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Theory and Applications of Coulomb Excitation

Carlos Bertulani]
Texas A& M University-Commerce, Commerce, TX 75429, USA

Because the interaction is well-known, Coulomb excitation is one of the best tools for the investi-
gation of nuclear properties. In the last 3 decades new reaction theories for Coulomb excitation have
been developed such as: (a) relativistic Coulomb excitation, (b) Coulomb excitation at intermediate
energies, and (c) multistep coupling in the continuum. These developments are timely with the
advent of rare isotope facilities. Of special interest is the Coulomb excitation and dissociation of
weakly-bound systems. I review the Coulomb excitation theory, from low to relativistic collision
energies. Several applications of the theory to situations of interest in nuclear physics and nuclear

astrophysics are discussed.

Lecture notes presented at the 8th CNS-EFES Summer
School, held at Center for Nuclear Study (CNS), the Uni-
versity of Tokyo, and at the RIKEN Wako Campus, August
26 - September 1, 2009. Supported by the Japan-US Theory
Institute for Physics with Exotic Nuclei (JUSTIPEN).

“I don’t know what they have to say,
It makes no difference anyway —
Whatever it is, I'm against it! ” - Groucho Marx
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I. WHAT IS COULOMB EXCITATION?

Coulomb excitation is a process of inelastic scattering
in which a charged particle transmits energy to the nu-
cleus through the electromagnetic field. This process can
happen at a much lower energy than the necessary for
the particle to overcome the Coulomb barrier; the nu-
clear force is, in this way, excluded in the process.

Let v be the relative velocity of two nuclei at in-
finity which determines the energy of relative motion
E = mwv?/2 where m is the reduced mass. The strength
of Coulomb interaction can be measured by the Sommer-
feld parameter

N Z1Z262
T

n 1)
where Z; 5 are charges of the nuclei. For Z;Z5 > 137, or
v < ¢, the parameter can easily reach values n > 1.

This situation allows for the use of the semiclassical
approximation: the Coulomb interaction is taken into
account exactly in determining the classical Rutherford
trajectory of relative motion R(¢) where R is the distance
between the centers of the colliding nuclei, Fig. The
relative energy F is assumed to be large enough so that
we can neglect the feedback from the intrinsic excitations
to relative motion. Then the trajectory is fixed by energy
and impact parameter or deflection angle.

FIG. 1: Coulomb excitation occurs when a charged projectile
passes by a target nucleus along a Rutherford trajectory. The
coordinates used in text are shown.

The classical distance of closest approach,

2Z1Z2€2
a=2a0)=————

(2)

is larger than R; + Ry at relative energy lower than the
Coulomb barrier

mu?

Zl 2262
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The excitation is generated by the time-dependent field
and the probability of the process is determined by the
presence in this field of Fourier harmonics with the exci-
tation frequencies
E; - FE;
w = ——— 4
- 4
If the motion is too slow, the field acts adiabatically,
the intrinsic wave function is changing reversibly and the
probability of excitation is low. The corresponding adi-
abaticity parameter is the ratio ¢ of the time scales for
the Coulomb collision, ~ ag/v, and for the nuclear exci-
tation, ~ 1/w:
wao

(=0, (5)
When ¢ > 1, the situation is adiabatic and transition
probabilities are small.

The simplest treatment that one can give to the prob-
lem is a semi-classical calculation, where the incident par-
ticle describes a well defined trajectory, which is a classic
hyperbolic trajectory of Rutherford scattering (see fig-
ure . It has been proven that this treatment is valid
in almost all situations studied in Coulomb excitation at
low energies [AW75]. For high energy collisions, because
the nuclear interaction distorts the scattering waves ap-
preciably, a quantum treatment might be necessary for
some observables, e.g. angular distributions [BN93]. For-
tunately, at high energies, one can use the eikonal approx-
imation for the scattering waves, which simplifies enor-
mously the calculations.



The fundamental review paper [Ald56] contains a great
deal of information on the subject and even now does not
look obsolete, 40 years after its publication. However,
in the last decades collisions between relativistic nuclei,
with energies Ejqp > 50 MeV /nucleon, have become a
main tool of investigation in nuclear physics, in particu-
lar for the study of nuclei far from the stability. Many
new aspects of Coulomb excitation theory, such as the
inclusion of transitions in/into the continuum, have been
developed in the last two decades. It is thus timely to
discuss the theory of Coulomb excitation from low to rel-
ativistic energies. These notes, far from being complete,
reviews the main aspects of the theory of Coulomb exci-
tation. As the reader will notice, very little is said about
the nuclear interaction as I want to emphasize the role of
the Coulomb interaction in the excitation process. Also,
nuclear structure and nuclear excitation models are dis-
cussed only schematically and focused mainly on collec-
tive properties, such as the giant and pigmy resonances.

The readers are encouraged to study the Appendix sec-
tion, where many basic quantum mechanics tools are dis-
cussed. These tools will be used throughout the text.

Beforehand, I would like to thank the JUSTIPEN
(Japan-USA Theory Institute for Physics with Exotic
Nuclei) for the financial support. Special thanks to Taka-
haru Otsuka, Takashi Nakatsukasa and Naoyuki Itagaki
for the invitation to participate in this school and for
hosting my visit to Japan.

II. INTERACTION OF PHOTONS WITH
MATTER

A. Electrostatic multipoles

Electromagnetic multipoles appear in classical field
theory as a result of the multipole expansion of the fields
created by a finite system of charges and currents. We
start with the system of point-like classical particles with
electric charges e; located at the points r;.

The electrostatic potential of this system measured at
the point r is given by the Coulomb law,

D=3 (6)

The function
1 1
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depends on the lengths 7,7’ of two vectors and the angle
~v between them rather than on the angles of the vec-
tors r and r’ separately. If r # r’, this function has no
singularities and can be expressed with the aid of the
expansion over the infinite set of Legendre polynomials
with the coefficients depending on r and r’,

(7)

v —r/| 2rr! cosy

Z Pr(cosy) fu(r,r'). (®)

Ir*r’l

Using the notations r~ and r~ for the smaller and the
greater r and r’, one can show that the expansion
takes the form

Z masts

The applications of the multipole expansion usually
consider the potential @ outside the system, i.e. at the
point r with » > 7;. Then we can use the expansion @[)
and the addition theorem

47T * /
m %: Yo ()Y (n'), (10)

\r — r’| L (cos ). (9)

Pp(cosy) =

where n (n') is the direction of r (r’). With that we get
4 1
V) =D p o
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Here the electric multipole moment of rank L, L =
0,1, ..., is defined for a system of point-like charges i =
., A as aset of (2L + 1) quantities

= Z eirE Yo (ng),

%

Yy (m)M(EL,M).  (11)

M(EL, M) M=—-L—L+1,...,+L,

(12)
where the sum runs over all charges e; located at r; =
(ri,0;, i) = (r4,1n;). Exactly in the same way one can
define, instead of the charge distribution, multipole mo-
ments for any other property of the particles, for example
for the mass distribution, e; — p;.

In quantum theory, multipole moments are to be con-
sidered as operators acting on the variables of the par-
ticles. Containing explicitly the spherical functions, the
operator M(EL, M) has the necessary features of the
tensor operator of rank L. Introducing the charge den-

sity operator
— Y e —y), (13)
i
we come to a more general form of the multipole moment,

M(EL,M) = /d?’rp(r)rLYLM(n), n= ; (14)
In this form we even do not need to make an assumption
of existence of point-like constituents in the system; for
example, in the nucleus charged pions and other medi-
ators of nuclear forces are included here along with the
nucleons if p(r) is the total operator of electric charge
density. As expected, we can separate the geometry of
multipole operators from their dynamical origin.
The lowest multipole moment L = 0 is the monopole
one. It determines the scalar part, the total electric

charge Ze,
M(EO0,0) / d®r p(r)
Var

—Ze

O

(15)



The next term, L = 1, defines the vector of the dipole
moment

d= Zeiri = /d3r p(r)r. (16)

Taking into account the relation between the vectors and
the spherical functions of rank L = 1, we obtain

M(E1,M) = \/EZeiri(ni)M = \/EdM. (17)

Subsequent terms of the multipole expansion deter-
mine the quadrupole (L = 2), octupole (L = 3), hex-
adecapole (L = 4), and higher moments.

In a similar way one can define magnetic multipoles
M(ML, M) related to the distribution of currents. The
convection current due to orbital motion and the magne-
tization current generated by the spin magnetic moments
determine corresponding contributions to the magnetic
multipole moment of rank L,

ML) = (g5 + Liﬂgfli) V(i)

1

(18)
Here s; and 1; stand for the spin and orbital angular
momentum of a particle i, respectively; g; and g are
corresponding gyromagnetic ratios. (In this section, we
measure all angular momenta in units of & and the gyro-

magnetic ratios in the magnetons efi/(2m;c)).
The expression vanishes for L = 0 demonstrating
the absence of magnetic monopoles. At L = 1, we come
to the spherical components s of the magnetic moment

H,
M lalﬂ - V 1 M, 19

= (gisi+ ). (20)

3

Higher terms determine magnetic quadrupole, L = 2,
magnetic octupole, L = 3, and so on.

B. Real photons
1. Radiative decay

The probability for the radiative (by emission of a pho-
ton) transition for a nuclear transition i — f integrated
over angles of the emitted photon and summed over its
polarizations involves the same electromagnetic matrix
elements as discussed above. We will not derive the equa-
tions but only quote the results for the the probability

for radiative decay [Ald56]:

8n(L+1)
L[L+1)IPR"

x Z{)(M(EL,M))JC. ’

LM ’

_ 2L+1

)

(21)
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where k = w/¢, and the multipole matrix elements for
electric and magnetic transitions are expressed via the
current operator j(r),

M(ML, M) = /d3r(j )P, (22)

10
M(EL, M) = /d%[(v )55 = w(r3)| @oar, (28)
1 = —i[r x V] is the orbital momentum operator and the
function @, arises from the partial wave expansion of
the plane wave,

2L+ D! 1
bow = i i), (2
where ji(kr) are spherical Bessel functions. Of course,
for a given pair of states f,7 and a given multipolarity L,
only one term, either electric or magnetic, in works
if parity is conserved.

An important practical case is connected to the long
wavelength radiation: A ~ 1/k > R where R is a size
of the system. In nuclei R ~ 1.2 A3 fm so that the
condition

KR < 1 (25)

is equivalent to hw < 165A4~'/3 MeV which is usu-
ally fulfilled. In the long wavelength approximation, we
can use the limiting values of spherical Bessel functions
jr(x) ~ /(2L + 1)!! at small arguments z. Then the
magnetic multipoles become

1

_m/d3r(j(r)-i)7"LYLM(n) (26)

One can show that for the orbital current in Eq. ([18]), this
expression coincides with the orbital part of the static
magnetic moment [EG88]. The presence of spin implies
magnetization currents. In macroscopic electrodynamics
such a current is ¢[V xm] where m stands for the magne-
tization density. The analogous quantity for a quantum
particle is

M(ML, M) =

m(r) = Zgis&(r —rg). (27)
The induced spin current is

Jopin =€ g3V X 8a]6(r — 14). (28)



Being substituted into , this current reproduces the
spin part of static magnetic multipoles as in .

In the long wavelength limit, the second term of the
electric multipole is smaller by a factor (kR)? than
the first one. In the first term V - j reduces to the time
derivative of the charge density p°® with the aid of the
continuity equation,

V i+ 0p ot = 0. (29)

This time derivative can be expressed through the differ-
ence of energies between the initial and final states gives
hwy. Performing the expansion of the spherical Bessel
functions we come to

M(EL, M) = /d?’rpCh(r)rLYLM(n) (30)

which is a standard definition of the electric multipoles.

Usually the angular momentum projection My of the
final state is not measured. Then we have to sum the
transition rate over all M defining the reduced transition
probability

B(EL;i — f) =

Z’( ELM)“Q. (31)

MM

According to the Wigner-Eckart theorem [BM75], the en-
tire dependence of the matrix element on the magnetic
quantum numbers is concentrated in the Clebsch-Gordan
coeflicients of vector addition. Using instead the Wigner
3j-symbols, we have for any tensor operator T s

(JM¢| T | JiM;) =

()i, @)

where the reduced matrix element (f||7}||¢) does not de-
pend on projections. We can use the orthogonality of the
vector coupling coefficients and perform the summation
over M and Mjy.

