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The role of relativistic corrections in Coulomb scattering of heavy ions at intermediate energy
collisions (Elab & 50 MeV/n) is investigated by numerically solving a full set of coupled equations.
We compare two methods, (a) one involving an exact account of interaction retardation with (b) a
method based on the expansion of effective Lagrangians in powers of the ion velocities, v/c. The
study allowed us to determine the relevance of kinematic corrections, retardation and magnetic in-
teractions such as the Darwin force. We show that analytical formulas are able to describe all aspects
of experimental interest of relativistic effects in Coulomb scattering of heavy ions at intermediate
energies without resort to solving the coupled equations

INTRODUCTION

Properties of nuclei far from the stability are not
known at the level needed for an accurate description of
several processes of interest for nuclear science. There-
fore, much of the experimental efforts in nuclear physics
at present are dedicated to new radioactive beam facili-
ties, the most expensive of them using secondary beams
with high energy fragments obtained from primary col-
lisions. By high energy here we mean energies of the
order of 50 MeV/nucleon and above such as those in use
at RIKEN/Japan, GANIL/France, GSI/Germany and
NSCL/USA. New facilities are under construction, e.g.,
the FAIR facility in Germany and the FRIB facility in
the USA. High energy radioactive beams have fostered
the use of indirect techniques using reactions of rare nu-
clear isotopes with the purpose of studying the structure
of exotic nuclei [1, 2] and in nuclear astrophysics [3, 4].

Coulomb excitation is one of the main indirect tech-
niques used in radioactive beam facilities mainly because
the Coulomb interaction is well understood and also be-
cause it is intimately related to processes involving real
photons like photo-absorption and gamma-decay of in-
terest for studying nuclear structure and many processes
of astrophysical interest [2]. Recent experiments with
Coulomb excitation have been used to unravel the physics
of pigmy dipole resonances, dipole polarizability, energy
density functionals, neutron skins, equation of state of
nuclear matter, etc [5–14]. Experimental analysis assume
that Coulomb scattering dominates the reaction process
at forward angles, which is supported by theory for the
scattering of heavy ions and of light nuclei with small
binding energies [1, 2]. In particular, elastic scattering of
heavy ions is dominated by the Coulomb interaction up to
the rainbow angle which reflects the onset of the nuclear
interaction [15]. Since the analysis of Coulomb excitation
experiments is based on the same premises, and since
such reactions are carried out with kinetic energies con-
sisting of a sizable fraction of the projectile’s rest mass, it
is imperative to account for relativistic effects not only in

the kinematics (which is usually done in the experimen-
tal analysis), but also in the reaction dynamics. This has
often been overseen both in theory and in experiments,
except for a few theoretical studies [16, 17]. It is the goal
of this work to make a detailed assessment of this prob-
lem and to propose best ways to account for relativistic
effects in Coulomb scattering of nuclei at intermediate
and high energies collisions (Elab & 50 MeV/nucleon).

At low energies when the velocity of projectile is much
smaller than the speed of light, v � c, heavy ion collisions
are well described by Rutherford scattering formulas ex-
cept for minor corrections caused by Coulomb excitation,
electron screening, or vacuum polarization. However, at
intermediate and high energies when the speed of the
projectile is comparable to the speed of light, relativis-
tic effects play a significant role. Therefore, an accurate
knowledge of elastic Coulomb scattering at intermediate
and high energy collisions is of great relevance for cal-
ibration of nuclear reaction experiments and to extract
excitation amplitudes induced by the Coulomb interac-
tion. Coulomb excitation at intermediate and high en-
ergy collisions of heavy ions is a very important tool in
experimental nuclear physics and experimental analyses
depend on a good understanding of dynamical relativistic
effects [15].

