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One of the hot topics in hadron physics is the study of the new exotic charmonium states and
the determination of their internal struture. Another important topic is the search for effects
of the magnetic field created in high energy nuclear collisions. In this note we show that we
can use ultra-peripheral collisions to address both topics. We compute the cross section for
the production of the D+D− molecular bound state in γ−γ collisions. We also show how the
magnetic field of the projectile can induce pion production in the target. Both processes have
sizeable cross sections and their measurement would be very useful in the study of the topics
mentioned above.
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1 Introduction

In ultra-peripheral collisions (UPCs) target and projectile do not overlap and stay intact. As a con-
sequence only few particles are produced, the background is reduced and we can study more carefully
specific particle production processes, such as those addressed here. In UPCs the elementary processes
which contribute to particle production are photon-photon, photon-Pomeron and Pomeron-Pomeron fu-
sion. They are a good environment to search for particles which are more difficult to identify in central
collisions 1.

In this work we discuss two processes of particle production, which may be studied in UPCs: produc-
tion of D+D− meson molecules and production of forward pions. In the first we can gain some insight
on the nature of these exotic charmonium states and in the second we can measure the magnetic field
produced by relativistic heavy ions.

2 Production of charm meson molecules

One important research topic in modern hadron physics is the study of the exotic charmonium states
2. These new mesonic states are not conventional cc̄ configurations and their minimum quark content
is cc̄qq̄. The main question in the field is: are these multiquark states compact tetraquarks or are they
large and loosely bound meson molecules? Perhaps the largest fraction of the community tends to believe
that they are molecules. One of the frequently invoked arguments is that the masses of almost all these
states are very close to thresholds, i.e. to the sum of the masses of two well known meson states 2,3,4. A
genuine tetraquark state could in principle have any mass, including masses far from thresholds. Besides,
some problems have been detected in the calculation of tetraquark masses with QCD sum rules 5,6.
Nevertheless, so far there is no conclusive answer.

The production of hadron molecules has been discussed in the context of B decays3, in e+e− collisions,
in proton-proton 4,7,8, in proton-nucleus, in central nucleus-nucleus collisions 9 and also in UPCs 10. In
this section we focus on the D+D− molecule production in UPCs, but the method employed here is
applicable to all molecular states.

The D+D− pair is produced from two photons. This process can be described by well known
hadronic effective Lagrangians, from which we obtain the pair production amplitude. This amplitude
is subsequently projected onto the amplitude for bound state formation. If the properties of the bound
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Figure 1 – a) Feynman diagrams for the process γγ → D+D−. b) Energy dependence of the e+e− → e+e−cc̄ cross
section. Data come from several collaborations from LEP and were taken from arXiv:hep-ex/0010060 [hep-ex].
Lines represent the results obtained with Eq.(15) adapted to e+e− → e+e−D+D−.

state are known, the only unknown in this formalism is the form factor, which must be attached to the
vertices to account for the finite size of the hadrons.

We will study the process γγ → D+D− with the Lagrangian densities 11

L = (Dµϕ)
∗(Dµϕ)−m2

Dϕ
∗ϕ− 1

4
FµνF

µν , (1)

and
L = −igγD+D∗−Fµνϵ

µναβ(D∗−
α ∂βD

+ − ∂βD
∗−
α D+ +D−∂βD

∗+
α − ∂βD

−D∗+
α ) , (2)

where
Dµϕ = ∂µϕ+ ieAµϕ , Fµν = ∂µAν − ∂νAµ , (3)

and ϕ, D∗ and Aµ represent the pseudoscalar charm meson (with mass mD), the vector charm meson
(with massm∗

D) and the photon field, respectively. The Feynman rules can be derived from the interaction
terms and they yield the Feynman diagrams for the process γγ → D+D− shown in Fig. 1a. In the figure
we also show the quadrimomenta of the incoming photons kµ = (Ep, 0, 0,k), k

′µ = (Ek′ , 0, 0,k′) and of
the outgoing mesons pµ = (Ep, 0, 0,p), p

′µ = (Ep′ , 0, 0,p′). The scattering amplitude can be derived
from the Feynman rules.

As usual, we include form factors, F (q), in the vertices of the amplitudes. We shall follow 12 and use
the monopole form factor given by

F (q2) =
Λ2 −m2

D(∗)

Λ2 − q2
, (4)

where q is the 4-momentum of the exchanged meson and Λ is a cut-off parameter. This choice has the
advantage of yielding automatically F (m2

D) = 1 and F (m2
D∗) = 1 when the exchanged meson is on-shell.

