Effective proton-neutron interaction near the drip line from unbound states in 25,26F

1 Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, 14076 Caen, France
2 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
3 GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
4 TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada
5 Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
6 Department of Physics, Lund University, 22100 Lund, Sweden
7 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
8 Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
9 Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, Texas 75429, USA
10 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
11 Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, 28006 Madrid, Spain
12 University of Vigo, 36310 Vigo, Spain
13 Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
14 Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
15 NRC Kurchatov Institute, 123182 Moscow, Russia
16 ExtrMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
17 Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
18 Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
19 Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064, India
20 II. Physikalisches Institut, Universität Gießen, 35392 Gießen, Germany
21 MTA Atomki, 4001 Debrecen, Hungary
22 School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
23 Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Avda. Complutense, 28040 Madrid, Spain
24 School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
25 Centro de Física Nuclear, University of Lisbon, 1649-003 Lisbon, Portugal
26 Physik Department E12, Technische Universität München, 85748 Garching, Germany
27 LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen Cedex, France
28 Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
29 Institutionen för Fysik, Chalmers Tekniska Högskola, 412 96 Göteborg, Sweden
30 IPHC - CNRS/Université de Strasbourg, 67037 Strasbourg, France
31 KVI-CART, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlands
32 Astronomy and Physics Department, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
33 STFC Daresbury Laboratory, W4 4AD, Warrington, United Kingdom
34 Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
35 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01069 Dresden, Germany
36 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
37 Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
38 Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
Radioactive beams of 26Ne and 27Ne, produced at about 440.4 MeV by the FRagment Separator at the GSI facility, were used to populate unbound states in 25F and 26F via one-proton knockout reactions on a CH$_2$ target, located at the object focal point of the R3B-LAND setup. The detection of emitted γ-rays and neutrons, added to the reconstruction of the momentum vector of the $A-1$ nuclei, allowed the determination of the energy of three resonant states in 25F and two in 26F. Based on its width and decay properties, the first resonant state in 25F is proposed to be a $J^\pi = 1/2^-$ arising from a $p_{1/2}$ proton-hole state. In 26F, the first resonance at 323(33) keV is proposed to be the $J^\pi = 3^+_1$ member of the $J^\pi = 1^+_1 - 4^+_1$ multiplet, arising from the coupling of a deeply bound $\nu d_{5/2}$ proton with an unbound $\nu d_{3/2}$ neutron, on top of an 24O core. Energies of observed states in 26F have been compared to calculations using the independent-particle shell model, a phenomenological shell-model, and the ab initio valence-space in-medium similarity renormalization group method, in order to discuss the role of the continuum in reducing the effective proton-neutron interaction when approaching the neutron drip line.

PACS numbers: 21.10.-k, 25.60.-t, 27.30.+t, 29.30.Hs

I. INTRODUCTION

The study of odd-odd nuclei is experimentally challenging, as such systems display many states of angular momentum J built from the coupling of the odd proton j_p and neutron j_n, leading to $|j_p - j_n| \le J \le |j_p + j_n|$ multiplets. Moreover, long-lived isomers are often present when states of extreme $|j_p - j_n|$ and $|j_p + j_n|$ values lie close in energy, and different experimental techniques may be required to determine the energy $E(J)$ of all states in a given multiplet. Such studies on odd-odd nuclei close to doubly magic ones, however, are awarded by the wealth of information obtained on proton-neutron interactions Int(J) [1], using an independent-particle shell model (IPSM) picture. For members of a given multiplet, the experimental energies of the states are empirically observed to vary parabolically as a function of $J(J+1)$ [2]. After shifted to a reference state, this parabolic law can be applied to Int(J) as a function of $J(J+1)$. When interpreted in terms of a low-order multipole expansion, the monopole part, which is the $(2J+1)$-weighted average of Int(J), contains information on the strength of the nuclear interaction. The quadrupole-dominating part, which depends in principle on the relative orientation between the two interacting particles only, breaks the degeneracy between multiplet levels and generate the observed parabolic behavior [3].