An early work on the effects of retardation in Coulomb
scattering has been carried out by Matzdorf et al. [16]
using classical trajectories which are well justified for
heavy ion collisions. Another publication by Aguiar et
al. [17] tackled the same problem using a perturbation
expansion of the relativistic Lagrangian for the two-body
Coulomb scattering. In Ref. [16] retardation effects
on the trajectory of one particle upon another via their
mutual time-dependent electromagnetic fields were ac-
counted for in a covariant way, accompanied by simplify-
ing approximations one can introduce to make the prob-
lem more manageable. They have investigated deflection
angles, differential cross sections and the deviations of the
time-dependent trajectory from non-relativistic Ruther-
ford scattering. They reported that the action of mutual
magnetic fields are rather small in the velocity range from
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0.1c to 0.99c. This was shown specifically for Xe + U re-
action. However, the relativistic mass correction effect
was reported to be quite significant. Analytic formulas
for light projectiles colliding with heavy targets have been
obtained which are quite useful for a quick estimate of rel-
ativistic corrections in elastic differential cross sections.
We show that such formulas also work exceptionally well
for more symmetric systems.

Aguiar et al. [17] have also studied relativistic effects
in Coulomb scattering at intermediate energies. They
have used a traditional approach based on the expansion
of the classical electromagnetic Lagrangian in powers of
v/c, where v is the projectile velocity and c the speed of
light. They have considered corrections of the classical
Lagrangian up to order (v/c)2. But for particles with
equal charge to mass ratio they have extended the for-
malism to include corrections up to (v/c)4. Analytical
formulas have also been proposed to estimate the rela-
tivistic corrections and their contribution to differential
cross sections.

In view of the large experimental interest of reactions
in radioactive beam facilities, and the relevance of the
Coulomb interaction for experiments, we have in this
work studied the relativistic effects in Coulomb scattering
of nuclei. Much of our work was based on a comparison
of the two different approaches to relativistic corrections
in Coulomb scattering as those presented in Refs. [16]
and [17] for elastic collisions at intermediate and high
beam energies. We have made qualitative and quantita-
tive predictions for reactions with symmetric and asym-
metric systems. Most importantly, we have shown that
the problem is treatable with basic analytical methods.
In the next section we present a summary of the theoret-
ical methods involving a full account of retardation and
another using effective Lagrangians.

THEORETICAL FORMALISM

Covariant formulation

The covariant equation of motion for two charge par-
ticles moving under the influence of their mutual electro-
magnetic fields is given by [18]

dpα

dτ
=
q

c
FαβUβ , (1)

where pα and Uβ are the 4-momentum and the 4-velocity
respectively. q is the charge of one of the particles and
τ is the proper time of the considered particle and Fαβ

is field strength tensor, which can be written in terms
of the components of the electric and magnetic fields E
and B due to the other particle. To solve this equation
of motion for the two-body scattering it is assumed that
a projectile with charge qp moves in the external field
generated by target and vice versa. The electric fields E

and magnetic field B of the target acting on the projectile
can be derived from the Lienard-Wiechert potentials [18].
A long but straightforward calculation yields a coupled
set of equations for motion of the projectile

γ4(u · u̇) = − qp
mpc

γ
(
E

(t)
1 u1 + E

(t)
2 u2 + E

(t)
3 u3

)
u̇1γ

2 + γ4u1(u · u̇) =
qp
mpc

γ
(
E

(t)
1 −B

(t)
3 u2 +B

(t)
2 u3

)
u̇2γ

2 + γ4u2(u · u̇) =
qp
mpc

γ
(
E

(t)
2 +B

(t)
3 u1 −B(t)

1 u3

)
u̇3γ

2 + γ4u3(u · u̇) =
qp
mpc

γ
(
E

(t)
3 −B

(t)
2 u1 +B

(t)
1 u2

)
(2)

where u = (u1, u2, u3) = ẋ/c is the projectile velocity, x
is its position, mp its rest mass, and γ = 1/

√
1− u2/c2

is the Lorentz factor. A similar set of coupled equations
is obtained for the target motion. Since the motion is re-
stricted to a scattering plane, only two of the coordinates,
e.g., x and y, need to be considered.

These equations can be further simplified by consider-
ing only the the classical electric Coulomb field. The con-
tributions arising from the magnetic field are very small
[16]. One gets a much simpler set of coupled equations
for the projectile motion in the x− y plane

u̇1 =
qpqt

m
(p)
0 γ3

(γ−2 + u22)n1 − u1u2n2
R2[(γ−2 + u21)(γ−2 + u22)− u21u22]

u̇2 =
qpqt

m
(p)
0 γ3

(γ−2 + u21)n2 − u1u2n1
R2[(γ−2 + u21)(γ−2 + u22)− u21u22]

(3)

where R is magnitude of the radius vector with the loca-
tion of target at time t and n1, n2 are x and y components
of unit vector n along the R direction.