The above form is arbitrary but there is hope to improve this ingredient of the calculation using QCD
sum rules to calculate the form factor, as done in 13, thereby reducing the uncertainties. Taking the
square of the amplitude and the average over the photon polarizations it is straigthforward to calculate
the cross section:

σ =
1

64π2

1

ŝ

√
1−

4m2
D

ŝ

∫
|M(γγ → D+D−)|2dΩ . (5)

where ŝ = (k+k′)2. We emphasize that the only unknown in our calculation is the cut-off parameter Λ. In
what follows, we will determine it fitting our cross section to the LEP data on the process e+e− → e+e−cc̄.

From the D+D− pair we can construct a bound state (denoted B). As in 4, we impose phase space
constraints on the mesons, forcing them to be “close together”. Here we do this through the prescription
discussed in 14. The bound state |B⟩ is defined as

|B⟩√
2EB

≡
∫

d3q

(2π)3
ψ̃∗(q)

1√
2Eq

1√
2E−q

|q,−q⟩, (6)



where EB is the bound state energy, q is the relative three momentum between D+ and D− in the state
B, E±q are the energies of D+ and D− and ψ̃(q) is the bound state wave function in momentum space.
From Eq. (6), we can write the following relation between the amplitudes:

M(γγ → B)√
2EB

=

∫
d3q

(2π)3
ψ̃∗(q)

1√
2ED+

1√
2ED−

M(γγ → D+D−), (7)

We assume that the p ≃ p′ and hence ED+ ≃ ED− = ED. Consequently, the relative momentum
q = p − p′ is close to zero. Therefore the energy ED and the amplitude M(γγ → D+D−) depend only
weakly on q and can be taken out of the integral. Moreover, since the binding energy is small we have
EB ≃ 2ED and hence

M(γγ → B) = ψ∗(0)

√
2

EB
M(γγ → D+D−) . (8)

With the amplitude above we calculate the cross section for bound state production:

dσ =
1

H

d3pB
(2π)3

1

2EB
(2π)4δ(4)(k + k′ − pB)|M(γγ → B)|2, (9)

where pB is the momentum of the produced bound state and H is the flux factor. In the center of mass
frame of the AA→ AAB collision, we have

k = (ω1, 0, 0, ω1) , k′ = (ω2, 0, 0,−ω2) , pB ≡ p+ p′ = (EB , 0, 0, ω1 − ω2) , (10)

where EB =
√
(ω1 − ω2)2 +m2

B and ω1 and ω2 are the energies of the colliding photons. The flux factor
is then given by H = 8ω1ω2. The integrated cross section reads:

σ(ω1, ω2) =
2π

2(4ω1ω2)

∫
d3pB
2EB

δ(ECM − EB)δ
(3)(k+ k′ − pB)

[
2

EB
|ψ(0)|2|M(γγ → D+D−)|2

]
(11)

where E2
CM = 4ω1ω2. To complete the calculation we need the wave function of the bound state. In

15 a similar particle made of open charm mesons was studied with the Bethe-Salpeter equation and an
expression for the wave function was derived. Here we will just quote the final expression needed to
calculate ψ(0), which is given by:

ψ(0) =
−8µπg

(2π)3/2

(
Λ0 −

√
2µEb arctan

(
Λ0√
2µEb

))
, g2 =

√
2µEb

8πµ2(arctan( Λ0√
2µEb

)−
√
2µEbΛ0

2µEb+Λ2
0
)
. (12)

In the above expressions µ is the reduced mass (µ = mD/2), Λ0 is a cut-off parameter and Eb is the
binding energy. We shall follow 16 and assume that Λ0 = 1 GeV. From 16 we see that one can compute
the (dynamically generated) mass of a bound state and then determine its binding energy. Knowing µ,
Eb and fixing Λ0, we can use (12) to calculate ψ(0). In what follows our reference value will be obtained
using mD = 1870 MeV and the mass of the bound state equal to MB = 3723 MeV, as found in 16. With
these numbers we get Eb = 17 MeV and |ψ(0)|2 = 0.008 GeV3.

The equivalent photon approximation is well known and it is described in several papers 17. In
general, when the photon source is a nucleus one has to use form factors and the calculation becomes
somewhat complicated. Here we will follow 18 and define an UPC in momentum space. The momentum
distribution of the equivalent photons created by a source with charge Ze is 18:

n(q⃗) =
Z2α

π2ω

(q⃗)2

((q⃗)2 + (ω/γ)2)
2 (13)

where q⃗ is the photon transverse momentum, ω its energy and γ is given by γ =
√
s/2mp, where mp is

the proton mass. In order to obtain the energy spectrum, one has to integrate this expression over the
transverse momentum up to some value q̂. The value of q̂ is given by q̂ = ℏc/2R, where R is the radius
of the projetile. For Pb, R ≈ 7 fm and hence q̂ ≈ 0.014 GeV. After the integration over the photon
transverse momentum the photon energy distribution is given by:

n(ω) =
2Z2α

π
ln

(
q̂γ

ω

)
1

ω
, (14)
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Figure 2 – Cross sections for D+D− bound state production as a function of the energy
√
s. a) Dependence on q̂

for fixed Λ. b) Dependence on Λ for fixed q̂.

Because of the approximations 18 the above distribution is valid when the condition ω ≪ q̂γ is fullfiled.
Using Eq. (14) we can compute the cross sections of free pair production, σP , and of bound state
production, σB . They are given by:

σP (AA→ AAD+D−) =

q̂γ∫
m2

D/q̂γ

dω1

q̂γ∫
m2

D/ω1

dω2 σP (ω1, ω2)n(ω1)n(ω2), (15)

σB(AA→ AAB) =

q̂γ∫
m2

D/q̂γ

dω1

q̂γ∫
m2

D/ω1

dω2 σB(ω1, ω2)n(ω1)n(ω2), (16)

where σP (ω1, ω2) and σB(ω1, ω2) are given by Eqs. (5) (with ŝ = 4ω1ω2) and (11) respectively.
In Fig. 1b we show the cross sections for free pair production and compare it to the existing experi-

mental data from LEP 19. In fact, the LEP data are for e+ e− → e+ e− c c̄, i.e., the measured final states
are D+D− and D0D̄0. We assume that these two final states have the same cross section and, in order to
compare with the data, we multiply our cross section σ(e+ e− → e+ e−D+D−) by a factor two. In order
to fit these data we will adapt expression (15) to electron-positron collisions. The γγ → D+D− cross
section is the same but the photon flux from the electron (and also from the positron) and the integration
limits are different 1,17,18. Comparing our formula with these data, we determine the only parameter in
the calculation, which is the cut-off Λ. In the figure, the curves are obtained substituting Eqs. (5) and
(14) into (15). In the latter q̂ = me. The band is defined by the choice of two limiting values of Λ. In
what follows we will use these values to estimate the uncertainty of our results.

In Fig. 2 shows the cross section for bound state production cross section and its dependence on q̂
(Fig. 2a) and on Λ (Fig. 2b). It is encouraging to see that at

√
sNN ≈ 5.02 TeV we have:

σ(PbPb→ PbPbB) = 3.0+0.8
−1.2 µb (17)

This number should be compared with results found in 10 and in 20. In those papers, the production cross
section of scalar states X(3940) and X(3915) in Pb − Pb UPCs at

√
sNN = 5.02 TeV were calculated

and the results were in the range

5 ≤ σ(PbPb→ PbPbR) ≤ 11 µb (18)

where R stands for X(3940) or X(3915). In both papers the X states were treated as meson molecules,
as in the present work. It is reassuring to see that, in spite of the differences, the obtained cross sections
are not so different. The cross section (17) should also be compared with the results obtained in 21 for
the production of the same state treated as a tetraquark. Interestingly in that work the authors find
σ(PbPb → PbPbB) = 0.18 µb, more than one order of magnitude smaller than (17). The existence
of this significant difference is auspicious for our scientific goal, namely, to use UPCs to discriminate
between hadron molecules and tetraquarks. For more information about the material presented in this
section we refer the reader to the article 22.



3 Production of very forward pions

Some time ago, several calculations 23,24 have shown that in high energy nuclear collisions a very strong
magnetic field is produced. Since then, the effects of these fields have been looked for in different physical
processes. Perhaps the most famous one is the chiral magnetic effect 25. Another effect was investigated
in 26. In that work it was argued that in an ultra-peripheral collision magnetic excitation (ME) can lead

to pion production. In a ME the projectile creates a B⃗ field which causes a “splin-flip” in a nucleon in
the target, resulting in the process N → ∆. After the excitation, the ∆ decays into pions: ∆ → N + π.
The pions produced in this way have extremely large rapidities. This is in contrast to all other particle
production processes in UPC, in which the produced particles have small rapidities. Hence the appearance
of very forward pions would be a confirmation of ME and would be a clear manifestation of the magnetic
field. In 26 and 27 this process was treated in two different ways. In what folows we will briefly review the

(a) (b)

Figure 3 – a) Classical magnetic transition: a moving projectile creates a magnetic field B⃗ which acts on the
target at rest (at the origin of coordinates) flipping its spin. b) Quantum version of the same transition.