The reduced transition probability is then related to
the reduced matrix element of the multipole operator,

1

2
2J; + 1 (fIMEL)[3)] - (33)

B(EL;i — f) =

This quantity is convenient because it does not depend
on the initial population of various projections M;. Note
that for the inverse transition induced by the same oper-
ator, the detailed balance relation is valid,

2J;+1
2Jy+1

B(EL; f — i) = B(EL;i — f). (34)

The reduced transition probability determines the par-
tial lifetime of a given initial state with respect to a spe-
cific radiative decay (all My summed up),

8m L+1 2L+1 -
= —_ B(EL; .

(35)

Here the kinematic factors are singled out. They are
associated with the geometry and phase space volume
of the emitted photon. Information concerning structure
of the radiating system is accumulated in the reduced
transition probability. With the substitution EL—ML,
the same expressions are valid for magnetic multipoles.

Classically, the electromagnetic radiation emitted by a
system is the result of the variation in time of the charge
density or of the distribution of charge currents in the
system. The energy is emitted in two types of multipole
radiation: the electric and the magnetic. Each one of
them is expressed as function of the corresponding mul-
tipole moments, being the quantities which contain the
variables (charge and current) of the system. If the wave-
length of the emitted radiation is long in comparison to
the dimensions of the system (which is valid for a -ray of
< 10 MeV energy) the power emitted by each multipole
is given by ([Ja75], chap.16):

Po(LM) = 8n(L+1)c (w

2L+42 )
T () MELADE (36)

c
for electric multipole radiation and

87(L+1)c

Pl = Trar e

(%)ZL+2 IM(ML, M)|2.

(37)

In quantum mechanics, the energy is not emitted con-
tinually but in packets of energy hw. In a quantum calcu-
lation the disintegration constant is the same as the num-
ber of quanta emitted per unit of time when the power
is given by the classical expressions and . Thus,

Pg(LM)
hw
8r(L+1)

wA 2L+1
= RL[2L + D12 (Z) IM(EL: M)

Ap(LM) =

(38)
and

Am(LM) = w

_ 8n(L+1) (w

2L+1 )
~ RL[2L+ DI Z) | M(M, LM)|".

(39)

The decaying nucleus should also be treated as a quan-
tum system. In this sense, the expressions for the mul-
tipole moments M(FEL, M) and M(ML, M) continue to
have validity if we use for the charge and current densities
the quantum expressions

pri(r) = ‘I’?(I‘)‘I’i(r)v (40)
i) = o (V) — (VU] ()

where the argument 4 (f) denotes the initial (final) state
described by the wavefunction ¥; (¥¢). Equations



and refer to a single nucleon with mass m that emits
radiation in its passage from the state i to the state f.
Thus, a sum over all the protons should be incorporated
to the result, when we do the substitution of egs. (40
and in eqs. and ([Ja75], chap. 16).

Not only are the values of the magnetic multipole mo-
ments are small in comparison to the electric moments of
same order, but also the transition probability decreases
quickly with increasing L, restricting the multipole or-
ders that give significant contribution. To show this, it is
sufficient to observe that the product (w/c)* M(EL, M)
in is at most equal to Ze(wR/c)L, where R is the
radius of the nucleus. For the energy that we consider,
wR/c is very small implying that, for the larger powers of
L, the disintegration constant is also very small. These
facts imply, in principle, that the electric dipole is always
the dominant radiation. But the selection rules that we
will see next can modify this situation.

2. Selection Rules

The conservation of angular momentum and parity can
prohibit certain v transitions between two states. The
selection rules for the ~v-radiation are easy to establish if
we accept the fact that a quantum of radiation carries
an angular momentum L of module y/L(L+ 1)k and
component z equal to Mh, where L is the multipolar
order. Thus, in transition between an initial spin I; and
a final spin Iy the conservation of angular momentum
imposes I; = Iy + L and, in this way, the possible values
for the multipole order L should obey

‘Ii—lf|§l§.[i+lf, (42)

where |I;| = /I;(I; + 1) A, etc. A special case is the
transition 0 — 07: as multipole radiation of order zero,
these transitions do not exist and they are effectively im-
possible through the emission of a y-ray. But in this case
a process of internal conversion can happen, where the
energy is released by the ejection of an atomic electron.

Transitions between states of same parity can only be
accomplished by electric multipole radiation of even num-
ber or by magnetic radiation of odd number. The inverse
is valid for transitions where there is parity change. Why
this happens can be understood examining the definitions
of the multipole moments. The functions that compose
the integrand have definite parity and it is necessary that
the integrand has even parity, otherwise the contribution
in r cancels with the contribution in —r and the integral
over the whole space vanishes. Let us look at the case
of Eq. (30): 7 is always positive and the spherical har-
monic Y7 (6, ¢) is even if L is even. For Eq. to be
non-zero, ¥; should have the same parity of ¥ ; for L even
and opposite parity for L odd. This justifies the transi-
tion rule for the electric multipole radiation. A similar
procedure applied to Eq. justifies the selection rules
for the magnetic multipole radiation.

Ui = Ri(r)Y;"(6,9)

1=0 Uy = Ry(r)/Van

FIG. 2: De-excitation of a proton to a level with L = 0.

Let us take an example: if the initial state is a 37 and
the final a 27, the possible values of L will be 1, 2, 3, 4
and 5. But the change of parity restricts the transitions
to E1, M2, E3, M4 and E5, where E1 symbolizes an
electric dipole transition (L = 1), etc.

3. Estimate of the Disintegration Constants

The use of Eq. and for the calculation of the
transition probabilities in a real nucleus has the difficulty
that wavefunctions that appear in eqs. (40) and are
not known. But, a prediction of their order of magnitude
for the several modes can be done by assuming a single
proton decaying from an excited state described by the
wavefunction ¥; to a final state f with L = 0. as shown
in figure

For an approximate calculation it is enough to do:

R;(r) = const. = R; (r < R),
Ri(r)=0 (r>R) (43)

and to use the same approach for R;(r). The normaliza-
tion yields immediately the values for the constants R;
and Rj:

Ri=R; = 5 (44)
where R is the nuclear radius. In this way, it is

not difficult to calculate the electric multipole moment
M(EL,M):

. 3 YM0, 6
M(EL,M) = e/rLYLM (9,¢)R3L\/(H)r2 dr d9,
(45)
which yields
L
M(EL, M) = —¢E (46)

Var(L+3)

Thus, in this approximation, the disintegration constant

in Eq. is

o 2(L+1) 3 2{ & 2L+1R2L
ETLIeL+ )2 \L+3) h \ he ’
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FIG. 3: Distribution of the ratio between the experimental

and theoretical disintegration constants for transitions of the
E1 and E2 type [Sk66].

where we wrote explicitly the disintegration energy E., =
hw. A similar calculation for the magnetic disintegration
constant in Eq. yields

N 20T+ 1) 3\ e (B,
M LReL+ )2 \L+3) h \ hc

2
« g2 (D (48)
mcR ) ’

where m is the mass of a nucleon. For a typical nucleus
of intermediate mass of A = 120, it is easy to see that
Ap/Au = 100, independently of the multipolar order
L. Evidently, both constants decrease rapidly when the

value of L increases.

Disagreements of several orders of magnitude between
the result of the calculation above and the corresponding
experimental values can happen. In particular, if the ex-
perimental disintegration rates are smaller than the ones
predicted by egs. and , that can mean that Eq.
is not very reasonable and that the small intercep-
tion of the wavefunctions ¥; and ¥ decrease the values
of A. Experimental values higher than predicted by egs.
and can mean, on the other hand, that the tran-
sition involves the participation of more than one nucleon
or even a collective participation of the whole nucleus.

Figures [3 and [ illustrate the two situations: in figure
[3]the experimental values of \ for transitions of E1 multi-
polarity are orders of magnitude smaller than that calcu-
lated from Eq. . The opposite happens with the E2
multipolarity where in most cases the experimental rate
is larger than calculated; this is due to the fact that E2
transitions are common among levels of collective bands,
especially rotational bands in deformed nuclei. In fig-
ure [ on the other hand, what one notices is very good
agreement between theoretical values and experimental
ones for M4. This behavior is typical of transitions of
high multipolarity.

III. LOW ENERGY COLLISIONS

Coulomb excitation involves the same nuclear matrix
elements as in radiative decay, but with different phase
space factors. The reason is that Coulomb excitation is
a process in which the excitation occurs when nuclei are
outside their mutual charge distributions. Therefore, the
Maxwell equation V - E = 0 applies for the electric field
inducing the transition. This means that only transverse
photons fields, the same as for real photons, appear in
Coulomb excitation [EG88]. In this section, we will prove
this statement, and we will describe the semiclassical the-
ory of Coulomb excitation for low energy collisions.

A. Central collisions

According to Eq. of the Appendix C, the proba-
bility of exciting the nucleus to a state f above the ground
state ¢ is

o

aif = _ﬁ

with w = (Ey — E;)/h, is the probability amplitude that
there will be a transition ¢« — f. The matrix element

Vipetdt, (49)

‘/if = /\IJ}V\I/Z dr (50)

contains a potential V' of interaction of the incident par-
ticle with the nucleus. The square of a;; measures the
transition probability from ¢ to f and this probability
should be integrated along the trajectory.

A simple calculation can be done in the case of the ex-
citation of the ground state J = 0 of a deformed nucleus
to an excited state with J = 2 as a result of a frontal
collision with scattering angle of § = 180°. The pertur-
bation V' comes, in this case, from the interaction of the
charge Zpe of the projectile with the quadrupole moment
of the target nucleus. This quadrupole moment should
work as an operator that acts between the initial and
final states. The way of adapting is writing

1 Zp€2Q¢f

V= ,
2 73

(51)
with

Qif = Z / U5 (327 — r}) W, dr, (52)

where the sum extends to all protons. The excitation

amplitude is then written as

A 2 s wt
a,-f:LQf/e dt. (53)

2ih r3

At an scattering of § = 180° a relationship exists be-
tween the separation r, the velocity v, the initial velocity
vo and the distance of closest approach a = 2ag:

v=T 1y (1—%)1/2, (54)
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FIG. 4: T(hatf—tife) > RS (R= nuclear radius, ¢ = 1) as a
function of the energy of the ~-ray for a series of transitions of
the M4 type. One sees good agreement between the theoretical
estimate (straight line) and the experimental data [GS51].

which is obtained easily from the conservation of energy.
Besides, if the excitation energy is small, we can assume
that the factor e™* in does not vary much during
the time that the projectile is close to the nucleus. Thus,
this factor can be placed outside the integral and it does
not contribute to the cross section. One gets

dr
dE e

The integral is solved easily by the substitution v =1 —
a/r, in what results

47,e*Q; 4Q; ¢ E?
ay = 2y _AQUE g
3ihvga? 3Zpe2hwoZ7
where the conservation of energy, E = %movg =

ZpZTe2/a was used, with mg being the reduced mass of
the projectile+target system and Zp the atomic number
of the target. The differential cross section is given by
the product of the Rutherford differential cross section at
180° and the excitation probability along the trajectory,
measured by the square of a;y:

do
dQ)

dO’R 2
= —5 lo=1800 X |aif|". (57)
6=180° dQ

The Rutherford differential cross section is the classic

expression
dop [ ZyZpe*\? . _, (0
diQ = <4E ) Sin 5 (58)

and, at # = 180°, we obtain

do

do _ moE|Qis|?
ds?

180222

0=180°

an expression that is independent of the charge of the pro-
jectile. Tt is, on the other hand, proportional to the mass
of the projectile, indicating that heavy ions are more ef-
fective for Coulomb excitation.

The quadrupole moment operator (); uses, as we saw,
the wavefunctions ¥; and Wy of the initial and final
states. If those two wavefunctions are similar, as is the
case of an excitation to the first level of a rotational
band, the operator @;; can be replaced by the intrinsic
quadrupole moment ). The expression translates,
in this way, the possibility to evaluate the quadrupole
moment from a measurement of a value of the cross sec-
tion.