Numerically the scattering angle is obtained as follows

Θ( t→ +∞) = arctan
dy

dx
(t) (4)

by starting monitoring the scattering at a very large neg-
ative time for a collision with impact parameter b. Re-
peating the procedure for several impact parameters, the
differential scattering cross section can be calculated from

dσ

dΩ
=

b(Θ)

sin(Θ)

∣∣∣∣ dbdΘ

∣∣∣∣ . (5)

A simplified analytical formula was presented in Ref.
[16], valid when one collision partner remains nearly at
rest, i.e. when the mass of the projectile is much smaller
than the mass of target. In this case, the analytical ap-
proximations for the scattering angle and the differential
cross section are given by

Θ = π − 2arccot(k)√
1− k2(b)β2

, (6)
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where here β = v∞/c, and

dσ

dΩ
=

b2

sin Θ

∣∣∣∣∣∣∣
(1 + k2(b))ξ2

2(1 + k2(b))k2(b)β2
π −Θ

2
− 2ξk(b)

∣∣∣∣∣∣∣ , (7)

where k(b) = (d/2b)
√

1− β2 , d = 2qpqt/(mpv
2
∞) and

ξ(b) =
√

1− k2(b)β2. Contrary to what was stated in
Ref. [16], we will show that these equations reproduce
with high precision the numerical results obtained with
Eqs. (3) even for asymmetric systems, i.e. when the
masses of the particles are comparable. For that, one
just needs to replace the projectile mass in the definition
of the variable d by the reduced mass of the system.

Effective Lagrangian method

Ref. [17] have also studied the influence of relativistic
corrections in Coulomb scattering at intermediate and
high energies by means of an expansion of the classi-
cal Langrangian to leading-oder (LO), next-to-leading or-
der (NLO) and next-to-next-to-leading-order (NNLO) in
powers of v/c, L = L(LO) + L(NLO) + L(NNLO) with

L(LO) =
1

2
µv2 − qtqp

r
,

L(NLO) =
µ4

8c2

[
1

m3
p

+
1

m3
t

]
v4 − µ2qtqp

2mpmtc2r
(v2 + v2r),

L(NNLO) =
mv6

512c2
+

qtqp
16c2r

[
1

8
(v4 − 3v4r + 2v2rv

2)

+
qtqp
mr

(3v2r − v2) +
4q2t q

2
p

m2r2

]
, (8)

with µ equal to the reduced mass, vr = v · r/r, and
here v = v∞. The L(NNLO) Lagrangian is only valid for
symmetric systems with mp = mt = m.

The NLO Lagrangian is obtained by neglecting radi-
ation and assuming instantaneous interactions between
the particles [18]. The first term accounts for the in-
crease of mass due to relativity and the second term
arises from the magnetic interaction between the par-
ticles. It is known as the Darwin interaction. When
particles have the same charge to mass ratio, as in the
case of identical particles, the dipole radiation vanishes
and it is possible to derive the above NNLO Lagrangian
from the Lagrangian of the two-particle classical electro-
dynamics [18]. The first term is again another correction
to the relativistic mass and the following one is due the
corrections to the Darwing interaction.

Using the Euler-Lagrangian equations one gets from
Eqs. (8) a set of coupled equations for the position and
momentum of the particles and the numerical procedure
to obtain the scattering angle and differential cross sec-
tions is determined from eqs. (4) and (5). It is worthwhile

mentioning that the modifications of Coulomb trajecto-
ries of heavy ion collisions due to the emission of radia-
tion are extremely small [19]. This justifies the use both
methods employed in Refs. [16, 17] without the inclusion
of radiation.