two calculations and compare them.
Let us start considering the Pb − p collision depicted in Fig. 3a, where the proton is at rest. The

incoming nucleus creates a magnetic field which converts the proton into a ∆. As an example, let us
focus on the transition |p ↑⟩ → |∆+ ↑⟩. The corresponding amplitude reads 26:

afi = −i
∫ ∞

−∞
eiEfit

′
⟨∆+ ↑ |H(t′)|p ↑⟩ dt′ (19)

where Efi = (m2
∆ −m2

p)/2mp, m∆ is the ∆ mass and mp is the proton mass. The Hamiltonian reads:

H(t) = −µ⃗.B⃗(t) with µ⃗ =
∑
i=u,d

µ⃗i =
∑
i=u,d

qi
mi

S⃗i (20)

where qi and mi are the charge and the mass of the constituent quark of type i and S⃗i is the spin operator
acting on the spin state of this quark.

The system of coordinates is shown in Fig. 3a. The B⃗ field is given by 26:

Bz(t) =
1

4π

qvγ(b− y)

((γ(x− vt))2 + (y − b)2 + z2)3/2
(21)

where v ≃ 1 and q = Ze. The required spin wave functions are:

|p ↑⟩ = 1

3
√
2
[udu(↓↑↑ + ↑↑↓ −2 ↑↓↑) + duu(↑↓↑ + ↑↑↓ −2 ↓↑↑) + uud(↑↓↑ + ↓↑↑ −2 ↑↑↓)] (22)

|∆+ ↑⟩ = 1

3
(uud+ udu+ duu)(↑↑↓ + ↑↓↑ + ↓↑↑) (23)

Now we substitute Eq. (21) into Eq. (20) and the latter into Eq. (19). Then, using the states given
above, we calculate the sandwiches of H, obtaining the final amplitude. The cross section for the process
p→ ∆ reads:

σ =

∫
|afi|2 d2b =

Z2e4

9πm2

(
Efi

vγ

)2 ∫ ∞

R

[
K1

(Efib

vγ

)]2
b db (24)



For our purpose it is sufficient to have only one proton as target.

In the formalism developed in 27 the cross section of reaction depicted in Fig. 3b reads 1:

σ =

∫
dω

ω
n(ω)σγN→Nπ(ω) (25)

where n(ω) is given by 1:

n(ω) =
Z2α

π

[
2ξK0(ξ)K1(ξ)− ξ2[K2

1 (ξ)−K2
0 (ξ)]

]
, ξ =

ω(R1 +R2)

γ
(26)

In the above expression ω is the photon energy, Ri is the radius of nucleus i. The Lorentz γ factor is in
the target frame. In the LHC γ ≃ 1000.

The cross section of the process γp→ pπ can be computed from the Feynman graph depicted in Fig.
3b. A simple parametrization of the π0 photoproduction cross section was introduced in 27. Knowing
σγN→Nπ, we use it to calculate the cross section (25). In Fig. 4 we plot together the obtained quantum
(25) (solid lines) and semi-classical (24) (dashed line) cross sections. The band shows the uncertainty
related to the decay width Γ 27. The difference between the results obtained with (24) and with (25) is
small and reaches 9 % at the highest energies.

quantum

semi-classical
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Figure 4 – Cross sections for pion production obtained with the semi-classical formalism, Eq.(24), dashed line,
and with the quantum formalism, Eq. (25), solid line. ELab = γ mn is the energy per nucleon in the laboratory
frame.

The measurement of these ultra-forward pions may be challenging, but there is some hope. In fact,
ultra-forward neutral pions have already been detected in proton-proton and proton-lead collisions at
the LHC 28. Unfortunately, in those measurements it was not possible to focus only on ultra-peripheral
collisions. We hope that this could be done in the future.

4 Conclusion

In this work the cross section for the production of a D+D− molecule in ultra-peripheral collisions was
calculated. It is σB(AA→ AAB) = 3.0+0.8

−1.2 µb for
√
sNN = 5.02 TeV. This number is consistent with the

results obtained for other scalar exotic charmonium molecules in Ref.10 and in Ref.20. The parameters of
the calculation are the hadronic form factor cut-off, the maximum transverse momentum of an emitted
photon and the binding energy. All these parameters can be constrained by experimental information
and/or by calculations and hence the precision of our calculation can be increased. The method used
here can be easily applied to other exotic states.

We have also calculated the cross section for the production of very forward pions. We have used two
methods, one with a classical magnetic field and the other with equivalent photons. Both methods yield a
similar result: a quite large cross section for forward pion production. The neutral pions can in principle
be measured. This would improve our knowledge about the validity of the classical approximation and
about the strength of the magnetic field created in these collisions.
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