Potential complications to this simple model arise when moving towards the drip lines, where some (if not all) states comprising multiplets become unbound. In this case their characterization (i.e. energy, width, orbital angular momentum ℓ) is less certain than for bound states, and it is unclear whether the parabolic trend will be preserved or how the monopole and quadrupole parts should be determined. In particular, except if trapped in the nuclear potential by high centrifugal or Coulomb barriers, unbound states with pure configurations exhibit large widths, due to their overlap with states in the $(A-1)$ nucleus. Resonances are expected to broaden as their energy increases, leading progressively to a continuum of indistinguishable, overlapping resonances. Only a few counter-examples of narrow resonances are known [4]. Though challenging, extending these experimental investigations to the drip-line regions would provide new information on the behavior of Int(J) in extreme proton-neutron asymmetries and when one or more states of the multiplet are unbound. Checking the validity of a bound single-particle approach to drip-line nuclei is of interest for the study of drip-line phenomena such as nuclear halos, islands of inversion, and more generally to the modeling of neutron stars.

Two recent studies provided some first insights into these questions. The comparison of the two odd-odd mirror nuclei 16N and 18F, the first bound, the second proton-unbound, showed an orbital- and energy-dependent reduction of the experimental proton-neutron interaction of up to 40%. This effect was attributed to the large radial extension of certain orbits that probe the continuum [5]. Studies of the $N = 17$ odd-odd isotones towards the neutron drip line (from $Z = 13$ to $Z = 9$) have suggested, making use of a tentative assignment of the unbound $J = 3$ state in 26F [6–8], a gradual reduction of the experimental proton-neutron interaction with increasing neutron-to-proton asymmetry [9], rather than an abrupt change at the drip line.

As discussed in Ref. [6], the weakly bound 26F is one of the few ideal nuclei where we can study the impact of continuum effects on Int(J). Lying close to the doubly magic 24O [10–12], whose first excited states lie above 4 MeV [10, 12], low-energy states in 26F are, in the IPSM picture, expected to arise from the coupling of a deeply bound $\pi d_{5/2}$ proton ($S_p(25^F) = 14.43(14)$ MeV [13]) with an unbound $\nu d_{3/2}$ neutron ($S_n(25^O) = -7.49(10)$ keV [14–16]). This $(\pi d_{5/2})^1(\nu d_{3/2})^1$ coupling results in a $J^\pi = 1^+_3 - 4^+_1$ multiplet (Fig. 6(a)). Energies of the bound $J^\pi = 1^+_1, 2^+_1$ and 4^+_1 states were measured using different experimental techniques [6, 17, 18], and only a firm identification of the $J^\pi = 3^+_1$ component is missing. In particular, the spin assignments of the ground state (1^+) [6, 19], and of the weakly bound isomeric state (4^+_1 at 643 keV) [6], were proposed from their decay pattern to low and high energy spin values, respectively, in
the daughter nucleus ^{26}Ne. A resonance was observed at 271(37) keV above the neutron threshold using the nucleon-exchange reaction $^{26}\text{Ne} \rightarrow ^{26}\text{F}$ [7]. However, no spin assignment was proposed. The next likely multiplet would arise from the $(\pi 0d_{5/2})^2(\nu 1s_{1/2})^{-1}(\nu 0d_{3/2})^2$ configuration, leading to $J^\pi = 2^+, 3^+$ states (Fig. 6(b)). In the case of single-particle proton excitations, $J^\pi = 1^+, 2^+$ states are formed by the $(\pi 1s_{1/2})^1(\nu 0d_{3/2})^1$ configuration (Fig. 6(c)). None of these states has yet been observed.

In this article we have studied unbound states in ^{26}F produced by the one-proton knockout reaction at the GSI facility. The knockout of a $0d_{5/2}$ proton from ^{27}Ne should leave the ^{26}F nucleus in the $(\pi 0d_{5/2})^2(\nu 0d_{3/2})^1$ configuration (Fig. 6(a)) and favor the production of the $1^+ - 4^+$ multiplet of states, including the 3^+. The ^{25}F nucleus, also produced by one-proton knockout reaction from ^{26}Ne, has been studied as well. In both cases, results are compared to previous experimental values.