B. Electric excitations

The interaction hamiltonian responsible for the excita-
tion processes in the nonrelativistic case can be written
as

- /d3r1d3r2 pi"(r1 — Ra)p§"(rs —Ra)  Z1Zo¢
ry — 1o R(t)

(60)
where charge densities of unperturbed nuclei depend
on the distances from the corresponding centers. We
subtracted the interaction between nuclei as a whole
which determines the trajectory (time dependence of
R =R; — Ry) but does not contribute to intrinsic exci-
tations. We introduce the intrinsic coordinates for each
nucleus x12 =r12 — Rq2,

ch ch VA 62
H'z/d% A3, L1 (x1)p5"(x2)  Z125 ,
R £ x1 —xa|  R()

(61)

and carry out the multipole expansion for a large distance
between the centers, R > x1 9,

H = /d3m1d3x2p§h(x1)p§h(><2)

f! l I RL+1 t :
L>O,J\1 ( )

Here X12 = X1 — Xo.

This hamiltonian is rather complicated due to the cor-
relations associated with the mutual excitation of the
nuclei. It becomes much simpler if we are interested
in the excitation of one of the partners only. Let the
“projectile” 2 be not excited and we can neglect effects
related to its structure as an extended object. Then
05 (x2) & Zsed(x2), and the hamiltonian is expressed in
terms of the electric multipole moments of the “target”
1,

H =Zsye Y Ar 1y (R(t))M(EL, M)
2 2L + 1 RE+1(t) " EM s
L>0,M
(63)
The hamiltonian is time-dependent since the trajec-
tory is considered as a given function of time. According



to Eq. the transition amplitude i — f with excita-
tion by hw = E¢ — E; is the Fourier component for the
transition frequency of the interaction hamiltonian taken
along the unperturbed trajectory,

- o]
7 .
= / dtHY,(t)e™". (64)
— 00
For the unpolarized initial nuclei and with no final po-
larization registered, the transition rate is to be averaged

over initial projections and summed over final projections
of the target,

12 (65)

1
YrT 5

the polarization state of the projectile is assumed to be
unchanged.
The trajectory enters the result via the time integral

Tont(w / dt RL+11 s Ve RO (60)

This Fourier component becomes small, « exp(—const -
(), if the trajectory changes at too slowly a rate compared
to the needed transition frequency and the parameter
of adiabaticity ¢ > 1. We will discuss more about this
integral later.

The intrinsic matrix elements of multipole moments
appear in the transition rate in sums over magnetic
quantum numbers

b By J(EL, M EL/, M’
LM,L'M 2J 1 Z Myi( JMi( ).
My M;
(67)
The summation in Eq. selects L' = L, M’ = M and

the result does not depend on M.

Eoapar = 5o +1 § ‘Mﬂ (EL M)’ P
B(EL;i — f)
_ BEL = ) s
2L+ 1 LI OM M/, (68)

where B(EL;i — f) are given by Eq. .
The total excitation probability is therefore

dmZse 2 B(EL;i — f)
i = 1 4
v ( h ) ;) 2L+ 1) Z'“‘“}f

(69)
From the viewpoint of the projectile the process is in-
elastic scattering. The Coulomb trajectory defines the
deflection angle 6 and the Rutherford cross section, Eq.
. In our approximation, the trajectory is not influ-
enced by the target excitation so that the inelastic cross
section is factorized into the product of the Rutherford
cross section and the excitation probability ,

=Y dogi(EL) (70)

L>0

dO'f,‘ = dO’R’LUfi

where the cross section for the excitation of multipolarity
L is equal to

do i (L) wZsea
0= (hsin2(0/2))

B(EL;i — f)
I )|
2L+ 1)? Z' Lo (ss)

(71)
where a is the distance of closest approach, Eq. .
This theory can be extended, considering quantum
scattering instead of classical trajectories, using relativis-
tic kinematics, taking into account magnetic multipoles
which become equally important for relativistic veloci-
ties, and including higher order processes of sequential
excitation of nuclear states. The last generalization is
necessary for excitation of rotational bands and overtones
of giant resonances (quantum states with several vibra-
tional quanta). The mutual excitation of the projectile
and of the target can also be studied.

C. Estimates

We can make a crude estimate of the cross section of
Coulomb excitation. The trajectory integral , after
changing the variable to dR = vdt, gives the dimensional
factor a=% /v. It has to be taken near the closest approach
point which is the most effective for excitation. The
constants from the Rutherford cross section can be com-
bined into the Coulomb parameter . As a result,

e AT (72)

o(EL) ~ 7

where the function fr,(¢) depends smoothly on L but
contains the exponential cut-off at large values of the
adiabaticity parameter (. We remember, Eq. , that
in photoabsorption each consecutive multipole was sup-
pressed by a factor (kR)2. The situation for exciting
higher multipoles is easier in the Coulomb excitation be-
cause here

o(E,L+1)
o(EL)

B(E,L+1)
B(EL)a2

~ (5)2. (73)

a

This ratio is significantly larger than (kR)2.

D. Inclusion of magnetic interactions

A more accurate description of Coulomb excitation
for all scattering angles requires the correct treatment
of magnetic interactions and the Coulomb recoil of the
classical trajectories. Here we will discuss the role of
magnetic interactions. Note that magnetic interactions
induce electric transitions, too. And electric interactions
also induce magnetic transitions. Thus, in electromag-
netic excitation, both interactions mix and can only be
isolated under special circumstances. We now show how
magnetic interactions modify the results obtained in the
last section.



Following the derivation of the electromagnetic inter-
action presented above, the excitation a target nucleus
from an initial rate | ¢ > to a final state | f > is, to first
order, given by

1 [ ;
api = —h/ dt ! Er=BOth £ I H i > (T4)
? —00
where (see Appendix D)

< It 15 = [ [ppote = 300 e

(75)
with ps;(r) and js;(r) given by Egs. and (41)), re-
spectively.

Thus,
1 [~ 4 v(t) .
agi =~ dt e™? [pfi(r) — (2) -_]fi(r)] o (r,t) d>r.
ih J_o c

(76)
where v is the velocity of the projectile, and we used

—¢(r,1), (77)

valid for a spinless projectile following a classical trajec-
tory.

The scalar and vector potentials at the target nucleus
interior,

d(w, r) = Zpe [ et m dt (78)
Zpye [ ;
A1) = 2° /_ V(1) e mdt (79)

are generated by a projectile with charge Z, following
a Coulomb trajectory, described by its time-dependent
position r(¢).

We now use the expansions of Eqs. (9) and and,
assuming that the projectile does not penetrate the tar-
get, we use rs (r<) for the projectile (target) coordinates.

To perform the time-integrals, we need the time depen-
dence, r'(t), for a particle moving along the Rutherford
trajectory, which can be directly obtained by solving the
equation of angular momentum conservation (see [Go02])
for a given scattering angle ) in the center of mass system
(see figure . Introducing the parametrization

r(x) = ap [€ cosh x + 1] (80)
where
ZpZTe2 a 1
a0 mov? 2’ an ‘7 sin (9/2) (81)

one obtains [Go02]

t= % [x + € sinhy] . (82)
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Using the scattering plane perpendicular to the z-axis,
one finds that the corresponding components of r may
be written as

x = ag [coshx + €],

y=agVe2—1sinhy,

2=0. (83)

The impact parameter b in figure [I]is related to the scat-
tering angle 1 by

b = agcot (9/2), (84)

and the eccentricity parameter € is related to it by means
of

=4,/14+ = 85
=1+ 5 (85)

In the limit of straight-line motion € ~ b/ap > 1, and
the equations above reduce to the simple straight-line
parametrization,

y=ut, x=b, and z=0. (86)

Using the continuity equation, V-js; = —iwpy;, for the
nuclear transition current, the terms in the expansion of
the scalar and vector potentials mix up. After a long but
straightforward calculation, one can show that the result

can be expressed in terms of spherical tensors (see, e.g.,
Ref. [EGS88], Vol. II) and Eq. becomes

Zpe 47

af; = h 2 m (71)M
x {S(EL, M)Mi(EL, M)
+ S(ML, M)My;(ML, — M)} (87)
where
_ L+t
MAPLM) = a5
X /.ifz‘(r) VWV x L{jp(kr)Yoa (8)] d°r |
(88)

x /jﬁ(r).L[jL(m)YLM(f)]d?’r. (89)

The orbital integrals S(wL, M) are given by

ikLtl o0
S(EL,M) = TIRL-DN /Oo %{T/(t)hL [k’ (8)] }

X YL]\/[ [Ql(t), ¢/(t)] ei“’t dt

HL+2 %)
Tor—mn | YO O]
il (2) ()] ¢ (90



and

i P
~moc L(2L — 1)!!
X Yiul0'(), ¢’(t)]} et dt

where Lg is the angular momentum of relative motion,
which is constant:

S(ML,M) = Lo-/oo V/{hL[m"/(t)]

— 00

(91)

Lo = agmov cot 5 (92)
In non-relativistic collisions
wr vwr'
krl=—=-—<-x1 (93)
c c v c

because when the relative distance r’ obeys the relations
wr’ /v > 1 the interaction becomes adiabatic. Eq. is
long wavelength approximation, as discussed in connec-
tion to Eq. (25). Then one uses the limiting form of Ay,
for small values of its argument [AS64] to show that

S(EL,M) = [ - P TETN ) Yo {0/(), ¢ (1)} et dt

(94)
and

1 00 o
S(MLM) = -7 CL0~/ v’{r’ L=t

X Vi [0(1), 9/(1)] } e dt

which are the usual orbital integrals in the non-
relativistic Coulomb excitation theory with hyperbolic
trajectories (see egs. (II.A.43) of Ref. AWT5]).

It is convenient to perform a translation of the inte-
grand by x — x + i (w/2) [AWT75]. This renders many
simplifications in the calculations of the orbital integrals
S(wL, M), which become

(95)

S(EL, M) = C“f I(EL, M),
Vagy
C
S(ML, M) = _%[(u +1)/(2L + 3)]"/2
0
x [(L+1)2 = M*Y2 cot (9/2) I(ML,M) ,
(96)
with

\/ZL +1 /(L =ML+ M)
Crm =

4 (L — M)(L+ M)!! (-
0

(97)
where the upper (lower) form is valid for L + M = even
(odd) The (reduced) orbital integrals are given by

dx exp[—Cecosh x + iCx]
y (€ +isinhy — V€2 — 1 cosh y)M
(iesinh x + 1)L+M ’
I(ML,M)=I(E,L+1,M),

oo
I(EL,M) = e ™/? /

—00
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where

¢ = wagp/v.

The square modulus of Eq. gives the probability
of exciting the target from the initial state | I; M;) to the
final state | Iy My) in a collision with the center of mass
scattering angle 1. If the orientation of the initial state
is not specified, the cross section for exciting the nuclear
state of spin Iy is

a?et 1
doj_ s = 22—
T~ T T 9 11

j{: |af¢|2 dQ,

M;,M;

(99)

where aZetdQ/4 is the elastic (Rutherford) cross sec-
tion. Using the Wigner-Eckart theorem, Eq. and
the orthogonality properties of the Clebsch—Gordan coef-
ficients, one gets (for more details, see [BP99])

B(nL,I; — Iy)
(2L +1)3

doi_ 47r2ZPe a2é!
a0 2

(100)
where m = E or M stands for the electric or magnetic
multipolarity, and B(wL,I;) are the reduced transition
probability of Eq. (33).

E. Virtual photon numbers
1. Angular dependence

Integration of (100)) over all energy transfers E., = hw,
and summation over all possible final states of the pro-
jectile nucleus leads to

dOC j{:t/addrﬁf

where p¢(E,) is the density of final states of the target
w1th energy By = E; + E,. Inserting Eq. ( into Eq.

one finds
dJc o dUWL dE
¥l =2 /%

L

E,) dE,, (101)

dnﬂL

(Ey) 05" (),

(102)
where o7 are the photonuclear cross sections for a given
multipolarity wL, given by

27r
L E — (
o5 (En) L] 2L+1HZZ

L

(103)
The virtual photon numbers, n.(E,), are given by

dne _ Zyjo L[2L+ D] Czaof
= L, M)
aQ 27 (L+1)(2L+1)3 Z|S”
(104)
where k = E /he, and o = 1/137.

| S(xL, M) |?

K1 B(rL I — Iy) .



In terms of the orbital integrals I(EL, M), given by
Eq. , and using the Eq. ([104]), we find for the electric

multipolarities

dnpr :@(E)2L L[2L + 1)1 A -2lt2

dQ 872 v’ (L+1)(2L+1)?
(L — M)YL + M)!

S DR o VST

L+M=even

(105)
In the case of magnetic excitations one obtains

(2L + 1)!1)?

dnyr Z,fa (E)Z(Lfl)
L(L+ D)(2L + 1)?

dQ  8n2 ‘w

% C_2L+2€4 (62 _ 1)
2

[(L+1)2— M?] (L+1— MYL+1+ M)
x Z !
M [(L+1—M)L+1+ M)

L+M=odd

x | I(ML,M) |* .

(106)

2. Impact parameter dependence

Since the impact parameter is related to the scattering
angle by Egs. and , we can also write
dnﬂ'L

4 dnﬂL
~L(E,b) = =
(B b) = 5000 = @ an

(107)

which are interpreted as the number of equivalent pho-
tons of energy F, = hw, incident on the target per unit
area, in a collision with impact parameter b. The impact
parameter dependence of the Coulomb excitation cross
section is

dO‘C dE ﬂ.
ombdb Z/E,: Nxr(Ey,b) UVL(EV).
L

(108)

The total cross section for Coulomb excitation is ob-
tained by integrating Eq. over b from a minimum
impact parameter bni,, or equivalently, integrating Eq.
over ¥ up to a maximum scattering angle ¥,.x, i.e.

dE .
ro=3 [ GNE)HE), (109
L
where the total number of virtual photons is
Ny (E,) = 27 / db b rnp(Ey,b)
bmin
9

max d -

= 27r/0 dfsin 0 ZQL' (110)

This condition is necessary for collisions at high en-
ergies to avoid the situation in which the nuclear in-
teraction with the target becomes important. At very

| I(BL,M) 2 .
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FIG. 5: Total number of virtual photons for the E1 multi-
polarity, “as seen” by a projectile passing by a lead target
at impact parameters bm., = 12.3 fin and larger (i.e., inte-
grated over impact parameters), for three typical bombarding
energies.

low energies, below the Coulomb barrier, by, = 0 and
Umax = 180°.

The concept of virtual photon numbers is very useful,
specially in high energy collisions. In such collisions the
momentum and the energy transfer due to the Coulomb
interaction are related by Ap = AE/v ~ AE/c. This
means that the virtual photons are almost real. One
usually explores this fact to extract information about
real photon processes from the reactions induced by rel-
ativistic charges, and vice-versa. This is the basis of the
Weizsdcker- Williams method [Fe24, WW34] (it should
be called Fermi’s method - see historical note later), used
to calculate cross sections for Coulomb excitation, par-
ticle production, Bremsstrahlung, etc., (see, e.g., Ref.
[Ja75,BB8g).

8. Virtual and real photons

We have shown that even at low energies the cross sec-
tions for Coulomb excitation can be written as a product
of equivalent photon numbers and the cross sections in-
duced by real photons. The reason for this is the assump-
tion that Coulomb excitation is a process which involves
only collisions for which the nuclear matter distributions
do not overlap at any point of the classical trajectory.
The excitation of the target nucleus thus occurs in a re-
gion where the divergence of the electric field is zero,
ie. V-E,(t) =0, where E, (¢) is the electric field gen-
erated by the projectile at the target’s position. This
condition implies that the electromagnetic fields involved
in Coulomb excitation are exactly the same as those in-
volved in the absorption of a real photon [EGS8S].



4. Analytical expression for E1 excitations

For the F1 multipolarity the orbital integrals, Eq.
, assumes a particularly simple form. It can be per-
formed analytically for M = 0,41 [AW66]. Using these
results, one gets the compact expression for the E1 vir-
tual photon numbers

dng ZZo reN? 4 o, (€2 —1 2
g = () ¢ )

+ [Kie(e0)* }

where K¢ is the modified Bessel function with imaginary
index,

(111)

Kic(2) = WW/ODOC%( cost (112)

VT t2+22)"<+%’

K z(C is the derivative with respect to its argument.

This result is not particular useful, as one still has to
perform a time integration in the equation above. How-
ever, as we will see later, the above formula will help us
to understand the connection with relativistic Coulomb
exctitation.

In Figurewe show a calculation (with E, = E, = ex-
citation energy) of the virtual photons for the E1 multi-
polarity, “as seen” by a projectile passing by a lead target
at impact parameters equal to and exceeding b = 12.3 fm,
for three typical bombarding energies. As the projectile
energy increases, more virtual photons of large energy
are available for the reaction. This increases the number
of states accessed in the excitation process.

F. Higher order corrections and quantum
scattering

The results presented in this section are only valid if
the excitation is of first-order. For higher-order excita-
tions one has to use the coupled-channels equations
of Appendix B, with the excitation amplitudes in each
time interval given by Eq. (87). Important cases of appli-
cations of Coulomb excitation require a non-perturbative
treatment of the collision process. We will discuss some
of these cases in later sections.

A full quantum calculation for Coulomb excitation uses
scattering waves for the projectile (and target). The cross
section in first order perturbation theory is given by Eq.
of Appendix B, with the transition matrix element

of Eq. given by
Vie=<f|Hine | 1>
= / [Pfi(rwfé’a(r,r/) - %jﬁ(r) “Apgy(r,v')| dPrd®r,
(113)

where ¢gq (r,r') and A g, (r,r’) being the electromagnetic
potential generated by scattering waves xq,g(r’) in the
initial and final scattering states, o and (3, respectively.
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FIG. 6: Cross sections for the Coulomb excitation versus
incident beam energy for different collective states in the
408 4197 Ay reaction, assuming a minimum impact parameter

bmin = 16 fm (from Ref. [Gla01]).

Instead of the Coulomb gauge, i.e. with the Coulomb
potential proportional to 1/|r — 1’|, it is better to adopt
the Lorentz gauge, for which the scalar potential is given
by [AWT75]

etrlr—r’(t)]

O(r,) = Zyexy ") T, (114
and a similar expression for A(r,r’), with the expres-

sion for the transition current replacing the product of

(=)*. (+)

the outgoing and incoming waves, ie. Xz Xa ——

(h/2im) G VxE = xS wxG

In Eq. one uses well-known expressions for
Coulomb waves [BD04]. One also uses the expansion
ein|r7r/| . . . R
T—v] 4m WZJL(W<)YLM(I'<)hL(W>) Yiu(Fs),

LM
(115)
where jr, (hr) denotes the spherical Bessel (Hankel) func-
tions (of first kind), r~ (r<) refers to whichever of r and
r’ has the larger (smaller) magnitude. Assuming that the
projectile does not penetrate the target, one uses r (r<)
for the projectile (target) coordinates.

From here on, the calculation is tedious, but straight-
forward. A detailed description is found in Ref. [AWT75].
More insight into this calculation are not useful because
on can show that the quantum treatment of the relative
motion between the nuclei does not alter the results of
the semiclassical calculations for n > 1. Thus, we can
safely use the machinery of the previous sections to have
an accurate and reliable description of Coulomb excita-
tion at low energies. For collisions at high energies, the
distortion of the scattering waves due to the nuclear in-
teraction yield important modifications of the angular
distribution of the relative motion. We will discuss this
in more details later.

As the bombarding energy increases Coulomb excita-
tion predominantly favors the excitation of high lying
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FIG. 7: Schematic description of a nuclear excitation (solid
line) followed by v-decay (solid wavy line). (a) The dashed
lines are transitions due to internal conversion (unobserved).
The dashed wavy line is an unobserved ~-decay. (b) Direct
emission of an observed gamma ray.

states, e.g. giant resonances. This is shown in figure [6]
for the cross sections of Coulomb excitation versus in-
cident beam energy for different collective states in the
408 1197 Ay reaction, assuming a minimum impact pa-
rameter by, = 16 fm. Later we will discuss more about
the excitation of giant resonances.

IV. ANGULAR DISTRIBUTION OF ~+-RAYS

Coulomb excitation is a useful method to obtain static
quadrupole moments as well as the reduced probabilities
for several nuclear transitions. In order to identify the
multipolarity of the excitation it is often necessary to
study the de-excitation of the excited state by measuring
a v-ray from its decay (see figure .

A detailed description of y-ray emission following ex-
citation is give in Appendix E. The angular distribution
of the gamma rays emitted into solid angle €2, as a func-
tion of the scattering angle of the projectile ¥, is given

by Eq. (3TI), ie.,

W(0,) =1+ Y bi" (@) Py (cosb,)
k=24,...

(116)

where Py, (cos f.) are the Legendre polynomials. The co-
efficients b7 (1) are related to the Coulomb excitation
amplitudes and to the B-values for the transi-
tion from the excited state f to a final state g.

Figure |8 shows the Coulomb excitation of sodium by
protons. The yield of the 446 keV ~-rays is shown
[Tem55]. Between the resonances due to compound nu-
cleus formation one observes a smoothly rising back-
ground yield which may be ascribed to Coulomb excita-
tion. It is possible to determine the multipole order of the
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FIG. 8: Coulomb excitation of sodium by protons. The yield
of the 446 keV ~y-rays is shown [Tem55]. The dashed curves
correspond to the cross sections expected for L = 1 and 2 on
the basis of the observed cross section for the excitation with
a-particles.

Coulomb excitation by comparing with the yield observed
in the Coulomb excitation with a-particles [Tem55]. The
dashed curves correspond to the cross sections expected
for L = 1 and 2 on the basis of the observed cross section
for the excitation with a-particles. The close agreement
of the measured cross section with the theoretical curve
for E2 excitation also confirms that the yield away from
resonances is primarily due to Coulomb excitation.

Figure [0 shows the ~-ray yield from Coulomb excita-
tion and compound nucleus formation in '*F bombarded
with a-particles. The dashed curve shows the yields of
the 114 keV 7-ray from the first excited state in *°F and
the solid curve shows the 1.28 MeV ~v-ray from the first
excited state of 22Ne formed by an (o, p’) process on 19F
[Sheb4]. For bombarding energies below 1.2 MeV, the
penetration of the a-particle through the Coulomb bar-
rier is very small and the cross section for compound nu-
cleus formation is small compared to that for Coulomb
excitation. With increasing energy, the cross section for
compound nucleus formation, ocy, increases rapidly and
soon becomes larger than the Coulomb excitation cross
section, oc. However, even for F, ~ 2 MeV, at which
energy the average value of ooy is an order of magnitude
larger than o¢, the yield of the 114 keV ~v-ray is only
very little affected by the compound nucleus formation,
since the probability that the compound nucleus decays
by inelastic a-emission is small. Finally, for E, > 2
MeV, the Coulomb excitation yield of the 114 keV v-ray
is overshadowed by the resonance yield from compound
nucleus formation.
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FIG. 9: ~-rays from Coulomb excitation and compound nu-
cleus formation in °F bombarded with a-particles. The
dashed curve shows the yields of the 114 keV ~-ray from the
first excited state in °F and the solid curve shows the 1.28
MeV y-ray from the first excited state of *> Ne formed by an
(v, p’) process on *°F [She54].

V. RELATIVISTIC COLLISIONS
A. Multipole expansion

When the projectile has very high energies, e.g. Ejqp >
100 MeV /nucleon, there is very little deflection of the ion
trajectory. The recoil by the target is also minimal. We
thus assume that the projectile moves on a straight-line
trajectory of impact parameter b, which is also the dis-
tance of closest approach between the centers of mass of
the two nuclei at time ¢ = 0. We will consider the situ-
ation where b is larger than the sum of the two nuclear
radii, R, such that the charge distributions of the two nu-
clei do not overlap at any time. We will use a coordinate
system with origin in the center of mass of the excited
nucleus and with z-axis along the projectile velocity v,
which is assumed to be constant. In this coordinate sys-
tem the electromagnetic field from this other nucleus is
given by the Lienard-Wiechert expression

yZe

Y R E LI PET Y

(117)

We have chosen the x-axis in the plane of the trajectory
such that the x-component of the trajectory is b. This
expression reduces to the non-reletivistic Coulomb field
of an low energy charge given by = Ze/| r — R(t) |. The
appearance of the factors y = (1 —v2/c?)~'/2 are due to
retardation (see [Ja75]). The vector potential is

Alr1) = Zo(r, 1), (118)
c
with v = vz being a constant velocity vector.

The procedure for obtaining the excitation amplitude
in should be the same as adopted before: first
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we make a multipole expansion of , then we sep-
arate the intrinsic from the relative motion coordinates,
and perform the time integrals for the trajectories (we
named them orbital integrals). However, as shown in
Ref. [AWT9], it is better to first calculate the time inte-
grals and then perform the multipole expansion. In fact,
this seems to be the only way to get analytical expres-
sions, except when one uses a more complicated approach
as we will discuss later.

The integral in Eq. yields

27e .
o(r,w) = —ee“’”/zKo (gq) , (119)
v v
where K| is a modified Bessel function and
1 2 2
q=— [(b—=)*+?]. (120)

v

In Ref. [AW79] it was shown that the multipole ex-
pansion of (119) is given by

¢(raw) = ZWLM(rvw)YL*ZM(f')’ (121)

LM
with

_ 1/2
Wi (r,w) = +/16m(2L + 1) <m> (2M -1

Ze [ ¢ \M wb M41/2 (€
L+M4€ [ C K wo + C\ .
! ( ) M(w) Ci-u <U)jL(mn)'

v \ YV
(122)

The quantity O (z) is the Gegenbauer polynomial
[AS64], while j,,(kr) is a spherical Bessel function, with
k=w/c. For M <0,

Wi _pm(r,w) = (=)MWgp(r,w) (123)

After separation of the internal degrees of freedom, one
gets [AWT9]

o = i 3 e (5) 0 ()

v
7 LM 7

x V2L + 1k My (rL, —M) (124)

where the transition matrix elements are given by
Mi(mL,—M) are given by Egs. and (89).

The functions G,pas have analytical expressions
[WAT9]. For the F1, E2, E3, M1 and M2 multipolari-



ties, they are given by

Gpuo(z) = —igm;

1
Gpu(zr) = —Gpi-1(z) = ga:\/87r;

!

Grni(w) = Glel(ﬂﬁ)Z—Zg 8m;  Gao(z) = 0;
2 T

Graa(v) = Gra-a(w) = —zay[ (a2 = 1);

Gpan(z) = _GE21($)=i§\/§(2x2—1);
GE2o(z) = %xm7
Guze(r) = —GM2—2(916):i2 E\/ﬁ;

5V 6
2 s
Gua(r) = Gaa-i1(z) = 533\/g; G20 = 0;
1 T
GEss(r) = —Gps_3(z) = 57 gx(xz —1);
1 2 9
frd _ [y S— - _ 1 2 _ 1.
Gp32(z) GEgs—2(x) i1\ 15 (3x W :

1
Gpsi(z) = —Gpz_1(z) = 105\/§x(15x2 —11)

2 Vr(5a? — 1)/ 22 — 1.

GE;),Q(Q?) = 11705

(125)

From the excitation amplitude (124]) one finds the total
cross section for exciting the nuclear state of spin /¢ in
collisions with impact parameters larger than R given by,

A 2

wL M
2
% |Garar (5)| g (1)), (126)
where
wR
£(R) = ot (127)
and, for M > 0,
- Y : S by K2, (0
0() = g_nile) =27 (7) o w3 o)
= &’ [KJQVI-H — K3 — 224KM+1KM] , (128)

where all Kj’s are functions of £(b) = wb/~yv.

B. Excitation probabilities and virtual photon
numbers

The theoretical results for relativistic Coulomb exci-
tation can be rewritten in terms of the virtual photon
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FIG. 10: (a) A relativistic charged projectile incident on a
target with impact parameter larger than the strong interac-
tion radius. A sketch of the electric field generated by it is
also shown. One of the effects of this field is to induce collec-
tive vibrations of the nuclear charges. (b) Two pulses of plane
wave of light which produce the same effect on the target as
the electromagnetic field created by the projectile’s motion.
(from [BBSS]).

numbers, as shown in Ref. [BB85]. The probability for
exciting the nuclear state of energy I is obtained directly

from Eq. (124) by using

1
Py, = e 129
=T 2 |l (129)

Mi,Mf

As with the low-energy case, we can rewrite the final
result in terms of the reduced transition probabilities for
photo-excitation. It can be cast in the form

Pfi(va’Y) = Z P‘n’L(b’E’y)

L
dE il
-y / L (B ) oTH(E,),
L E’Y

(130)

where U;‘-L (E,) is the photonuclear absorption cross sec-

tions for a given multipolarity wL given by Eq. ({103]).
The total photonuclear cross section is a sum of all these
multipolarities,

oy =Y oTH(E,). (131)
7L

The functions n.r(Ey) are called the wirtual photon



numbers, and are given by [BB85]

Z%a €2 ¢ 1
bE,) = = 2 (-)?{K?+ < K2 132
naB) = T35 O (Kt SRR (3)
720 ¢ 4
nEQ(b, E,y) = 7727()2 (;)4 {72 [K12 +§KOK1 + §2K(ﬂ

+ &2 v2/02)2K%}, (133)
Z2a 2
an(ba E’Y) = 7r2 EQ K17 (134)

where all K);’s are functions of £(b) = wb/~v.

Since all nuclear excitation dynamics is contained in
the photoabsorption cross section the virtual photon
numbers, Eqgs. (132)), (133) and (134), do not depend on
the nuclear structure. They are kmematlcal factors, de-
pending on the orbital motion. They may be interpreted
as the number of equivalent (virtual) photons that hit
the target per unit area.

The cross section is obtained by the impact param-
eter integral of the excitation probabilities. Eq.
shows that we only need to integrate the number of vir-
tual photons over impact parameter. One has to intro-
duce a minimum impact parameter by in the integration.
Impact parameters smaller than by are dominated by nu-
clear fragmentation processes. One finds

ac_zaﬂ Z/ —2 No(E,) oT"(E,), (135)

where the total wvirtual photon numbers Npp(E,) =
2m [db b nrp (b, E,) are given analytically by

2 2 2
Ne(B,) = 222y {gKoKl (K- KS)],
(136)
2772 2 §
Nea(By) = =5 () [ 5K + 5 Kok
5204 2 2 2 2/ 2\2 72
5o (KF = K§) + €2 - v*/)’K]
(137)
2 2 2
Nun(E,) = 222 5 lekar - (3 - K3)].
(138)

where all Kj/’s are now functions of {(R) = wR/~yv

The usefulness of Coulomb excitation, even in first or-
der processes, is displayed in Eq. . The field of
a real photon contains all multipolarities with the same
weight and the photonuclear cross section, Eq. is
a mixture of the contributions from all multipolarities,
although only a few contribute in most processes. In
the case of Coulomb excitation the total cross section is
weighted by kinematical factors which are different for
each projectile or bombarding energy. This allows one to
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Electric Field

v~0.9

FIG. 11: Left: Electric field of a slowly moving charge. Right:
Electric field of a charge moving with v = 0.9 (in units of ¢).

disentangle the multipolarities when several ones are in-
volved in the excitation process, except for the very high
bombarding energies v > 1 for which all virtual photon
numbers can be shown to be all the same [BB85] to

NpL = gZQOcln <6> .
m 3

Since £ = wR/vc < 1, we have a logarithmic rise of the
cross section for all multipolarities with . The imping-
ing projectile acts like a spectrum of plane wave photons
with helicity m = F1. Such a photon spectrum contains
equally all multipolarities 7w L.

(139)

C. Historical note: Fermi’s forgotten papers

In 1924, Enrico Fermi, then 23 years old, submitted a
paper “On the Theory of Collisions Between Atoms and
Elastically Charged Particles to Zeitschrift fiir Physik
[Fe24]. This paper does not appear in his “Collected
Works. Nevertheless, it is said that this was one of Fer-
mis favorite ideas and that he often used it later in life.
In this publication, Fermi devised a method known as
the equivalent (or virtual) photon method, where he
treated the electromagnetic fields of a charged particle
as a flux of virtual photons. It is also interesting that
Fermi published the same paper, but in the Italian lan-
guage, in Nuovo Cimento [Fe25] (it is rather uncommon
that the same paper is published twice!l). Ten years
later, Weiszsicker and Williams [WW34] extended this
approach to include ultra-relativistic particles, basically
restoring the Lorentz « factors in the right places. How-
ever, it is indisputable that Fermi’s papers [Fe24,Fe25]
introduced the ingenious virtual photon method.

A fast-moving charged particle has electric field vectors
pointing radially outward and magnetic fields circling it.
The field at a point some distance away from the tra-
jectory of the particle resembles that of a real photon.
Thus, Fermi replaced the electromagnetic fields from a
fast particle with an equivalent flux of photons, as shown
schematically in figure
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FIG. 12: Longitudinal and transverse electric field of a

straight-line moving charge at high energies as a function of
time. Both variables are gauged in appropriate units, as sown
in the axis labels.

Fermi’s virtual photon method is based on the idea
that, when v ~ ¢, where ¢ is the velocity of light, the
electromagnetic field generated by the projectile looks
contracted in the direction perpendicular to its motion

(see figures [11} and and is given by

B Zevyut
2T (B2 20R2)3/2
Zevyb
Er = -l

(b2 + 7202t2)3/2°

Br = ~®Ep, and B, =0. (140)
c
where the z (T') indices denote the direction parallel
(transverse) to the velocity of the projectile.
When ~ > 1, these fields will act during a very short
time, of order

(141)

and they are equivalent to two pulses of plane-polarized
radiation incident on the target (see fig. : one in the
beam direction (P1), and the other perpendicular to it
(P2). In the case of the pulse P1 the equivalency is exact.
Since the electric field in the z-direction is not accompa-
nied by a corresponding magnetic field, the equivalency
is not complete for pulse P2, but this will not appreciably
affect the dynamics of the problem since the effects of the
field E, are of minor relevance when v = c. Therefore,
we add a field B = vE,/c to Eq. in order to treat
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also P2 as a plane-wave pulse of radiation. This analogy
permits one to calculate the amount of energy incident
on the target per unit area and per by Fourier transform-
ing the Poynting vector S = E ® B and calculating the
intensity of the virtual radiation, I(w,b), with E, = fw.
This procedure is nicely explained in Ref. [Ja75].

Fermi associated the spectrum of the virtual radiation
as described above to the one of a real pulse of light in-
cident on the target. Then he obtained the probability
for nuclear (in fact, Fermi was interested in atomic tran-
sitions) by a fast charge, in terms of the cross sections
for the same process generated by an equivalent pulse of
light, i.e.

P(b) :/I(w7b)U’Y(E’Y)dE"/ :/n(%b)aw(Ev)dfwv

w

where 0., (E,) is the photo cross-section for the photon
energy FE., and the integral runs over all the frequency
spectrum of the virtual radiation. The quantities n(w, b)
can be interpreted as the number of equivalent photons
incident on the target per unit area.

Following this procedure, Fermi obtained the Eq.
for n(w, b) = ngi(w, b), without the « factors (Fermi was
not interested in relativistic collisions in 1924!). The ~
factors were found in the proper places by Weizsicker
and Williams [WW34]. It is somewhat surprising that
Fermi, Weizsacker, and Williams obtained the “exact”
result of the virtual photons for the E1 multipolarity.
Their method was completely classical and approximate
(in adding the B, field). To reach Eq. some quan-
tum mechanics was used (e.g., the continuity equation
for the nuclear transitions). Eq. is also the re-
sult of a multipole expansion, which was not used in the
classical prescription. In fact, the Eqs. (1324134]) are
an improvement of Fermi’s method for higher multipo-
larities, and were obtained in Ref. [BB85]. As we show
later, a quantum mechanical description of high-energy
scattering leads to the same expressions in Eqgs. (132
134]).

D. Spectrum of virtual photons

In Eq. the first term inside parentheses comes
from the contribution of the pulse P1, whereas the sec-
ond term comes from the contribution of the pulse P2.
One immediately sees that the contribution of pulse P2
becomes negligible for v > 1. The shape of the equiv-
alent photon spectrum for a given impact parameter
can be expressed in terms of the dimensionless function
#(x) = 22 K?(x), if we neglect the pulse P2. In a crude
approximation, ¢ ~ 0 for x > 1, and ¢ = 1 for = < 1.
This reflects in a sudden cutoff of the virtual photon spec-
tra, as can be seen from figure[I3] This implies that, in a
collision with impact parameter b, the spectrum will con-
tain equivalent photons with energies up to a maximum
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FIG. 13: Equivalent photon numbers per unit area incident
on 2°8Pb, in a collision with 'O at 100 MeV/nucleon and
with impact parameter b = 15 fm, as a function of the photon
energy E = hw. The curves for the E1, E2 and M1 multipo-
larities are shown.

value of order

At

max .
B o 2

(142)
which we call by adiabatic cutoff energy. This means that
in an electromagnetic collision of two nuclei the excita-
tion of states with energies up to the above value can be
reached. We can explain this result by observing that
in a collision with interaction time given by Eq.
only states satisfying the condition T/At > 1, where
T is the period of the quantum states, will have an ap-
preciable chance to be excited. Otherwise, the quantum
system will respond adiabatically to the interaction. In
a collision with a typical impact parameter of 610 fm one
can reach states with energy around Ep.x ~ 20y MeV.
Among the many possibilities, we cite the following: for
E, =10—20 MeV (already small values of v), excitation
of giant resonances, with subsequent nucleon emission;
for E = 20 — 100 MeV, the quasideuteron effect which
corresponds to a photon absorption of a correlated N-N
pair in the nucleus; and for £, > 100 MeV, pion produc-
tion through A-isobar excitation which has a maximum
at E ~ 200 MeV. Also the production of lepton pairs
(ete™, qg (mesons), etc.) are accessible with increasing
value of ~.

In figure [14| we show n, (with Z = unity) as given
by Eqgs. (132/{134)), as a function of wR/c. We see that
ngs ~ ng1 =~ ny for small values of v, in contrast to
the limit v ~ 1. The physical reason for these two differ-
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FIG. 14: Equivalent photon number per unit projectile
charge, for El, M1 and E2 radiation, and as a function of
the ratio between R and the photon wavelength. ~ is the
ratio of the projectile energy to its rest energy. (Here, c =1.)

ent behaviours of the equivalent photon spectrum is the
following. The electric field of a charged particle moving
at low energies is approximately radial and the lines of
force of the field are isotropically distributed, with their
relative spacing increasing with the radial distance (see
figure . When interacting with a target of finite di-
mension, the non-uniformity of the field inside the target
is responsible for the large electric quadrupole interaction
between them. The same lines of force of an ultrarela-
tivistic (y > 1) charged particle appear more parallel
and compressed in the direction transverse to the parti-
cle’s motion, due to the Lorentz contraction (see figure
. As seen from the target, this field looks like a pulse
of a plane wave. But plane waves contain all electric and
magnetic multipolarities with the same weight. This is
the cause for the equality between the equivalent photon
numbers as y — o0.

VI. QUANTUM TREATMENT OF
RELATIVISTIC COULOMB EXCITATION

In contrast to sub-barrier Coulomb excitation, at rela-
tivistic energies the effects of the nuclear interaction are
visible due to the distortion it causes on the scattered



waves. Fortunately, at high energies, this can be treated
in a simple manner by using the eikonal approximation.
Our discussion will be general, with very little emphasis
on the details of the nuclear interaction.

A. The eikonal wavefunction

The free-particle wavefunction

’IZ} ~ eik*[‘ (143)
becomes “distorted” in the presence of a potential V(r).
The distorted wave can be calculated numerically by
performing a partial wave-expansion [Ber(07] solving the
Schrédinger equation for each partial wave, i.e.

5+ 0] ) =0, (141)
where
a(r) = {2‘; {E—V(r) _ W} }1/2. (145)

with the condition that asymptotically (r) behaves as
(1143)).

The solution of involves a great numerical effort
at large bombarding energies E. Fortunately, at large
energies F a very useful approximation is valid when
the excitation energies AE are much smaller than F
and the nuclei (or nucleons) move in forward directions,
ie, 6k1.

Calling r = (z,b), where z is the coordinate along
the beam direction, we can assume that

P(r) = ethz #(z,b),

where ¢ is a slowly varying function of z and b, so that

(146)

V20| < k|Vd|. (147)
In cylindrical coordinates the Schrodinger equation
h%_,
2.V P(r) +V(r)y(r) = Ed(r)
becomes

o 0 0% ) 2m )

ikz ikz ikz w72 ikz _

2tk e &"‘6 @"‘6 Vb(b—ﬁVe ¢—0

or, neglecting the 2nd and 3rd terms because of (147,

op i
whose solution is
_ 7L 8 ! A
P = exp{ = [W V(b, z")dz } . (149)
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That is,

¥(r) = exp {ikz + ix(b,2)}, (150)

where

(b, 2) = —%/_ Vb, 2')d=’ (151)

is the eikonal phase. Given V(r) one needs a single inte-
gral to determine the wavefunction: a great simplification
of the problem.

The etkonal approximation, in the same form as given
by egs. , can be obtained from the Klein-Gordon
equation with a (scalar) potential V. We will use this
approximation in several discussions later on this review.

B. Quantum relativistic Coulomb excitation

Defining r as the separation between the center of mass
of the two nuclei and r’ as the intrinsic coordinate of the
target nucleus, the inelastic scattering amplitude to first-
order is given by [BD04]

1) = 2:;1) /dsr >
(@) 05 | Hi(r, ) | 97 ) 1))
(152)

where @1((7) (r) and <I>1((+) (r) are the incoming and outgoing
distorted waves, respectively, for the scattering of the
center of mass of the nuclei, and ¢(r’) is the intrinsic
nuclear wavefunction of the target nucleus.

At intermediate energies, AE/Ej,, < 1, and forward
angles, # < 1, we can use eikonal wavefunctions for the
distorted waves; i.e.,

o))" (r) @) (r) = exp {—iqr +ix(b)} ,  (153)

where
() = _%/ UPH(, ) d2 +ixe(d)  (154)

is the eikonal-phase, g = k'—k, U is the nuclear optical
potential, and x¢(b) is the Coulomb eikonal phase,

27,7,¢?

xc(b) P

In(kb) |, (155)

where Z, (Z;) is the projectile (target) nuclear charges.
The Coulomb phase, as given by the above formula, re-
produces the Coulomb amplitude for the scattering of
point particles in the eikonal approximation for elastic
scattering [BD04]. Corrections due to the extended nu-
clear charges can be easily incorporated [BD04]. Here we
have defined the impact parameter b as b =r X z.



In Eq. (152) the interaction potential, assumed to be
purely Coulomb, is given by Eqgs. (113) and (114]). Per-
E

forming the multipole expansion as in Eq. one
finds [BN93]

fo(6) = i 25k YoM (E)L V2L + 1 e"iM9

’)/h’U 7 LM ¢

)

% Qar(q) Grrnr (g) (I; My | M(xL, —M) |I; M;)

(156)

where the functions Grrp are given in Eq. (125). The
function Q,,(q) is given by [BN93]

Qunq) = /000 db b Ja(gb) Ky (::j) exp {ix(b)} ,

(157)
where ¢ = 2ksin(6/2) is the momentum transfer, 6 and
¢ are the polar and azimuthal scattering angles, respec-
tively.

In the sharp-cutoff approximation, one assumes

exp{ix(b)} = 0, if b<R,

=1, if b>R, (158)

where R is the strong interaction radius, or minimum
impact parameter. Then the integral can be per-
formed analytically [BB85].

Using techniques similar to those discussed in previous
sections, one obtains

dQUC 1 dnwL L
deE’y ( 'Y) - E - dQ O-’Y (E’Y)

™

(159)

where d dn,,/dS is the virtual photon number given by
[BN93]

dng;, wk\? L[(2L + 1)1
o ~ 7 (7) @m? L+ 1)

X Z|G7TLM|2 Q0 ()] (160)
M

The total cross section for Coulomb excitation can be
obtained from egs. (159) and , using the approxi-
mation dQ ~ 2mwqdq/k?, valid for small scattering angles
and small energy losses. Using the closure relation for
the Bessel functions,

1
/dq qJnmqrdy(qr’) = E(S(x —a'), (161)
one obtains
dO’C 1 L
E (By) = E WZLNﬂL (Ey) of” (Ey), (162)

where the total number of virtual photon with energy hw
is given by

L{2L +1)1? )
m ; |G7TLM| gM(w>a

(163)

Nﬂ-L(u}) = Zza
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and

o) = 2 (‘”) Javviz (£2) exp 2w}

U

(164)
where x;(b) is the imaginary part of x(b), which is ob-
tained from Eq. and the imaginary part of the
optical potential.

If one uses the sharp-cutoff approximation, Eq. ,
one recovers the result in Eq. [BBS85].

We point out that for very light heavy ion partners, the
distortion of the scattering wavefunctions caused by the
nuclear field is not important. This distortion is man-
ifested in the diffraction peaks of the angular distribu-
tions, characteristic of strong absorption processes. If
ZpZsar > 1, one can neglect the diffraction peaks in the
inelastic scattering cross sections and a purely Coulomb
excitation process emerges. One can gain insight into the
excitation mechanism by looking at how the semiclassi-
cal limit of the excitation amplitudes emerges from the

general result (160]).

C. Semiclassical limit of the Coulomb excitation
amplitudes

If we assume that Coulomb scattering is dominant and
neglect the nuclear phase in Eq. (154)), we get

o0

Qunr(q) = db b Jar(gb) Ky (:ﬁ) exp{ixc(b)} .

(165)
This integral can be done analytically by rewriting it
as

0

o0 ) wb
Qur(q) = / db b2 Ty (qb) Kt (7> (166)
0

where we used xc(b) = 2n In(kb), with n = Z; Ze?/hv.
Using standard techniques found in Ref. [GR80], we find

_ o2in _*_ . aM [TV
Qui(q) = 227 — T(1+ M +inD (1 + A ()
x F(1+M+in; 1+in; 14+ M;—A*) , (167)
where
A=DY (168)
w

and F is the hypergeometric function [GR80].
The connection with the semiclassical results may be
obtained by using the low momentum transfer limit

{eiqbfi%(MJr%)ﬂ+€7iqb+ig(M+%)} ’

V2mqb
(169)

2+4-2in



and using the stationary phase method, i.e.,

/G(w) @) g ~ ( 2mi

1/2 .
) G(xzg) €9@0) | (170)

Qf)/l(xo)
where
d d?
Py =0 amd  ¢"(ao)= T5@) . (7)

This result is valid for a slowly varying function G(x).
Only the second term in brackets of Eq. (169)) will
have a positive (b = by > 0) stationary point. Thus,

X exp {i¢(bo) + /T(M;“m)} . (72)
where
d(b) = —qb + 21 In(kb) . (173)
The condition ¢’(bg) = 0 implies
_
b= T S (174)

where ag = Z,Z:e? [ uv?.

We observe that the relation is the same [with
cot(0/2) ~ sin~'(#/2)] as that between impact parame-
ter and deflection angle of a particle following a classical
Rutherford trajectory. Also,

2 _ ¢
¢"(bo)=—5 =——, (175)
) ="3 =3,
which implies that in the semiclassical limit
()2, = 4 K2 2wn
M\4)ls.c. = q4 M g
_ 1 (do g2 [ wao
k2 \dQ) 7 \yusin(@/2) )
(176)

Using the above results, Eq. (160]) becomes

X Y |Garml® Kiy <w;‘f(°9/2)) (177)

M

If strong absorption is not relevant, the above formula
can be used to calculate the equivalent photon numbers.
The stationary value given by Eq. means that the
important values of b which contribute to Q,,(¢) are those
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close to the classical impact parameter. Dropping the
index 0 from Eq. (174)), we can also rewrite Eq. (177) as

_ e (@) LleL+)?
=7 (7) @n)® (L+ 1)

x 3 |Grru? K3 (“’b> . (178)

v

dnﬂ'L
2mb db

which leads to the semi-classical expressions given in Eqs.
13- (I50).

For very forward scattering angles, such that A < 1, a
further approximation can be made by setting the hyper-
geometric function in Eq. equal to unity [GR80],
and one obtains

1 242in
Qur(q) = 227 55 D(1+M-+in) T (14in) A (%) :

(179)
The main value of M in this case will be M = 0, for
which one gets

, 2424
Qo(g) =22 D(1+ i) T(1 +in) (L)
; . _ v 2+2in
= = 22 T(in) Dim) ()77, (180)
and
4 2
Q e (ﬂ) _ 181
Qo(g)l” =n" (- 2 sk () (181)
which, for > 1, results in
2_ 4, 2.2 (7Y 4 —2mn
(@2 =dn? o () e (182)

This result shows that in the absence of strong ab-
sorption and for n > 1, Coulomb excitation is strongly
suppressed at # = 0. This also follows from semiclassical
arguments, since § — 0 means large impact parameters,
b > 1, for which the action of the Coulomb field is weak.

The results discussed in this section will be useful to
study the corrections for Coulomb excitation at interme-
diate energy collisions, which we shall discuss later. But,
before that, let us remind ourselves what are giant reso-
nances.

VII. EXCITATION OF GIANT RESONANCES
A. What are giant resonances?

Figure [15] exhibits the excitation function of photoab-
sorption of 129Sn around the electric dipole giant reso-
nance at 15 MeV. The giant resonance happens in nu-
clei along the whole periodic table, with the resonance
energy decreasing with A without large oscillations (see
Figure[16]) starting at A = 20. This shows that the giant
resonance is a property of the nuclear matter and not
a characteristic phenomenon of nuclei of a certain type.
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FIG. 15: Giant resonance in the absorption of photons by
1208n [Le74].

The widths of the resonances are almost all in the range
between 3.5 MeV and 5 MeV. It can reach 7 MeV in a
few cases.

In the Goldhaber-Teller model [GT48], the photon,
through the action of its electric field on the protons,
takes the nucleus to an excited state where a group of pro-
tons oscillates in opposite phase against a group of neu-
trons. In such an oscillation, those groups interpenetrate,
keeping constant the incompressibility of each group sep-
arately. A classic calculation using this hypothesis leads
to a vibration frequency that varies with the inverse of
the squared root of the nuclear radius, i.e., the resonance
energy varies with A—1/6,

In the Steinwedel-Jensen model [SJ50] developed a
classic study of the oscillation in another way, already
suggested by Goldhaber and Teller, in which the incom-
pressibility is abandoned. The nucleons move inside of a
fixed spherical cavity with the proton and neutron den-
sities being a function of the position and time. The
nucleons at the surface have fixed position with respect
to each other and the density is written in such a way
that, at a given instant, the excess of protons on one
side of the nucleus coincides with the lack of neutrons on
that same side, and vice-versa. Such a model leads to a
variation of the resonance energy with A~1/3.

If one assumes a mixed contribution of the two models,
obtains an expression for Egpgr as function of the mass
number A [Mye77],

—-1/2
Eapr(MeV) = 112 x [A%/* 4 (494)1/%] ? . as3)
where Ay = 274. This expression, with the exception
of some very light nuclei, reproduces the behavior of the
experimental values very well, as we can see in Figure
An examination of Equation shows that the
Gamow-Teller mode prevails broadly in light nuclei, while
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FIG. 16: Location of the energy of the giant electric dipole
resonance given by (183) (continuous curve), compared with
experimental points [DB8S].

the contribution of the Steinwedel-Jensen mode is negli-
gible. The latter mode increases with A but it only be-
comes predominant at the end of the periodic table, at
A= A,p.

The giant electric dipole resonance arises from an ex-
citation that transmits 1 unit of angular momentum to
the nucleus (Al = 1). If the nucleus is even-even it is
taken to a 1~ state. What one verifies is that the tran-
sition also changes the isospin of 1 unit (AT = 1) and,
due to that, it is also named an isovector resonance. Gi-
ant isoscalar resonances (AT = 0) of electric quadrupole
(Al = 2) [PWT1] and electric monopole (Al = 0) [Ma75]
were observed in reactions with charged particles. The
first is similar to the vibrational quadrupole state created
by the absorption of a phonon of A = 2, since both are,
in even-even nuclei, states of 2% vibration. But the gi-
ant quadrupole resonance has a much larger energy. This
resonance energy, in the same way argued for the dipole,
decreases smoothly with A, obeying the approximate for-
mula

Eaor(MeV) = 624713, (184)

In the state of giant electric quadrupole resonance
the nucleus oscillates between the spherical (supposing
that this is the form of the ground state) and ellipsoidal
form. If protons and neutrons act in phase, we have
an isoscalar resonance (AT = 0) and if they oscillate
in opposite phase the resonance is isovector (AT = 1).
Figure [17] illustrates these two possible vibration modes.

The giant monopole resonance is a very special way
of nuclear excitation where the nucleus contracts and ex-
pands radially, maintaining its original form but changing
its volume. It is also called the breathing mode. It can
also happen in the isoscalar and isovector forms. It is
an important way to study the compressibility of nuclear
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FIG. 17: Four stages in the vibration cycle of a giant
quadrupole resonance. In an isoscalar resonance, protons and
neutrons vibrate in phase, while in an isovector resonance,
the vibrations occur in opposite phase. For opposite phases,
when the protons are at the stage (b), the neutrons will be at
the stage (d), and vice-versa.

matter. Again here, the isoscalar form has a reasonable
number of measured cases, the location of the resonance
energy being given by the approximate expression

Egnr(MeV) 2 80471/3, (185)

Besides the electric giant resonances, associated to a
variation in the form of the nucleus, magnetic giant reso-
nances exist, involving what one calls by spin vibrations.
In these, nucleons with spin upward move out of phase
with nucleons with spin downward. The number of nucle-
ons involved in the process cannot be very large because
it is limited by the Pauli principle.

Another important aspect of the study of the giant
resonances is the possibility that they can be induced
in already excited nuclei. This possibility was analyzed
theoretically by D. M. Brink and P. Axel [Ax62] for giant
resonances excited “on top” of nuclei rotating with high
angular momentum, resulting in the suggestion that the
frequency and other properties of the giant resonances
are not affected by the excitation. A series of experiences
in the decade of the 1980’s (see Reference [BB86a]) gave
support to this hypothesis.

A special case happens when the giant resonance is
excited on top of another giant resonance. Understand-
ing the excitation of a giant resonance as the result of
the absorption of one phonon, we can view these double
giant resonances as states of excitation with two vibra-
tional phonons. The double giant dipole resonance was
observed for the first time in reactions with double charge
exchange induced by pions in ®2S [Mo88]. As first shown
in reference [BB86] a much better possibility to study
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FIG. 18: Cross section for the excitation of the giant dipole
resonance followed by 7y-decay to the ground state in the re-
action 2°® Pb(*" 0,7 O’yo) at 84 MeV /nucleon for fixed ~ an-
gle 8, = 90° and ¢, = 270°. The points are experimental
[Bee90]. The curve is predicted for Coulomb excitation.

multiple giant resonances is by means of Coulomb exci-
tation with relativistic heavy projectiles. Later on, this
was indeed verified experimentally and several properties
of multiple giant resonances have been studied theoreti-
cally (for a theoretical review, see [BP99)).

Figure [18| shows the cross section for the excitation of
the giant dipole resonance followed by ~-decay to the
ground state in the reaction 2®Pb(170,'70y) at 84
MeV /nucleon for fixed « angle 6, = 90° and ¢, = 270°.
The points are experimental [Bee90]. The curve is pre-
dicted for Coulomb excitation using the eikonal wave-
function, as described in the previous section, and a re-
duced transition strength calculated according the de-
formed potential model [BN93]. The agreement with the
data is excellent.

B. Sum Rules

It is useful to be able to estimate the total pho-
toabsorption cross section summed over all transitions
|i) — |f) from the initial, for instance ground, state.
Such estimates are given by the sum rules (SR) which
approximately determine quantities of the following type:

SR = 5 3By — B { (17
f

2 2
|+ et -
(186)
Here the transition probabilities for an arbitrary pair
of mutually conjugate operators F' and FT are weighted
with a certain (positive, negative or equal to zero) power
n of the transition energy. For a hermitian operator
F = F' the two terms in are equal and the fac-
tor 1/2 is cancelled.
The exact result follows immediately for non-energy-



weighted SR, n = 0, based on the completeness of the set
of the states |f),
SOF] = LiFtF 1 PR (187)
1 2 N
Often it turns out to be possible to get a good estimate
for the expectation value in the right hand side of ,
or to extract it from data.

For the energy-weighted sum rules (EWSR), S, a
reasonable estimate can be derived for many operators
under certain assumptions about the interactions in the
system. First, using again the completeness of the inter-
mediate states |f), we can identically write down S as
an expectation value in the initial state |¢) of the double
commutator

SV = l<i| [[F, H],FT} %

. (188)

where H is the total hamiltonian which has energies F;
and Ey as its eigenvalues. Thus, we again need to know
the properties of the initial state only. Now we choose
the operator F' as a one-body quantity depending on co-
ordinates r, of the particles,

F=Y fa fa=/f(ra). (189)

Apart from that we assume that the hamiltonian does not
contain momentum-dependent interactions. Then only
the kinetic part of the hamiltonian contributes to [F, H],
and the result can be found explicitly,

p; ih
FH = 30 a3 5] = 30 5 [(Vada)o bl

b a
(190)
where [..., ...]+ denotes the anticommutator. The outer
commutator in leads now to the simple result

52
SV =
1= 5
As an example we take the charge form factor

F = Z eqet T,
a

The sum rule in this case is universal for any initial state

2),

2
1i). (191)

(il|Vafa

a

(192)

2
SW[F] = r2Kk2Y " o 193

P =y (193)
Taking k along an (arbitrary) z-axis and considering the
long wavelength limit, kR < 1, we get from the first
nonvanishing term in the expansion of the exponent the
EWSR for the dipole operator, d, = rY1(t),

2,2
S(l)[dz] :Z h ea.

2myg

(194)
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This is an extension of the old Thomas-Reiche-Kuhn
(TRK) dipole SR in atomic physics. For a neutral atom,
in the center-of-mass frame attached to the nucleus of
charge Z (here m is the electron mass),

h2e?

2m

S [dz]

(195)

The atomic TRK SR is essentially exact (up to relativis-
tic velocity-dependent corrections).

In e, are in fact arbitrary numbers. For intrinsic
dipole excitations we have to exclude the center-of-mass
motion. Therefore our z-coordinates should be intrinsic
coordinates, z, = z,— R, where R, = ) z,/A. Hence,
the intrinsic dipole moment is

d, zza:ea(za—Rz) :eZzp—ie(Zzp—l—zn:zn).

(196)
This operator can be rewritten as

d, =ep E Zp +en E Zn
4 n

where protons and neutrons carry effective charges

(197)

N A4
ep =46 en=——e (198)
Now (|194])) gives the dipole EWSR
sVd.] = Y Brld;? (199)
f
h2e? N\? AN
= omr |2 (A) +N <A> (200)
h2e? NZ
= — 201
e A (201)

where my is the nucleon mass.

The factor (NZ/A) is connected to the reduced mass
for relative motion of neutrons against protons as re-
quired at the fixed center of mass. This result does not
include the dipole strength related to nuclear motion as
a whole. According to the classical SR , this contri-
bution is (m — Amy, e — Ze)

B h%(Ze)?
o 2AmN '

The sum of the global (202) and intrinsic (201) dipole
strength recovers the full TRK SR (195)),

h2e2 (NZ n A _ h2e?
A A

SWle.m)] (202)

Si(l) [tot. dip] =

Z. (203)

2mN h 2mN

In contrast to the atomic TRK case, the nuclear dipole
EWSR cannot be exact. Velocity-dependent and
exchange forces are certainly present in nuclear interac-
tions. Nevertheless, Eq. gives a surprisingly good



estimate of the realistic dipole strength which is not fully
understood. In a similar way one can consider SR for
other multipoles but the results are not universal and in
general depend on the initial state.

The EWSR ([201)) is what we need to evaluate the sum
of integral dipole cross sections for real photons over all
possible final states |f). Taking the photon polarization
vector along the z-axis, we come to the total dipole pho-
toabsorption cross section

2k ZN
7:§ Eo) =272 £ 200 204
Otot - /d 70fz m myc A ( 0 )
This universal prediction,
ZN
G;{Ot = 0.067133,1'11 . 1\/[6\]7 (205)

on average agrees well with experiments in spite of crude-
ness of approximations made in the derivation. One
should remember that it includes only dipole absorption.

For the E2 isoscalar giant quadrupole resonances one
has the approximate sum rule [BM75]

E
45, (B,) ~0.22ZA%3 yb MeV ™,

—Lolon (206)
E2 6@

C. Coulomb excitation of giant resonances

A simple estimate of Coulomb excitation of giant res-
onances based on sum rules can be made by assuming
that the virtual photon numbers vary slowly compared
to the photonuclear cross sections around the resonance
peak. Then

Ngi(Ecpr)

oc X~
Egpr

/ dE’YUgDR(E’Y)

dE
+ NEQ(EGQR)EGQR/7E;O—ZJQR(E7)' (207)
Y

In figure [I9 we show the Coulomb excitation cross sec-
tion of giant resonances in *°Ca projectiles hitting a 233U
target as a function of the laboratory energy per nucleon.
The dashed line corresponds to the excitation of the gi-
ant electric dipole resonance, the dotted to the electric
quadrupole, and the lower line to the magnetic dipole
which was also obtained using a sum-rule for M1 excita-
tions [BB88]. The solid curve is the sum of these contri-
butions.

The cross sections increase very rapidly to large values,
which are already attained at intermediate energies. A
salient feature is that the cross section for the excitation
of giant quadrupole modes is very large at low and inter-
mediate energies, decreasing in importance (about 10%
of the E1 cross section) as the energy increases above 1
GeV/nucleon. This occurs because the equivalent pho-
ton number for the £2 multipolarity is much larger than
that for the E1 multipolarity at low collision energies.
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FIG. 19: Coulomb excitation cross section of giant resonances
in *°Ca projectiles hitting a 3% U target as a function of the
laboratory energy per nucleon. The dashed line corresponds
to the excitation of the giant electric dipole resonance, the
dotted to the electric quadrupole, and the lower line to the
magnetic dipole. The solid curve is the sum of these contri-
butions.

That is, ngs > ng1, for v < ¢. This has a simple expla-
nation, as we already discussed in connection with figure
Pictorially, as seen from an observator at rest, when
a charged particle moves at low energies the lines of force
of its corresponding electric field are isotropic, diverging
from its center in all directions. This means that the
field carries a large amount of tidal (E2) components.
On the other hand, when the particle moves very fast its
lines of force appear contracted in the direction perpen-
dicular to its motion due to Lorentz contraction. For the
observator this field looks like a pulse of plane waves of
light. But plane waves contain all multipolarities with
the same weight, and the equivalent photon numbers be-
come all approximately equal, i.e., ng1 ~ ngs =~ Ny,
and increase logarithmically with the energy for v > 1.
The difference in the cross sections when v > 1 are
then approximately equal to the difference in the rela-
tive strength of the two giant resonances 052 / U,If L<o.1.
The excitation of giant magnetic monopole resonances is
of less importance, since for low energies ny;; < ng1
(narn =~ (v/e)®>ng1), whereas for high energies, where
ny1 =~ ngi, it will be also much smaller than the ex-
citation of electric dipole resonances since their relative
strength o)1 /o1 is much smaller than unity.

At very large energies the cross sections for the
Coulomb excitation of giant resonances overcome the nu-
clear geometrical cross sections. Since these resonances
decay mostly through particle emission or fission, this
indicates that Coulomb excitation of giant resonances is
a very important process to be considered in relativistic
heavy ion collisions and fragmentation processes, espe-
cially in heavy ion colliders. At intermediate energies
the cross sections are also large and this offers good pos-
sibilities to establish and study the properties of giant



resonances.

The formalism described in the previous sections has
also been used in the analysis of the data of Ref. [BB90],
in which a projectile of 17O with an energy of Ej,;, = 84
MeV /nucleon excites the target nucleus 2°Pb to the Gi-
ant Dipole Resonance (GDR). The optical potential has
a standard Woods-Saxon form with parameters given
in Ref. [BB90]. In order to calculate the inelastic
cross section for the excitation of the GDR, one can use
a Lorentzian parameterization for the photoabsorption
cross section of 208Pb [VeT70],

E?T?
T =0m it )
™ (B2 — E3)? + B2T?

o (208)

with o, chosen to reproduce the Thomas-Reiche-Kuhn
sum rule for E1 excitations, and Eq. for isoscalar
giant quadrupole resonances. We use the widths I'qpr =
4 MeV and T'gqn = 2.2 MeV for 298Pb.

At ~ 84 MeV /nucleon the maximum scattering angle
which still leads to a pure Coulomb scattering (assuming
a sharp cut-off at an impact parameter b = Rp + Rr)
is ~ 4°. Inserting this form into Eq. and doing
the calculations implicit in Eq. for dng1/dS?, one
obtains the angular distribution which is compared to
the data in Fig. The agreement with the data is
excellent, provided one adjusts the overall normalization
to a value corresponding to 93 % of the energy weighted
sum rule (EWSR) in the energy interval 7—18.9 MeV (see
section 6.10). Taking into account the +10% uncertainty
in the absolute cross sections quoted in Ref. [Bar88|,
this is consistent with photoabsorption cross section in
that energy range.

To unravel the effects of relativistic corrections, one
can repeat the previous calculations unplugging the fac-
tor v = (1 — v?/c?)~! which appears in the expressions
and and using the non-relativistic limit of
the functions Ggi,, of Eq. (125). These modifications
eliminate the relativistic corrections on the interaction
potential. The result of this calculation is shown in fig.
(dotted curve). For comparison, the result of a full
calculation, keeping the relativistic corrections (dashed
curve), is also shown. One observes that the two results
have approximately the same pattern, except that the
non-relativistic result is slightly smaller than the rela-
tivistic one. In fact, if one repeats the calculation for the
excitation of GDR using the non-relativistic limit of eqs.
and , one finds that the best fit to the data is
obtained by exhausting 113 % of the EWSR. This value
is very close to the 110 % obtained in Ref. [Bar88|.

In fig. we also show the result of a semiclassi-
cal calculation (solid curve) for the GDR excitation in
lead, using Eq. for the virtual photon numbers.
The semiclassical curve is not able to fit the experimen-
tal data in figure which shows a perfect agreement
with the Coulomb excitation with the eikonal approxi-
mation [BN93]. This is mainly because diffraction ef-
fects and strong absorption are not included. But the
semiclassical calculation displays the region of relevance
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FIG. 20: Virtual photon numbers for the electric dipole mul-
tipolarity generated by 84A MeV 'O projectiles incident on
208ph, as a function of the center-of-mass scattering angle.
The solid curve is a semiclassical calculation. The dashed
and dotted curves are eikonal calculations with and without
relativistic corrections, respectively.
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FIG. 21: Differential cross section for the excitation of the
isovector giant dipole resonance in °® Pb by means of '"0
projectiles at 84 MeV/nucleon, as a function of the center-
of-mass scattering angle. Data are from Ref. [BB90]. The
theoretical calculation is from Ref. [BN93].
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FIG. 22: Differential cross section for the excitation of a giant
dipole resonance in Pb+Pb collisions at 640 MeV /nucleon, as
a function of the center of mass scattering angle.

for Coulomb excitation. At small angles the scattering
is dominated by large impact parameters, for which the
Coulomb field is weak. Therefore the Coulomb excitation
is small and the semiclassical approximation fails. It also
fails in describing the large angle data (dark-side of the
rainbow angle), since absorption is not treated properly.
One sees that there is a “window” in the inelastic scat-
tering data near § = 2 — 3° in which the semiclassical
and full calculations give approximately the same cross
section.

In fig. [22] we show a similar calculation, but for the
excitation of the GDR in Pb for the collision 2°8Pb +
208Ph at 640 MeV /nucleon. The dashed line is the re-
sult of a semiclassical calculation. Here we see that a
purely semiclassical calculation, is able to reproduce the
quantum results up to a maximum scattering angle 6,,,
at which strong absorption sets in. This justifies the use
of semiclassical calculations for heavy systems, even to
calculate angular distributions. The cross sections in-
crease rapidly with increasing scattering angle, up to an
approximately constant value as the maximum Coulomb
scattering angle is approached. This is explained as fol-
lows. Very forward angles correspond to large impact
parameter collisions in which case wb/yv > 1, the vir-
tual photon numbers in Eq. drop quickly to zero,
and the excitation of giant resonances in the nuclei is not
achieved. As the impact parameter decreases, increasing
the scattering angle, wb/~yv < 1 and excitation occurs.
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FIG. 23: Cross section for the excitation of the GDR with-
out the detection of the decay photon. Data are from Ref.
[Bee90]. The solid line is a calculation from Ref. [BN93].

D. Excitation and photon decay of the GDR

We now consider the excitation of the target nucleus
to the giant dipole resonance and the subsequent photon
decay of that excited nucleus, leaving the target in the
ground state. Experimentally, one detects the inelasti-
cally scattered projectile in coincidence with the decay
photon and demands that the energy lost by the projec-
tile is equal to the energy of the detected photon. To
the extent that the excitation mechanism is dominated
by Coulomb excitation, with the exchange of a single vir-
tual photon, this reaction is very similar to the photon
scattering reaction, except that in the present case the in-
cident photon is virtual rather than real. In this section,
we investigate whether the connection between these two
reactions can be formalized.

We have seen that, under the conditions AE/E <
1, the cross section for excitation of the target nucleus
factorizes into the following expression (we assume that
the contribution of the Fl-multipolarity is dominant):

d*oc 1 dn,
deE’y ( 'Y) E’y 40 ( ’Y) O—'Y( 'Y)

(209)

Figure the cross section for the excitation of the
GDR without the detection of the decay photon. Data
are from Ref. [Bee90]. The solid line is a calculation
from Ref. [BN93] using the eikonal wavefunction for the
Coulomb excitation.

The usual way to write the cross section d?c ¢ /dQUE,,
for the excitation of the target followed by photon decay
to the ground state is simply to multiply the above ex-
pression by a branching ratio R, which represents the



probability that the nucleus excited to an energy E. will
emit a photon leaving it in the ground state [Bee90]:

d*oc 1 dn,
=— —(FE E E)).
dQdE, (Ey) B, d9 (Ey) oy (Ey) Ry (Ey)

(210)

Instead, one can also use the following expression, in com-

plete analogy with Eq. (209):

d2007 1 dn,
deE'y ( 'Y) - E diﬂ (E'Y) Oy (E'Y)7

(211)

where o, (E,) is the cross section for the elastic scatter-
ing of photons with energy E,. Formally, these expres-
sions are equivalent in that they simply define the quan-
tity R,. However, if one treats R, literally as a branch-
ing ratio, then these expressions are equivalent only if
it were true that the photon scattering cross section is
just product of the photoabsorption cross section and the
branching ratio. In fact, it is well-known from the the-
ory of photon scattering that the relationship between
the photoabsorption cross section and the photon scat-
tering cross section is more complicated. In particular,
it is not correct to think of photon scattering as a two-
step process consisting of absorption, in which the target
nucleus is excited to an intermediate state of energy .,
followed by emission, in which the emitted photon has
the same energy F,. Since the intermediate state is not
observable, one must sum over all possible intermediate
states and not just those allowed by conservation of en-
ergy. Now, if the energy E, happens to coincide with
a narrow level, then that level will completely dominate
in the sum over intermediate states. In that case, it is
proper to regard the scattering as a two-step process in
the manner described above, and the two expressions for
the cross section will be equal. However, for £, in the nu-
clear continuum region (e.g., in the region of the GDR),
this will not be the case.

The calculation [BN93] is compared to the data in fig.
The left part shows the cross section for the ex-
citation of the GDR without the detection of the de-
cay photon. The agreement with the data is excellent.
The right part of fig. shows the cross section for the
excitation-decay process as a function of E,. Although
the qualitative trend of the data are well described, the
calculation systematically overpredicts the cross section
on the high-energy side of the GDR (solid curve). If the
Thompson amplitude is not included in o.,, the calcu-
lation is in significantly better agreement with the data
(dashed curve).

E. Multiphonon resonances

The Coulomb excitation of harmonic vibrations is for-
mulated in Appendix F. The formalism can be applied
to excitation of multiple giant resonances, i.e. giant res-
onances excited on top of other giant resonances, also
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FIG. 24: Cross section for excitation followed by ~-decay of
208ppb by 'O projectiles at 84A MeV. The solid (dashed)
line includes (excludes) the Thompson scattering amplitude.
Data are from Ref. [Bee90].

called multiphonon giant resonances. Coulomb excita-
tion of multiphonon giant resonances was formulated in
the harmonic vibrator model in Ref. [BB86]. The excita-
tion of multiphonon states may be viewed as the absorp-
tion by the target (projectile) of several photons from the
pulse of equivalent photons generated by the relativistic
projectile (target); or it can be also described as multiple
excitat