the
6Li(n,α)3H cross section is characterized by two contributions,
a resonant one due to the formation of the 7.454 MeV 5/2− 7Li
state, leading to a peak at En6Li = 204 keV, and a non-resonant
contribution showing the typical 1/v trend of the cross section
for slow-neutron capture reactions.

In the experiment (Gulino et al 2010), great care was
devoted to improve the energy resolution. Beam collimation
was carefully implemented, no �E detectors were used for
particle identification and PSDs were placed at 780 mm from
the target. Kinematical conditions were chosen so as to

Figure 32. Two-body cross section obtained in Gulino et al (2010)
(open circles) compared with the directly measured ones (full dots)
(Overley et al 1974) integrated over the center-of-mass angular
region θcm = 95◦ − 110◦. The line is just to guide the eye.

have a very smooth dependence of the α–t relative energy
on α and t kinematic energies. Under such assumptions,
the contribution to the α–t relative energy resolution due to
PSD energy resolution is further reduced (‘magnifying glass’
effect (Baur et al 1986)). Taking into account all of the
experimental uncertainties, the energy En6Li was measured
with an uncertainty of 30 keV (FWHM), of the same order
as direct measurement at the energies investigated through the
THM (from 30 keV up to about 300 keV).

Figure 32 shows the comparison between the THM cross
section of the 6Li(n,α)3H reaction (open circles) and direct
data from Overley et al (1974) (full dots). Good agreement
corroborates the use of the THM to investigate n-induced
reactions leading to results comparable to direct data. The
two-body cross section obtained in Overley et al (1974) was
fitted using a sum of a Breit–Wigner function and of the 1/v
trend that describes the cross section for low neutron energies.
The same 1/v function was added to THM data as in the THM
measurement neutrons take part to the reaction as off-energy-
shell particles. Moreover, to account for the HOES shell nature
of the THM cross section, the indirect data were multiplied
by the centrifugal barrier penetration factor (equation (4.2)).
Finally, the normalization factor was calculated in the energy
region where the 200 keV resonance is present equaling the
areas of direct and indirect measured resonance peaks. The
THM data were fitted with the sum of a Breit–Wigner function
and a 1/v term to evaluate the resonance properties. The fitting
procedure yielded a resonance energy of 204 ± 4 keV with
a FWHM of 96 ± 8 keV, in excellent agreement with the fit
performed on direct data.

5. Experiments on CD in rare isotope facilities

The experimental advantages of the Coulomb breakup method
are: (i) the large number of virtual photons provided by
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a high-Z target leads to large CD cross sections, (ii) the
photoabsorption cross section in equation (2.96) is favored
compared to the radiative capture cross section by two
to three orders of magnitude, and (iii) thick targets can
be used in the regime of fast beams leading to a higher
luminosity (Motobayashi 1998). A challenging requirement
for experiments, however, is the need for the measurement
of angular distributions. The multipolarities have to be
disentangled since the electromagnetic multipoles contribute
with different strengths to Coulomb excitation and capture
processes. Particularly important are the non-negligible
contributions and interference of electric dipole (E1) and
electric quadrupole (E2) excitations (Bertulani 1994, Gai and
Bertulani 1995, Esbensen and Bertsch 1995, 1996, Bertulani
and Gai 1998). The applicability of the CD approach is
limited by the fact that preferentially E1 modes are excited
and that the detailed balance theorem cannot be used for the
extraction of the radiative capture cross section in case the
capture feeds bound excited states that decay byγ -ray emission
with unknown branching ratio (Motobayashi 1998). The main
body of experimental work utilizing Coulomb breakup of rare
isotopes for nuclear astrophysics has been aimed at exploring
radiative proton capture reactions.

5.1. (a) Radiative capture

An extensive experimental program using Coulomb breakup
reactions to extract radiative capture cross sections was
initiated by Motobayashi et al (1991) (see also Motobayashi
(2003)). In the pioneering 1991 experiment, the
electromagnetic transition strength for the excited 1−

resonance in 14O was determined in the CD, 14O → 13N +
p, induced by 87.5 MeV/nucleon 14O impinging upon a Pb
target (Motobayashi et al 1991). The CD cross section
was determined from coincidence spectroscopy of protons
and 13N. The complete kinematics—total energy and relative
momentum vectors of the p+13N system—were determined.
The radiative width 	γ was deduced and found in agreement
with the direct measurement performed at Louvain-la-Neuve
by Decrock et al (1991). The CD cross sections of 14O →
13N + p (Kiener et al 1993) and 12N → 11C + p were also
published by Lefebvre et al (1995). Radioactive beams of 14O
at 70 MeV/nucleon and 12N at 65.5 MeV/nucleon were used
on 208Pb targets, respectively. A test has been done for the CD
of 15C into 14C+n, whose inverse reaction 14C(n,γ ) has been
measured. Summer and Nunes (2008) and Esbensen (2009)
have shown that a full dynamical model is needed to reproduce
the CD data, and that the ANC extracted from the confrontation
between theory and experiment is in excellent agreement with
the radiative-capture data.

Experiments aimed at the CD of 8B (Kikuchi et al
1997, 1998) to extract the reaction rate of the crucial 7Be(p,
γ )8B reaction, which is of great importance for the neutrino
production in the Sun through the β decay of 8B. In the first
experiment by Kikuchi et al (1997), the breakup of a 8B
beam of 46.5 MeV/nucleon incident on a 208Pb target was
measured. In a second experiment by Kikuchi et al (1998),
the angular range was extended to cover from 6◦ to 10◦ and

the fraction of the breakup leading to the 429 keV bound
excited state in 7Be was obtained. An assessment of the E2
contribution to the breakup process was also obtained. Much
higher beam energies available for CD of 8B → 7Be + p were
obtained in two experiments at 254 MeV/nucleon 8B beam
energy (Iwasa et al 1999, Schümann et al 2003). Tracking of
the angle of the incoming beam allowed for measuring angular
distributions to disentangle contributing multipolarities in the
second experiment (Schümann et al 2006). Inclusive and
exclusive measurements of the 8B → 7Be + p CD were
performed by Davids et al (2001, 2003). The longitudinal
momentum distributions of 7Be were derived. In comparison
to model calculations, a rather high E2 contribution to the
Coulomb breakup was deduced, which has not been confirmed
by any other measurement to date. Gai (2006), Adelberger
et al (2011) and Bertulani and Gade (2010) summarized the
results of the various 8B CD measurements and the extracted
the astrophysical S17(0) factor, comparing with direct capture
measurements.

The astrophysical S-factor for the reaction 7Be(p,γ )8B
was calculated (Navratil et al 2006) and excellent agreement
was found with the experimental data in both direct and
indirect measurements (Navratilet al 2006, 2011). The low-
and high-energy slopes of the S-factor obtained with a many-
body microscopic calculation by Navratil et al (2006) is well
described by the fit (Bertulani 2013)

S17 (Ex) = (22.109 eV b)
1 + 5.30E + 1.65E2 + 0.857E3

1 + E/0.1375
,

(5.1)

where E is the relative energy (in MeV) of p+7Be in
their center-of-mass. This equation corresponds to a Padé
approximant of the S-factor. A sub-threshold pole due to
the binding energy of 8B is responsible for the denominator
(Jennings et al 1998, Williams and Koonin 1981). Figure 4
shows the world data on 7Be(p, γ )8B compared to a few of the
theoretical calculations. The recent compilation published by
Adelberger et al (2011) recommends S17 = 20.8±0.7(expt)±
1.4(theor) eV b.

The reactions 8B(p,γ )9C, 11C(p,γ )12N and 12N(p,γ )13O,
important for the hot pp mode nuclear burning in hydrogen-
rich, very massive objects (Wiescher et al 1989) were studied
via Coulomb breakup to extract the reaction rates relevant to
explosive hydrogen burning (Motobayashi 2003). Subsequent
measurements on sd-shell nuclei aimed at the study of the
breakup of 23Al (Gomi et al 2005) and 27P (Togano et al
2005) into 22Mg+p and 26Si+p. The experimental results in
the sd-shell are relevant to the reaction path in Ne novae
(Gehrz et al 1985), where at high temperature and density many
nuclear reactions involving rare isotopes contribute in the hot-
CNO cycle and the NeNa- and MgAl-cycles (Champagne and
Wiescher 1992). A specific signature is the nucleosynthesis
of long-lived galactic γ emitters such as 22Na and 26Al,
and nucleosynthesis up to the silicon and calcium range
(Starrfield et al 2000).

Assuming temperature and density conditions given by
nova models (Iliadis et al 2002), the radiative width obtained
in the study indicates that the main reaction path favors the
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β decay rather than the proton capture on 22Mg (Gomi et al
2005). For 26Si+p, the preliminary result of the γ -decay width
of the first excited state in 27P is ten times smaller than the value
estimated based on a shell-model calculation in Caggiano et
al (2001). This indicates that the 26Si(p,γ )27P reaction does
not contribute significantly to the amount of 26Al produced in
novae (Togano et al 2005).

The neutron capture reaction on 14C has been explored
using CD of 15C → 14C + n at 69 MeV/nucleon in the
field Pb target (Nakamura et al 2009). The deduced direct
capture cross section agrees with the most recent direct capture
measurement and demonstrates that the Coulomb breakup
with a neutron in the exit channel is a useful tool to derive
the radiative capture cross section. A program aimed at
Coulomb breakup of neutron-rich nuclei, not exclusively with
an astrophysical background, is also ongoing at higher beam
energies (Aumann 2006, Pramanik et al 2003, Adrich et al
2005, Nociforo et al 2005).

The two-neutron capture on 4He could perhaps play a
role in the post-collapse phase in type-II supernovae. The
bottleneck in this nucleosynthesis scenario is the formation
of nuclei with A � 9 from nucleons and α-particles. In
principle, the reaction 4He(2n,γ )6He could be relevant in
bridging the instability gap at A = 5, although it is believed
that this reaction cannot compete with the (αn,γ ) process
in a type-II supernova scenario. Experiments with CD have
been used to study this question (Aumann et al 1999). From
the analysis of this experiment it was found that 10% of the
dissociation cross section proceeds via the formation of 5He.
A rough estimate yields 1.6 mb MeV for the photoabsorption
cross section for 6He(γ ,n)5He, which agrees with theoretical
calculations (Danilin et al 1998, Cobis et al 1997, Efros et
al 1996). From this experiment one concludes that the cross
sections for formation of 5He and 6He via one (two) neutron
capture by 4He are not large enough to compete with the (αn, γ )

capture process (for more details, see Aumann (2006)). This
and the previously mentioned examples, show the relevance
of the CD method to assess some of the basic questions of
relevance for nuclear astrophysics.

A few more recent experiments using the CD method are
worth mentioning. The proton-rich nucleus 31Cl was studied
experimentally using the CD of a 31Cl beam and the first
excited state in 31Cl was observed which is relevant to the
resonant capture in the stellar 30S(p,γ )31Cl reaction (Togano
et al 2011). The determination of the 7Li(n,γ )8Li radiative
capture cross section by means of the dissociation of 8Li beams
(Izsak et al 2013). The deduced (n,γ ) excitation function is
consistent with data for the direct capture reaction 7Li(n,γ )8Li
and with low-energy effective field theory calculations (Rupak
and Higa 2011). The astrophysical 26Si(p,γ )27 P reaction is
studied using the CD of 27P (Beceiro Novo et al 2012). Four
resonant states measured at 0.36±0.07, 0.88±0.09, 1.5±0.2,
2.3±0.3 MeV and evidence of a higher state at around 3.1 MeV
was found. Measurement of the 92,93,94,100Mo(γ ,n) reactions
by CD (Göbel et al 2013). These measurements helped
to understand the production of proton-rich nuclei produced
under explosive conditions in a sequence of photodissociations
of s- and r-process seeds and subsequent decays.

5.2. (b) Pygmy resonances

In neutron-rich nuclei, one expects the appearance of electric-
dipole strength at energies near the neutron separation
threshold. Located below the well-known giant dipole
resonance (GDR), which has already been studied extensively
in stable species (Dietrich and Berman 1988), this new low-
lying E1 strength distribution is often denoted as pygmy
dipole resonance (PDR), referring to its much smaller
photoabsorption strength compared to that of the GDR. Pygmy
resonances were proposed by Suzuki et al (1990), using
the hydrodynamical model for collective vibrations. The
PDR provides an experimental access to the equation-of-state
(EOS) of asymmetric nuclear matter, and thus a link to the
neutron skin evolution (Piekarewicz 2011), as well as about
the abundance distribution of heavy elements in the universe
(Goriely 1988).

The possibility to explain the soft dipole modes in terms
of direct breakup, has made it very difficult to clearly identify
the signature of pygmy resonances in exotic nuclei. This can
be shown by using the electric dipole strength function in the
cluster breakup model, namely (Bertulani and Sustich 1992)

dB (E1, E)

dE
= C

3�e2Z2
eff

π2µ

√
S (E − S)3/2

E4
, (5.2)

where E is the total excitation energy. C is a constant
of the order of unity, accounting for the corrections to the
wavefunction. This function has a peaks at E = 3S/5
which can become very small if the separation energy S is
also small. Thus it becomes hard to say if a peak at low
energies in the response function of a neutron-rich nucleus
is due to direct breakup or to the excitation of a pygmy
resonance that subsequently decays by neutron emission. The
same conclusion is reached by using a three-body breakup
mechanism. As pointed out by Pushkin et al (1996), the
E1 three-body response function can be described by an
expression similar to equation (5.2), but with different powers.
Explicitly, dB(E1)/dE ∝ (E − S2n)

3/E11/2. Instead of S2n,
one has to use an effective S

eff
2n = aS2n, with a ∼ 1.5. The

peak of the strength function in the three-body case is situated
at about three times higher energy than for the two-body case,
equation (5.2). In the three-body model, the maximum is
thus predicted at E ∼ 1.8S2n, which fits the experimentally
determined peak position for three-body breakup. For example
the 11Li E1 strength function is very well reproduced with
this direct breakup model (Bertulani 2007). The effect of
three-body configurations is to widen and to shift the strength
function dB(E1)/dE to higher energies, as shown in figure 34.

One of the first PDR observations was realized with CD
(γ , xn) of neutron-rich Sn isotopes (Adrich et al 2005). The
PDR was measured in 130Sn and 132Sn at energies around
10 MeV and exhausted 7(3)% and 4(3)% of the E1 energy-
weighted sum rule, respectively. The comparison of these
results with RPA calculations by Klimkiewicz et al (2007)
served to constrain the symmetry energy and the symmetry-
energy pressure in the EOS, as well as the neutron-skin of
Sn isotopes and of 208Pb. The low-lying E1 strength in 68Ni
was measured with this technique by Wieland et al (2009),
revealing 5% of the E1 energy-weighted sum-rule strength
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Figure 33. Neutron kinetic energy-differential cross section for the
68Ni(γ ,n)67Ni channel. The experimental data (solid points), the
total neutron kinetic energy fit (solid line), the statistical decay
component (dotted line) and the non-statistical decay component
(dashed line) are shown (Rossi et al 2013).

Figure 34. Comparison between the calculation of the response
function (in arbitrary units) with a three-body model (dashed line) as
reported by Bertulani (2007). The solid curve includes the effects of
final state interactions. The experimental data are from Shimoura et
al (1995).

under the assumption of a branching ratio for the directγ -decay
of 4% in the PDR region. From these results, Carbone et
al (2010) derived symmetry-energy parameters that are in
good agreement with those previously obtained from 130,132Sn.
Recently, the GDR and additional low-lying strength have been
observed in 68Ni, the latter exhausting 4.1(1.9)% of the E1
energy-weighted sum rule (Rossi et al 2013). This is shown in
figure 33. The branching ratio for the non-statistical decay of
the excited 68Ni nuclei was measured as 24(4)%.

5.3. (c) Relativistic Coulomb fission

Relativistic Coulomb fission is an optimum reaction
mechanism for the production of medium-mass neutron-
rich nuclei. Electromagnetic-induced fission of several

Figure 35. Contour plot on the nuclear chart of calculated
distribution of fragment yields in relativistic Coulomb breakup of
238U projectiles (Tarasov 2012).

neutron-deficient actinides and pre-actinides have been studied
at the GSI Darmstadt by use of relativistic secondary beams
(Geissel et al 1992, Schmidt et al 1994, Böckstiegel et al
1997, 2008). The cross sections proceed via the excitation
of the GDR, but also with a sizable contribution of the double
giant dipole resonance (DGDR) as first proposed by Baur and
Bertulani (1986). The cross section for the excitation of GDR
in a nucleus 1 due to the Coulomb interaction with a nucleus
2 is roughly given by

σGDR = (
3.42 × 10−3 mb

) Z1N1Z
2
2

A
2/3
1

ln

(
2γA

1/3
1

A
1/3
1 + A

1/3
2

)
,

(5.3)
where γ is the Lorentz factor associated with the relative
velocity between the two nuclei. Thus, the cross section
increases substantially at very large energies. Much of the
excitation cross section goes to the excitation of the DGDR
(Baur and Bertulani 1986), responsible for exotic decay modes.
The excited nucleus decays mostly by fission leading to
neutron-rich fragments.

Figure 35 shows the calculated distribution of fragment
yields in relativistic Coulomb breakup of 238U projectiles using
the LISE++ code (Tarasov 2012). It is evident that most
fragments are neutron rich, many of them having been poorly
or never observed by using other techniques. For example,
intense beams of 238U at the new Radioactive Ion Beam Factory
in RIKEN made possible the production of 45 new medium-
mass neutron-rich nuclei in in-flight fission reactions (Ohnishi
et al 2010). The electromagnetic interaction between fast
nuclei allows the study of nuclear properties not accessible
via other techniques, also allowing for the production of new
isotopes which can further be studied in secondary beam
experiments.

6. Summary and conclusions

In this review, we have focused on three indirect techniques—
the ANC, THM and CD methods—that have been used
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extensively for determining reaction rates in nuclear
astrophysics. The theoretical description of the three
techniques has been presented and a review of the use of the
techniques with both stable and radioactive-ion beams has been
given. The techniques are now well established tools in nuclear
astrophysics.

As rare isotope beam facilities are developed around the
world, indirect methods will play a major role in determining
rates for reactions that occur on short-lived isotopes. The work
that has been done to date with rare-isotope beams represents
only the first steps in this effort. Beam intensities and beam
species will expand dramatically by the end of this decade
opening up many new opportunities to further utilize indirect
tools to learn about the nuclear reactions that drive the cosmos.
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Weizsäcker C F von 1937 Phys. Z. 38 176
Wen Q et al 2008 Phys. Rev. C 78 035805
Wieland O et al 2009 Phys. Rev. Lett. 102 092502
Wiescher M and Kettner K U 1982 Astrophys. J. 263 891
Wiescher M et al 1989 Astrophys. J. 343 352
Williams R D and Koonin S E 1981 Phys. Rev. C 23 2773
Winther A and Alder K 1979 Nucl. Phys. A 319 518
Xu H M et al 1994 Phys. Rev. Lett. 73 2027
Xu Y et al 2013 Nucl. Phys. A 918 61
Zadro M et al 1989 Phys. Rev. C 40 181
Zyskind J L and Parker P D 1979 Nucl. Phys. A 320 404

49

http://dx.doi.org/10.1016/0375-9474(70)90467-7
http://dx.doi.org/10.1086/526492
http://dx.doi.org/10.1103/PhysRevC.75.024601
http://dx.doi.org/10.1016/0092-640X(76)90007-3
http://dx.doi.org/10.1103/PhysRevC.83.034319 
http://dx.doi.org/10.1103/PhysRevC.71.058801 
http://dx.doi.org/10.1103/PhysRevC.80.025807
http://dx.doi.org/10.1103/PhysRevC.83.045801
http://dx.doi.org/10.1103/PhysRevC.87.025805
http://dx.doi.org/10.1016/S0370-2693(02)03016-2
http://dx.doi.org/10.1016/0168-9002(86)91256-8
http://dx.doi.org/10.1088/0954-3899/22/8/001
http://dx.doi.org/10.1007/BF01419081
http://dx.doi.org/10.1103/PhysRevC.21.2417
http://dx.doi.org/10.1103/PhysRevC.21.2436
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.030
http://dx.doi.org/10.1016/0375-9474(86)90351-9
http://dx.doi.org/10.1140/epja/i2006-08-034-5
http://dx.doi.org/10.1103/PhysRevLett.111.242503
http://dx.doi.org/10.1103/PhysRevLett.106.222501
http://dx.doi.org/10.1103/PhysRev.86.527
http://dx.doi.org/10.1016/0370-2693(94)90017-5
http://dx.doi.org/10.1016/0375-9474(87)90528-8 
http://dx.doi.org/10.1103/PhysRevLett.90.232501
http://dx.doi.org/10.1103/PhysRevC.73.015806 
http://dx.doi.org/10.1103/PhysRev.139.B818
http://dx.doi.org/10.1103/PhysRevC.82.032801
http://dx.doi.org/10.1070/PU1968v010n04ABEH003700
http://dx.doi.org/10.1016/0370-2693(95)00131-4
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132430
http://dx.doi.org/10.1103/PhysRevC.60.055802 
http://dx.doi.org/10.1103/PhysRevC.63.055801
http://dx.doi.org/10.1103/PhysRevC.69.055806 
http://dx.doi.org/10.1134/S1063778811110184
http://dx.doi.org/10.1086/313336
http://dx.doi.org/10.1007/s001140100267
http://dx.doi.org/10.1103/PhysRevC.78.011601 
http://dx.doi.org/10.1103/PhysRevC.78.069908 
http://dx.doi.org/10.1143/PTP.83.180
http://dx.doi.org/10.1103/PhysRevC.73.025808 
http://dx.doi.org/10.1103/PhysRevC.67.015804 
http://dx.doi.org/10.1103/PhysRevC.69.055807
http://dx.doi.org/10.1016/0167-7977(88)90005-6
http://dx.doi.org/10.1016/S0375-9474(98)00810-0
http://dx.doi.org/10.1103/PhysRevLett.91.232501 
http://dx.doi.org/10.1103/PhysRevC.84.054313 
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.035
http://dx.doi.org/10.1088/1742-6596/312/4/042025
http://dx.doi.org/10.1103/PhysRevC.58.2715
http://dx.doi.org/10.1103/PhysRevC.66.035801
http://dx.doi.org/10.1103/PhysRevC.67.062801
http://dx.doi.org/10.1103/PhysRevC.69.032802
http://dx.doi.org/10.1016/0168-9002(89)90215-5
http://dx.doi.org/10.1103/PhysRevC.67.065803 
http://dx.doi.org/10.1143/PTPS.154.341
http://dx.doi.org/10.1140/epjad/i2005-06-085-1
http://dx.doi.org/10.1140/epja/i2006-08-038-1
http://dx.doi.org/10.1103/PhysRevLett.98.252502
http://dx.doi.org/10.1103/PhysRevC.78.064001 
http://dx.doi.org/10.1016/j.physletb.2011.10.056
http://dx.doi.org/10.1103/PhysRevC.64.024601
http://dx.doi.org/10.1016/S0003-4916(03)00060-5
http://dx.doi.org/10.1016/0375-9474(71)90906-7
http://dx.doi.org/10.1016/0375-9474(94)90339-5
http://dx.doi.org/10.1103/PhysRevC.78.035805
http://dx.doi.org/10.1103/PhysRevLett.102.092502
http://dx.doi.org/10.1086/160558
http://dx.doi.org/10.1086/167709
http://dx.doi.org/10.1103/PhysRevC.23.2773
http://dx.doi.org/10.1016/0375-9474(79)90528-1
http://dx.doi.org/10.1103/PhysRevLett.73.2027
http://dx.doi.org/10.1016/j.nuclphysa.2013.09.007
http://dx.doi.org/10.1103/PhysRevC.40.181
http://dx.doi.org/10.1016/0375-9474(79)90197-0

	1. Introduction
	2. Theoretical considerations
	2.1. The ANC technique
	2.2. Introduction to the THM
	2.3. Coulomb excitation and dissociation

	3. ANCs---experimental considerations
	3.1. 16O(p,)17F as a test case
	3.2. ANCs from peripheral transfer reactions---additional tests
	3.3. Proton ANCs from transfer reactions with stable beams and targets
	3.4. Proton ANCs from transfer reactions with radioactive beams
	3.5. Proton ANCs determined from neutron ANCs in mirror symmetric reactions
	3.6.  ANCs from single nucleon removal reactions
	3.7.  ANCs and radiative widths in an R-matrix analysis for radiative capture

	4.  Applications of the THM
	4.1.  THM: from theory to experiments
	4.2.  THM experiment preparation
	4.3.  From the a+Ab+B+s cross section to the x+Ab+B one
	4.4.  Electron screening effects
	4.5.  Experimental THM applications to non-resonant reactions
	4.6.  THM applications to resonant reactions
	4.7.  Neutron-induced reactions: the 6Li(n,t)4He process

	5.  Experiments on CD in rare isotope facilities
	5.1. (a) Radiative capture
	5.2. (b) Pygmy resonances
	5.3. (c) Relativistic Coulomb fission

	6.  Summary and conclusions
	 Acknowledgments
	 References