Ref. [17] has also proposed analytic formulae when
mp � mt. In this case scattering angle is approximately
given by

Θ = π − 2
η√

η2 − β2
arctan

√
η2 − β2 (9)

where η = vL/(qpqt) with L = pb being the angular
momentum of the system, p being the projectile’s mo-
mentum and β = v/c. The analytical approximation for
the differential cross section is given by

dσ(K,Θ)

dΩ
=

[
qpqt

4K sin2(Θ/2)

]2 [
1 + g(Θ)

K

µc2

+ O

(
K

µc2

)2
]

(10)

where K is the kinetic energy of the projectile in
the laboratory system, µ is reduced mass of the sys-
tem and g(Θ) = 3−

[
2 + {1 + (π −Θ) cot Θ} tan2(Θ/2)

]
.

RESULTS AND DISCUSSION

The coupled equations of motion, Eqs. (2) and (3),
as well as the coupled equations obtained by using the
Euler-Lagrange equations for the Lagrangians (8) have
been solved numerically by using an adaptive stepsize
control Runge-Kutta method [20]. As initial condition it
is assumed that the target is at rest at the origin of the
coodinate system and at time t = −∞ the impact pa-
rameter is b( t→ −∞) = y(t) with the projectile moving
towards the target along the x -axis with velocity v∞ . As
the projectile approaches the target the Coulomb inter-
action deflects it to a scattering angle at time t = +∞.
Through out the calculations the total trajectory length
is kept around 80,000 fm to account for the long range
of the Coulomb interaction. The calculation is repeated
for several impact parameters b varied from sum of the

nuclear radii RP + RT , with Ri = 1.2A
1/3
i fm, to 60 fm

in very small, ∆b = 0.1 fm, interval steps. The precision
of computed differential cross section using Eqs. (4) and
(5) is checked by comparison with the well-known non
relativistic domain, the Rutherford differential cross sec-
tion. In each case the relative error was found to be less
than 1 part in 104.

In Figure 1 we plot the relative difference (in per-
cent) between the methods of Matzdorf et al. [16] and
of Aguiar et al. [17] with the non-relativistic scatter-
ing angle ΘNR = 2 arctan (qpqt/µv

2b) for 208Pb + 208Pb
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FIG. 1. Relative difference (in percent) between the methods
of Matzdorf et al. [16] and of Aguiar et al. [17] with the
non-relativistic scattering angle ΘNR = 2 arctan (qpqt/µv

2b)
for 208Pb + 208Pb collisions at the laboratory energy of 100
MeV/n. The dashed line follows the method of Aguiar et al.
[17] considering relativistic corrections up to order (v/c)4 and
the solid line is for the corresponding method of Matzdorf et
al. [16]. The horizontal axis represents the impact parameter
b (in fm).

collisions at the laboratory energy of 100 MeV/n. The
dashed line follows the method of Aguiar et al. [17] con-
sidering relativistic corrections up to order (v/c)4 and
the solid line is for the corresponding method of Matz-
dorf et al. [16]. The horizontal axis represents the im-
pact parameter b (in fm). We observe that the method
adopted by Matzdorf et al. yields a reduced correction
to the non-relativistic scattering angle as compared to
the method adopted by Aguiar et al. Since magnetic in-
teractions are known to be small, the difference can be
ascribed to the correct account of retardation implicit in
the method adopted by Ref. [16]. It is also worthwhile
noticing that the deviation from the classical Rutherford
scattering angle is smaller at smaller impact parameters,
though not negligible either. The relativistic corrections
increase and reach a nearly constant value of ∼ 6.5− 7%
at larger impact parameters, i.e. at very forward scatter-
ing.

The deviations from the classical Rutherford scatter-
ing increase with the bombarding energy, as expected.
This is shown explicitly in Fig. 2 for a collision at graz-
ing impact parameter b = RP +RT , as a function of the
laboratory energy Elab (in MeV/n). Not only the rela-
tivistic corrections become more important as the energy
increases, but the effects of retardation also modify these
corrections appreciably. The consideration of the rela-
tivistic mass increase without a corresponding account
of retardation, overshoots the corrections due to relativ-
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FIG. 2. Same as Fig. 1, but for a collision at grazing impact
parameter b = RP +RT , as a function of the laboratory energy
Elab (in MeV/n).

ity, as displayed by the dashed line obtained with the
method of Ref. [17].

The deviations from the non-relativistic predictions
are more evident for the elastic differential cross sec-
tions. This is visible in Fig. 3 where we show the
relative difference (in percent) between the methods of
Matzdorf et al. [16] and of Aguiar et al. [17] with
the non-relativistic Rutherford scattering cross section,
dσNR/dΩ, for 208Pb + 208Pb collisions at the labora-
tory energy of 100 MeV/n. The dashed line follows the
method of Aguiar et al. [17] considering relativistic cor-
rections up to order (v/c)4 and the solid line is for the
corresponding method of Matzdorf et al. [16]. The hori-
zontal axis represents the center of mass scattering angle
Θ (in degrees). The deviations from the classical Ruther-
ford formula evidently also increase with the laboratory
energy, as seen in Fig. 4 for a collision at the grazing
impact parameter. The corrections are large, almost as
large as the relative change in the mass of the particles.

Now we turn to the precision of the analytical formu-
lations described in the previous section that allows one
to save time with numerical computations. In Fig. 5 we
plot the relative difference (in percent) between the an-
alytical formulas proposed by Matzdorf et al. [16] and
by Aguiar et al. [17] with the non-relativistic Ruther-
ford scattering cross section, dσNR/dΩ, for 17O + 208Pb
collisions at the laboratory energy of 100 MeV/n. The
dashed and solid lines are the analytical equation and
the calculation following Ref. [17] considering relativis-
tic corrections up to order (v/c)2, respectively. We find
that they are nearly identical. The dotted line is the an-
alytical formula predicted by Matzdorf et al. [16] which
agrees within less than 0.1% with the exact results (not
shown). Two clear conclusions from these calculations
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FIG. 3. Relative difference (in percent) between the methods
of Matzdorf et al. [16] and of Aguiar et al. [17] with the non-
relativistic Rutherford scattering cross section, dσNR/dΩ, for
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scattering angle Θ (in degrees).
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FIG. 4. Same as in Fig. 3, but for a collision at grazing
impact parameter b = RP + RT , as function of laboratory
energy Elab (in MeV/n).

are worth mentioning: (a) the differences between the
methods of Refs. [17] and [16] decrease for asymmetric
systems and (b) both analytical formulations are excel-
lent agreement with the corresponding models, within
the range of validity of each of the two methods. The
same conclusion is reached for symmetric systems.

The discussion above shows that there is no need to
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FIG. 5. Relative difference (in percent) between the analytical
formulas proposed by Matzdorf et al. [16] and by Aguiar et
al. [17] with the non-relativistic Rutherford scattering cross
section, dσNR/dΩ, for 17O + 208Pb collisions at the labo-
ratory energy of 100 MeV/n. The dashed and solid lines are
the analytical equation and the calculation following Ref. [17]
considering relativistic corrections up to order (v/c)2, respec-
tively. The dotted line is the analytical formula predicted by
Matzdorf et al. [16] which agrees within less than 0.1% with
the exact results (not shown).

perform numerical calculations and solve the coupled
equations proposed both in Ref. [16] as well as in Ref.
[17] because their proposed analytical formulations yield
results very close to the “exact” values. Moreover, follow-
ing our numerical investigations, the method developed
in Ref. [16] is superior than that of Ref. [17] because it
includes the full effects of retardation, which apart from
the relativistic mass correction is the largest relativis-
tic correction for the scattering of two charged particles.
We have verified that the analytical formulas proposed
in Ref. [16] both for the scattering angle and for the dif-
ferential cross sections agree with numerical solutions of
Eqs. (2) and (3) to within 1 part in 103.

We have also studied the effects of relativity in de-
termining the distance of closest approach between two
charged particles. In Fig. 6 we show the relative dif-
ference between the distance of closest approach for a
given impact parameter b by solving Eqs. (2) and (3)
and comparing it with the equation

bc = a+
√
a2 + b2, with a =

qpqt
γµv2

, (11)

which is a proposed generalization of the non-relativistic
relation where we replace a0 = qpqt/µv

2 by a0/γ. In the
figure we use the grazing impact parameter b = Rp +Rt.
We see that Eq. (11) reproduces the exact values very
well at the level of 1% or less.
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Finally, we have determined the deviation of the actual
time-dependent trajectory R(t) for the distance between
the two charged particles from an analytical parametriza-
tion. Our parametrization is based on the same argument
leading to Eq. (11) and reads

x = a[coshw + ε], y = a
√
ε2 − 1 sinhw,

t =
a

v
[w + ε sinhw]. (12)

This is the same parametrization used in non-relativistic
collisions, but with the distance of closest approach a0
replaced by a = a0/γ. We have compared the differ-
ence between this approximation and the exact solution
for several reaction partner combinations and energies in
the range 50 − 250 MeV/n. For large times of the or-
der of 80,000 fm we find deviations at the level of 3%
or less. But for collision times up to 5a/v after passing
the distance of closest approach the Eqs. (12) work at a
much better level of 1% or better. This explains why the
distance of closest approach is so well described by the
relation (11). This is also relevant for Coulomb excita-
tion experiments as the Coulomb field is strongest when
the trajectory is nearest to the closest approach distance,
being more effective to induce nuclear transitions.

CONCLUSIONS

In this work we have studied relativistic effects such
as retardation, relativistic mass change, and the inclu-
sion of magnetic interactions in the Coulomb scattering

of nuclei at intermediate and high energies (Elab & 50
MeV/n). Several conclusions have been drawn from this
work. We have shown that the formalism developed in
Ref. [16] provides a concise way to obtain Coulomb scat-
tering deflection angles and elastic differential cross sec-
tions. Their method is superior than the one proposed
in Ref. [17] with an effective Lagrangian expansion in
orders of v/c. The magnetic interactions are proved to
be negligible.

Most importantly, we have found that several analyt-
ical equations are able to describe the exact results ob-
tained with the numerical solutions of Eqs. (2) and (3).
The deflection angle is well described by Eq. (6) while
the differential cross section is well described by Eq. (7).
Finally, the distance of closest approach for a given im-
pact parameter b, as well as the time dependence of the
trajectory are in good agreement with the Eqs. (11) and
(12), respectively.

These findings are timely and of importance for the
experimental analysis of numerous data being acquired
in radioactive beam facilities with laboratory energies in
the range of Elab & 50 MeV/n. The determination of
Coulomb scattering angles and differential cross sections
are a crucial part of the simulations and the extraction
of reaction variables.

ACKNOWLEDGEMENT

This work was supported in part by the U.S. DOE
grants DE-FG02-08ER41533 and the U.S. NSF Grant
No. 1415656. Ravinder Kumar is Raman Postdoctoral
Fellow during 2015-16 through the University Grants
Commission, New Delhi, India, Grant No. F. No. 5-
152/2016(IC).

∗ ravinderkumar12@yahoo.co.in
† carlos.bertulani@tamuc.edu
‡ grobinson5@leomail.tamuc.edu

[1] C. A. Bertulani, L. F. Canto, and M. S. Hussein. The
structure and reactions of neutron-rich nuclei. Physics
Reports, 226(6):281 – 376, 1993.

[2] R E Tribble, C A Bertulani, M La Cognata, A M
Mukhamedzhanov, and C Spitaleri. Indirect techniques
in nuclear astrophysics: a review. Reports on Progress in
Physics, 77(10):106901, 2014.

[3] C.A. Bertulani and A. Gade. Nuclear astrophysics with
radioactive beams. Physics Reports, 485(6):195 – 259,
2010.

[4] C.A. Bertulani and T. Kajino. Frontiers in nuclear astro-
physics. Progress in Particle and Nuclear Physics, 89:56
– 100, 2016.

[5] T. Aumann. Reactions with fast radioactive beams of
neutron-rich nuclei. The European Physical Journal A -
Hadrons and Nuclei, 26(3):441–478, 2005.

mailto:ravinderkumar12@yahoo.co.in
mailto:carlos.bertulani@tamuc.edu
mailto:grobinson5@leomail.tamuc.edu


7

[6] P. Adrich, A. Klimkiewicz, M. Fallot, K. Boretzky,
T. Aumann, D. Cortina-Gil, U. Datta Pramanik, Th. W.
Elze, H. Emling, H. Geissel, M. Hellström, K. L. Jones,
J. V. Kratz, R. Kulessa, Y. Leifels, C. Nociforo, R. Palit,
H. Simon, G. Surówka, K. Sümmerer, and W. Waluś.
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