To gauge the validity of the IPSM nature of these multiplets, we compare to predictions of other theoretical models described in Section III: the phenomenological shell-model, which implicitly contains some aspects of continuum physics and three-nucleon (3N) forces, and the ab initio valence-space in-medium similarity renormalization group (IM-SRG) [21-24] based on two-nucleon (NN) and 3N forces, but neglecting the influence of the continuum.

II. EXPERIMENTAL SETUP

A stable beam of ^{40}Ar was accelerated by the linear accelerator UNILAC and by the synchrotron SIS-18 at the GSI facility to an energy of 490 A MeV and impinged on a 4 g/cm2-thick ^9Be target to induce fragmentation reactions, in which the ^{26}Ne and ^{28}Ne nuclei were produced. They were subsequently selected by the FRagment Separator (FRS) [25], whose magnetic rigidity was set to 9.05 Tm in order to favor the transmission of nuclei with $A/Z \sim 2.7$. These secondary nuclei were transmitted to the R3B-LAND experimental setup [26], where they were identified on an event-by-event basis using $i)$ their

1 The structure of the ground state of ^{26}F was also investigated by the one-neutron knockout reaction at relativistic energies [20]. The narrow inelastic momentum distribution of the ^{25}F residue pointed to the presence of valence neutrons in the $1s_{1/2}$ state, in apparent contradiction with the neutron $0d_{3/2}$ configuration of the 1^+ ground state proposed above. An exclusive one-neutron knockout experiment is needed to isolate the contributions leading to ^{25}F in either ground state or excited states, that would correspond to the knock-out from the last occupied or more deeply bound neutron orbitals, respectively. We moreover point out that the one-neutron knockout reaction may have occurred from the, at that time unknown, weakly bound 4^+ 2 ms-isomer. In such a case, the resulting one-neutron knockout momentum distribution from a weakly bound $bd_{3/2}$ orbit may be mimicking the one corresponding to an $1s_{1/2}$ orbit.

When produced in an unbound state during the proton knockout reaction, nuclei may emit neutrons that are detected in the forward direction using the large area neutron detector LAND [28]. It is composed of 10 planes with 20 paddles each, placed alternatively in horizontal and vertical directions, each paddle covering an area of 200×10 cm2 and having a thickness of 10 cm. Each paddle is composed of 11 iron and 10 scintillator sandwiched sheets, so that, when a neutron interacts with iron nuclei,
FIG. 1. (Color online) (a) \(Z = 9 \) transmitted nuclei obtained from the energy losses measured in the DSSSD located just after the target, and in the TFW. (b) Mass number \(A \) identification of the transmitted \(Z = 9 \) nuclei is obtained from their reconstructed trajectory in the dispersive plane, and from their time of flight (see text for details).

secondary protons are produced and detected with the plastic scintillators. A specific algorithm is used to reconstruct the hit profiles in LAND, and obtain from them the position of the first neutron-LAND interaction (with a spatial resolution of 5 cm FWHM) and the neutron time-of-flight (with a resolution of 370 ps FWHM). The LAND detector was positioned 13 m downstream of the reaction target, covering forward angles of \(\pm 79 \) mrad. The intrinsic efficiency for a \(\sim 450 \) MeV neutron is about 60%, and the geometric acceptance is 100% up to a fragment-neutron relative energy of 3 MeV.

III. MODELS

In this work, we consider predictions from three models. The first, the independent-particle shell model (IPSM), assumes that nuclear states are well described by one configuration, i.e., pure single-particle excitations. While generally not a viable picture, the potential simplicity of configurations in \(25,26\text{F} \) could make it a reasonable first-order description of low-lying states. Furthermore, all experimental considerations associated with assignments of \(\ell \) values are done by comparison with this model.

To gauge the validity of the IPSM picture in describing low-lying states in \(25,26\text{F} \), and to provide a more realistic account, we also compare to phenomenological shell-model calculations and ab initio valence-space IM-SRG. For the former, we use the well-established USDA Hamiltonian [29], optimized to reproduce energy levels for all \(sd \)-shell nuclei. As in Ref. [9], we choose USDA instead of USDB, since the latter is known to predict too small excitation energy of the \(J^\pi = 4^+ \) state in \(26\text{F} \). