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Nuclear astrophysics from direct reactions

Carlos Bertulani∗

Department of Physics, Texas A&M University, Commerce, TX 75429, USA†

Accurate nuclear reaction rates are needed for primordial nucleosynthesis and hydrostatic burning
in stars. The relevant reactions are extremely difficult to measure directly in the laboratory at the
small astrophysical energies. In recent years direct reactions have been developed and applied to ex-
tract low-energy astrophysical S-factors. These methods require a combination of new experimental
techniques and theoretical efforts, which are the subject of this presentation.

PACS numbers: 24.50.+g,26.,25.60.-t

I. CHALLENGES IN NUCLEAR
ASTROPHYSICS

Ongoing studies in nuclear astrophysics are focused on
the opposite ends of the energy scale of nuclear reac-
tions: (a) very high and (b) very low relative energies
between nuclei. Projectiles with high bombarding ener-
gies produce nuclear matter at high densities and tem-
peratures. One expects that matter produced in central
nuclear collisions will undergo a phase transition and pro-
duce a quark-gluon plasma. One can thus reproduce con-
ditions existing in the first seconds of the universe and
also in the core of neutron stars. At the other end of are
the low energy reactions of importance for stellar evo-
lution. Chains of nuclear reactions lead to complicated
phenomena like nucleosynthesis, supernovae explosions,
and energy production in stars.

A. Nuclear reaction rates

Low energy nuclear astrophysics requires the knowl-
edge of the reaction rate Rij between the nuclei i and
j. It is given by Rij = ninj < σv > /(1 + δij), where
σ is the cross section, v is the relative velocity between
the reaction partners, ni is the number density of the nu-
clide i, and <> stands for energy average. Extrapolation
procedures are often needed to obtain cross sections in
the energy region of astrophysical relevance. While non-
resonant cross sections can be rather well extrapolated to
the low-energy region, the presence of continuum, or sub-
threshold resonances, complicates these extrapolations. I
will mention few famous examples.

In our Sun the reaction 7Be(p, γ)
8
B plays a major

role for the production of high energy neutrinos from
the β-decay of 8B. These neutrinos come directly from
the center of the Sun and are ideal probes of the sun’s
structure. John Bahcall frequently said that this was
the most important reaction in nuclear astrophysics [1].
Our knowledge about this reaction has improved con-
siderably due to new radioactive beam facilities. The
reaction 12C(α, γ)

16
O is extremely relevant for the fate

of massive stars. It determines if the remnant of a su-
pernova explosion becomes a black-hole or a neutron star
[2]. These two reactions are only two examples of a large
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number of reactions which are not yet known with the
accuracy needed in astrophysics.

Approximately half of all stable nuclei observed in na-
ture in the heavy element region, A > 60, are produced
in the r–process. This r–process occurs in environments
with large neutron densities which leads to neutron cap-
ture times much smaller than the beta-decay half–lives,
τn ≪ τβ . The most neutron–rich isotopes along the r–
process path have lifetimes of less than one second; typi-
cally 10−2 to 10−1 s. Cross sections for most of the nuclei
involved are hard to measure experimentally. Sometimes,
theoretical calculations of the capture cross sections as
well as the beta–decay half–lives are the only source of
input for r–process calculations.

B. Screening by electrons

Nucleosynthesis in stars is complicated by the presence
of electrons. They screen the nuclear charges, there-
fore increasing the fusion probability by reducing the
Coulomb repulsion. Evidently, the fusion cross sections
measured in the laboratory have to be corrected by the
electron screening when used in a stellar model. This is a
purely theoretical problem as one can not reproduce the
interior of stars in the laboratory.

A simpler screening mechanism occurs in laboratory
experiments due to the bound atomic electrons in the nu-
clear targets. This case has been studied in great details
experimentally, as one can control different charge states
of the projectile+target system in the laboratory [3, 4, 5].
The experimental findings disagree systematically by a
factor of two with theory. This is surprising as the theory
for atomic screening in the laboratory relies on our basic
knowledge of atomic physics. At very low energies one
can use the simple adiabatic model in which the atomic
electrons rapidly adjust their orbits to the relative motion
between the nuclei prior to the fusion process. Energy
conservation requires that the larger electronic binding
(due to a larger charge of the combined system) leads
to an increase of the relative motion between the nuclei,
thus increasing the fusion cross section. As a matter of
fact, this enhancement has been observed experimentally.
The measured values are however not compatible with
the adiabatic estimate [3, 4, 5]. Dynamical calculations
have been performed, but they obviously cannot explain
the discrepancy as they include atomic excitations and
ionizations which reduce the energy available for fusion.
Other small effects, like vacuum polarization, atomic and
nuclear polarizabilities, relativistic effects, etc., have also
been considered [6]. But the discrepancy between exper-
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iment and theory remains [5, 6].
A possible solution of the laboratory screening prob-

lem was proposed by Langanke, Bang, and collaborators
[7, 8]. Experimentalists often use the extrapolation of the
Andersen-Ziegler tables [9] to obtain the average value
of the projectile energy due to stopping in the target
material. The stopping is due to ionization, electron-
exchange, and other atomic mechanisms. However, the
extrapolation is challenged by theoretical calculations
which predict a lower stopping. Smaller stopping was
indeed verified experimentally [5]. At very low energies,
it is thought that the stopping mechanism is mainly due
to electron exchange between projectile and target. This
has been studied in ref. [10] in the simplest situation; pro-
ton+hydrogen collisions. The calculated stopping power
was added to the nuclear stopping power mechanism, i.e.
to the energy loss by the Coulomb repulsion between the
nuclei. The obtained stopping power is proportional to
vα, where v is the projectile velocity and α = 1.35. The
extrapolations from the Andersen-Ziegler table predict
a smaller value of α. Although this result seems to in-
dicate the stopping mechanism as a possible reason for
the laboratory screening problem, the theoretical calcu-
lations tend to disagree on the power of v at low energy
collisions [11].

Another calculation of the stopping power in atomic
He++He collisions using the two-center molecular orbital
basis was done in ref. [12]. The agreement with the
data from ref. [11] at low energies is excellent. The
agreement with the data disappears if nuclear recoil is
included. In fact, the unexpected “disappearance” of the
nuclear recoil was also observed in ref. [13]. This seems to
violate a basic principle of nature, as the nuclear recoil is
due to Coulomb repulsion between projectile and target
atoms [9].

II. DIRECT REACTIONS IN/FOR NUCLEAR
ASTROPHYSICS

In the previous section I have described a few examples
of typical problems in nuclear astrophysics. Now I discuss
how direct reactions have been used to attempt solving
part of these problems.

A. Elastic scattering and (p, p′) reactions

The use of internal proton gas targets is a standard
technique in radioactive beam facilities. Protons are a
very useful probe since their internal structure remains
unaffected during low energy collisions. Nuclear densities
are a basic input in theoretical calculations of astrophys-
ical reactions at low energies. These can be obtained in,
e.g., elastic proton scattering. Elastic scattering in high
energy collisions essentially measures the Fourier trans-
form of the matter distribution. Considering for sim-
plicity the one-dimensional case, for light nuclei one has
∫

eiqxρ(x)dx ∼
∫

eiqx[a2 + x2]−1 = (π/a).e−|q|a, where
q = 2k sin θ/2, for a c.m. momentum k, and a scatter-
ing angle θ. For heavy nuclei the density ρ is better de-
scribed by a Fermi function, and

∫

eiqx[1+e(x−R)/a]−1 ∼
(4π). sin qR.e−πqa, for R >> a, and qa >> 1. Thus,
the distance between minima in elastic scattering cross

sections measures the nuclear size, while its exponential
decay dependence reflects the surface diffuseness.

During the last years, elastic proton scattering has
been one of the major sources of information on the mat-
ter distribution of unstable nuclei in radioactive beam
facilities. The extended matter distribution of light-halo
nuclei (8He, 11Li, 11Be, etc.) was clearly identified in
elastic scattering experiments [14, 15]. Information on
the matter distribution of many nuclei important for the
nucleosynthesis in inhomogeneous Big Bang and in r-
processes scenarios could also be obtained in elastic scat-
tering experiments. Due to the loosely-bound character
and small excitation energies of many of these nuclei,
high energy resolution is often necessary.

In (p, p’) scattering one obtains information on the
excited states of the nuclei. For the same reason as in
the elastic scattering case, good accuracy can also be
achieved in (p, p’) reactions [16].

B. Transfer reactions

Transfer reactions A(a, b)B are effective when a mo-
mentum matching exists between the transferred parti-
cle and the internal particles in the nucleus. Thus, beam
energies should be in the range of a few 10 MeV per
nucleon [17]. Low energy reactions of astrophysical in-
terest can be extracted directly from breakup reactions
A+ a −→ b+ c+B by means of the Trojan Horse tech-
nique as proposed by Baur [18]. If the Fermi momen-
tum of the particle x inside a = (b + x) compensates
for the initial projectile velocity va, the low energy reac-
tion A + x = B + c is induced at very low (even vanish-
ing) relative energy between A and x. To show this, one
writes the DWBA cross section for the breakup reaction
as d3/dΩbdΩcdEb ∝ |∑lm Tlm(ka,kb,kc)SlxYlm(kc)|2,
where Tlm =< χ

(−)
b Ylmfl|Vbx|χ+

a φbx >. The threshold
behavior Ex for the breakup cross section σA+x→B+c =
(π/k2

x)
∑

l(2l + 1)|Slx|2 is well known: since |Slx| ∼
exp(−2πη), then σA+x→B+c ∼ (1/k2

x) exp(−2πη). In
addition to the threshold behavior of Slx, the breakup
cross section is also governed by the threshold behav-
ior of fl(r), which for r −→ ∞ is given by flx ∼
(kxr)

1/2 exp(πη) K2l+1(ξ), where Kl denotes the Bessel
function of the second kind of imaginary argument. The
quantity ξ is independent of kx and is given by ξ =
(8r/aB)1/2, where aB = ~

2/mZAZxe
2 is the Bohr length.

From this one obtains that (d3/dΩbdΩcdEb)(Ex → 0) ≈
const.. The coincidence cross section tends to a con-
stant which will in general be different from zero. This
is in striking contrast to the threshold behavior of the
two particle reaction A + x = B + c. The strong barrier
penetration effect on the charged particle reaction cross
section is canceled completely by the behavior of the fac-
tor Tlm for η → ∞. Basically, this technique extends the
method of transfer reactions to continuum states. very
successful results using this technique have been reported
by Spitaleri and collaborators [19].

Another transfer method, coined as Asymptotic

Normalization Coefficient (ANC) technique relies on
fact that the amplitude for the radiative capture
cross section b + x −→ a + γ is given by

M =< Ia
bx(rbx)|O(rbx)|ψ(+)

i (rbx) >, where Ia
bx =<
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φa(ξb, ξx, rbx)|φx(ξx)φb(ξb) > is the integration over the
internal coordinates ξb, and ξx, of b and x, respectively.
For low energies, the overlap integral Ia

bx is dominated
by contributions from large rbx. Thus, what matters for
the calculation of the matrix element M is the asymp-
totic value of Ia

bx ∼ Ca
bx W−ηa,1/2(2κbxrbx)/rbx, where

Ca
bx is the ANC and W is the Whittaker function. This

coefficient is the product of the spectroscopic factor and
a normalization constant which depends on the details
of the wave function in the interior part of the poten-
tial. Thus, Ca

bx is the only unknown factor needed to
calculate the direct capture cross section. These nor-
malization coefficients can be found from: 1) analysis
of classical nuclear reactions such as elastic scattering
[by extrapolation of the experimental scattering phase
shifts to the bound state pole in the energy plane], or
2) peripheral transfer reactions whose amplitudes con-
tain the same overlap function as the amplitude of the
corresponding astrophysical radiative capture cross sec-
tion. This method was proposed by Mukhamezhanov and
Timofeyuk [20] and has been used with success for many
reactions of astrophysical interest by Tribble and collab-
orators [21].

To illustrate this technique, let us consider the pro-
ton transfer reaction A(a, b)B, where a = b + p, B =
A + p. Using the asymptotic form of the overlap in-
tegral the DWBA cross section is given by dσ/dΩ =
∑

JBja
[(Ca

Ap)
2/β2

Ap][(C
a
bp)

2/β2
bp]σ̃ where σ̃ is the reduced

cross section not depending on the nuclear structure, βbp

(βAp) are the asymptotic normalization of the shell model
bound state proton wave functions in nucleus a(B) which
are related to the corresponding ANC’s of the overlap
function as (Ca

bp)2 = Sa
bpβ

2
bp. Here Sa

bp is the spectro-

scopic factor. Suppose the reaction A(a, b)B is periph-
eral. Then each of the bound state wave functions en-
tering σ̃ can be approximated by its asymptotic form
and σ̃ ∝ β2

Apβ
2
bp. Hence dσ/dΩ =

∑

ji
(Ca

Ap)
2(Ca

bp)2RBa

where RBa = σ̃/β2
Apβ

2
bp is independent of β2

Ap and β2
bp.

Thus for surface reactions the DWBA cross section is
actually parameterized in terms of the product of the
square of the ANC’s of the initial and the final nuclei
(Ca

Ap)
2(Ca

bp)2 rather than spectroscopic factors. This ef-
fectively removes the sensitivity in the extracted param-
eters to the internal structure of the nucleus.

One of the many advantages of using transfer reac-
tion techniques over direct measurements is to avoid the
treatment of the screening problem [19].

C. Intermediate energy Coulomb excitation

In low-energy collisions the theory of Coulomb excita-
tion is very well understood [22]. But a large number of
small corrections are necessary in order to analyze exper-
iments on multiple excitation and reorientation effects.
At the other end, the Coulomb excitation of relativistic
heavy ions is characterized by straight-line trajectories
with impact parameter b larger than the sum of the radii
of the two colliding nuclei, as shown by Winther and
Alder [23].

In first order perturbation theory, the Coulomb exci-

tation cross section is given by

dσi→f

dΩ
=

(

dσ

dΩ

)

el

16π2Z2
2e

2

~2

×
∑

πλµ

B(πλ, Ii → If )

(2λ+ 1)3
| S(πλ, µ) |2, (1)

where B(πλ, Ii → If ) is the reduced transition proba-
bility of the projectile nucleus, πλ = E1, E2, M1, . . . is
the multipolarity of the excitation, and µ = −λ,−λ +
1, . . . , λ.

The orbital integrals S(πλ, µ) contain the information
on the dynamics of the reaction [24]. Inclusion of ab-
sorption effects in S(πλ, µ) due to the imaginary part of
an optical nucleus-nucleus potential where worked out in
ref. [25]. These orbital integrals depend on the Lorentz
factor γ = (1−v2/c2)−1/2, with c being the speed of light,
on the multipolarity πλµ, and on the adiabacity param-
eter ξ(b) = ωfib/γv < 1, where ωfi = (Ef − Ei) /~ is
the excitation energy (in units of ~) and b is the impact
parameter.

Coulomb excitation in radioactive beam facilities are
typically performed at bombarding energies of 50-100
MeV/nucleon. It has been very successful to extract pre-
cious information of electromagnetic properties of nuclear
transitions of astrophysical interest [26]. But a reliable
extraction of useful nuclear properties from Coulomb ex-
citation experiments at intermediate energies requires a
proper treatment of special relativity [27]. The effect
is highly non-linear, i.e. a 10% increase in the veloc-
ity might lead to a 50% increase (or decrease) of certain
physical observables. A general review of the importance
of the relativistic dynamical effects in intermediate en-
ergy collisions has been the subject of debate in the lit-
erature [27, 28, 29].

D. The Coulomb dissociation method

The (differential, or angle integrated) Coulomb
breakup cross section for a + A −→ b + c + A follows
from eq. 1. It can be rewritten as

dσπλ
C (ω)

dΩ
= Fπλ(ω; θ;φ) . σπλ

γ+a → b+c(ω), (2)

where ω is the energy transferred from the relative mo-
tion to the breakup, and σπλ

γ+a → b+c(ω) is the photo nu-
clear cross section for the multipolarity πλ and photon
energy ω. The function Fπλ depends on ω, the rela-
tive motion energy, nuclear charges and radii, and the
scattering angle Ω = (θ, φ). Fπλ can be reliably calcu-
lated [24] for each multipolarity πλ. Time reversal al-
lows one to deduce the radiative capture cross section
b + c −→ a + γ from σπλ

γ+a → b+c(ω). This method was

proposed by Baur, Bertulani and Rebel, ref. [30]. It has
been tested successfully in a number of reactions of in-
terest for astrophysics. The most celebrated case is the
reaction 7Be(p, γ)8B, first studied by Motobayashi and
collaborators [31], followed by numerous experiments in
the last decade. A discussion of the results obtained with
the method is presented in ref. [32].

Eq. 2 is based on first-order perturbation theory. It
also assumes that the nuclear contribution to the breakup
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is small, or that it can be separated under certain ex-
perimental conditions. The contribution of the nuclear
breakup has been examined by several authors (see, e.g.
[25]). 8B has a small proton separation energy (≈ 140
keV). For such loosely-bound systems it had been shown
that multiple-step, or higher-order effects, are impor-
tant [33]. These effects occur by means of continuum-
continuum transitions. The role of higher multipolarities
(e.g., E2 contributions [34] in the reaction 7Be(p, γ)8B)
and the coupling to high-lying states has also to be in-
vestigated carefully.

E. Charge exchange reactions

During supernovae core collapse, temperatures and
densities are high enough to ensure that nuclear statis-
tical equilibrium is achieved. This means that for suf-
ficiently low entropies, the matter composition is domi-
nated by the nuclei with the highest binding energy for
a given Ye. Electron capture reduces Ye, driving the
nuclear composition to more neutron rich and heavier
nuclei, including those with N > 40, which dominate
the matter composition for densities larger than a few
1010 g cm−3. As a consequence of the model applied in
collapse simulations, electron capture on nuclei ceases at
these densities and the capture is entirely due to free pro-
tons. To understand the whole process it is necessary to
obtain Gamow-Teller matrix elements which are not ac-
cessible in beta-decay experiments. Many-body theoreti-
cal calculations are right now the only way to obtain the
required matrix elements. This situation can be remedied
experimentally by using charge-exchange reactions.

Charge exchange reactions induced in (p, n) reactions
are often used to obtain values of Gamow-Teller matrix
elements, B(GT ), which cannot be extracted from beta-
decay experiments. This approach relies on the similarity
in spin-isospin space of charge-exchange reactions and β-
decay operators. As a result of this similarity, the cross
section σ(p, n) at small momentum transfer q is closely
proportional to B(GT ) for strong transitions [35]. Tad-
deucci’s formula reads

dσ

dq
(q = 0) = KND|Jστ |2B(α), (3)

where K is a kinematical factor, ND is a distortion fac-
tor (accounting for initial and final state interactions),
Jστ is the Fourier transform of the effective nucleon-
nucleon interaction, and B(α = F,GT ) is the reduced
transition probability for non-spin-flip, B(F ) = (2Ji +

1)−1|〈f ||∑k τ
(±)
k ||i〉|2, and spin-flip, B(GT ) = (2Ji +

1)−1|〈f ||∑k σkτ
(±)
k ||i〉|2, transitions.

Taddeucci’s formula, valid for one-step processes, was
proven to work rather well for (p,n) reactions (with a few
exceptions). For heavy ion reactions the formula might
not work so well. This has been investigated in refs.
[36, 37]. In ref. [36] it was shown that multistep pro-
cesses involving the physical exchange of a proton and
a neutron can still play an important role up to bom-
barding energies of 100 MeV/nucleon. Refs. [37] use the
isospin terms of the effective interaction to show that de-
viations from the Taddeucci formula are common under
many circumstances. As shown in ref. [38], for impor-
tant GT transitions whose strength are a small fraction

of the sum rule the direct relationship between σ(p, n)
and B(GT ) values also fails to exist. Similar discrepan-
cies have been observed [39] for reactions on some odd-A
nuclei including 13C, 15N, 35Cl, and 39K and for charge-
exchange induced by heavy ions [40]. It is still an open
question if Taddeucci’s formula is valid in general.

Undoubtedly, charge-exchange reactions such as (p,n),
(3He,t) and heavy-ion reactions (A,A±1) can provide in-
formation on the B(F ) and B(GT ) values needed for
astrophysical purposes. This is one of the major research
areas in radioactive beam facilities and has been used
successfully by Austin, Zegers, and collaborators [41].

F. Knock-out reactions

Exotic nuclei are the raw materials for the synthesis
of the heavier elements in the Universe, and are of con-
siderable importance in nuclear astrophysics. Modern
shell-model calculations are now able to include the ef-
fects of residual interactions between pairs of nucleons,
using forces that reproduce the measured masses, charge
radii and low-lying excited states of a large number of
nuclei. For very exotic nuclei the small additional stabil-
ity that comes with the filling of a particular orbital can
have profound effects upon their existence as bound sys-
tems, their lifetimes and structures. Thus, verifications
of the ordering, spacing and the occupancy of orbitals
are essential in assessing how exotic nuclei evolve in the
presence of large neutron or proton imbalance and our
ability to predict these theoretically. Such spectroscopy
of the states of individual nucleons in short-lived nuclei
uses direct nuclear reactions.

Single-nucleon knockout reactions with heavy ions, at
intermediate energies and in inverse kinematics, have be-
come a specific and quantitative tool for studying single-
particle occupancies and correlation effects in the nu-
clear shell model, as described by Hansen and Tostevin

[42, 43]. The experiments observe reactions in which fast,
mass A, projectiles collide peripherally with a light nu-
clear target producing residues with mass (A − 1) [43].
The final state of the target and that of the struck nu-
cleon are not observed, but instead the energy of the
final state of the residue can be identified by measuring
coincidences with decay gamma-rays emitted in flight.

New experimental approaches based on knockout re-
actions have been developed and shown to reduce the
uncertainties in astrophysical rapid proton capture (rp)
process calculations due to nuclear data. This approach
utilizes neutron removal from a radioactive ion beam to
populate the nuclear states of interest. In the first case
studied by Schatz and collaborators [44], 33Ar, excited
states were measured with uncertainties of several keV.
The 2 orders of magnitude improvement in the uncer-
tainty of the level energies resulted in a 3 orders of mag-
nitude improvement in the uncertainty of the calculated
32Cl(p,γ)33Ar rate that is critical to the modeling of the
rp process. This approach has the potential to measure
key properties of almost all interesting nuclei on the rp-
process path.
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III. RECONCILING NUCLEAR STRUCTURE
WITH NUCLEAR REACTIONS

Many reactions of interest for nuclear astrophysics in-
volve nuclei close to the dripline. To describe these reac-
tions, a knowledge of the structure in the continuum is
a crucial feature. Recent works [45, 46] are paving the
way toward a microscopic understanding of the many-
body continuum. A basic theoretical question is to what
extent we know the form of the effective interactions for
threshold states. It is also hopeless that these methods
can be accurate in describing high-lying states in the con-
tinuum. In particular, it is not worthwhile to pursue this
approach to describe direct nuclear reactions.

A less ambitious goal can be achieved in the coming
years by using the Resonating Group Method (RGM) or
the Generator Coordinate Method (GCM). These form a
set of coupled integro-differential equations of the form

∑

α′

∫

d3r′
[

HAB
αα′ (r, r′) − ENAB

αα′ (r, r′)
]

gα′(r′) = 0, (4)

where HAB
αα′ (r, r′) = 〈ΨA(α, r)|H |ΨB(α′, r′)〉 and

NAB
αα′ (r, r′) = 〈ΨA(α, r)|ΨB(α′, r′)〉. In these equations

H is the Hamiltonian for the system of two nuclei (A
and B) with the energy E, ΨA,B is the wavefunction of
nucleus A (and B), and gα(r) is a function to be found by
numerical solution of eq. 4, which describes the relative
motion of A and B in channel α. Full antisymmetriza-
tion between nucleons of A and B are implicit. Modern
nuclear shell-model calculations, including the No-Core-
Shell-Model (NCSM) are able to provide the wavefunc-
tions ΨA,B for light nuclei. But the Hamiltonian involves
an effective interaction in the continuum between the
clusters A and B. It is very hard, if not impossible, to
obtain this effective interaction within microscopic mod-
els. Old tools, such as parameterized phenomenological
interactions (e.g. M3Y [47]) are still the only way to ac-
cess effective interaction for high energy nucleus-nucleus
scattering.

Overlap integrals of the type IAa(r) = 〈ΨA−a|ΨA〉
for bound states has been calculated by Navratil [48]
within the NCSM. This is one of the inputs neces-
sary to calculate S-factors for radiative capture, Sα ∼
|〈gα|HEM |IAa〉|2, where HEM is a corresponding electro-
magnetic operator. The left-hand side of this equation is
to be obtained by solving eq. 4. For some cases, in par-
ticular for the p+7Be reaction, the distortion caused by
the microscopic structure of the cluster does not seem to
be crucial to obtain the wavefunction in the continuum.
The wavefunction is often obtained by means of a poten-
tial model. The NCSM overlap integrals, IAa, can also be
corrected to reproduce the right asymptotics [49], given
by IAa(r) ∝ W−η,l+1/2(2k0r), where η is the Sommer-

feld parameter, l the angular momentum, k0 =
√

2µE0/~
with µ the reduced mass and E0 the separation energy.

A step in the direction of reconciling structure and re-
actions for the practical purpose of obtaining astrophys-
ical S-factors, along the lines described in the previous
paragraph, was obtained in ref. [49, 50]. The wavefunc-
tions obtained in this way were shown to reproduce very

well the momentum distributions in knockout reactions
of the type 8B+A −→ 7Be+X obtained in experiments
at MSU and GSI facilities. The astrophysical S-factor for
the reaction 7Be(p, γ)8B was also calculated and excel-
lent agreement was found with the experimental data in
both direct and indirect measurements [49, 50]. The low-
and high-energy slopes of the S-factor obtained with the
NCSM is well described by the fit

S17(E) = (22.109 eV.b)
1 + 5.30E + 1.65E2 + 0.857E3

1 + E/0.1375
,

(5)
where E is the relative energy (in MeV) of p+7Be in their
center-of-mass. This equation corresponds to a Padé ap-
proximation of the S-factor. A subthreshold pole due to
the binding energy of 8B is responsible for the denomi-
nator [51, 52].

IV. PERSPECTIVES

Extremely exciting experimental results on direct reac-
tions in/for nuclear astrophysics will be produced in the
future. New radioactive beam facilities are under con-
struction around the world. Among the several proposed
experiments, there are the R3B and the ELISE projects,
both at the future FAIR facility in GSI. The first project
will use radioactive beams and direct reactions to obtain
the nuclear physics input for astrophysics. The ELISE
experiment setup will use electrons scattered off radioac-
tive nuclei. These experiments will explore an unknown
world of studies with nuclei far from stability which play
an important role in our universe.

It was shown [53] that for the conditions attained in the
electron-ion collider mode, the electron scattering cross
sections are directly proportional to photonuclear pro-
cesses with real photons. This proportionality is lost
when larger scattering angles, and larger ratio of the
excitation energy to the electron energy, Eγ/E, are in-
volved. One of the important issues to be studied in
future electron-ion colliders is the nuclear response at
low energies. This response can be modeled in two ways:
by a (a) direct breakup and by a (a) collective excita-
tion. In the case of direct breakup the response function
will depend quite strongly on the final-state interaction
[53]. This may become a very useful technique to obtain
phase shifts, or effective-range expansion parameters, of
fragments far from the stability line.

The electromagnetic response of light nuclei, leading
to their dissociation, has a direct connection with the
nuclear physics needed in several astrophysical sites. In
fact, it has been shown [54] that the existence of pygmy
resonances have important implications on theoretical
predictions of radiative neutron capture rates in the r-
process nucleosynthesis and consequently on the calcu-
lated elemental abundance distribution in the universe.

The US needs urgently a new radioactive beam fa-
cility, fully dedicated to the physics of radioactive nu-
clei. Without competing facilities worldwide, observa-
tional and theoretical astrophysics will never be able to
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constrain numerous models used to understand our uni-
verse.
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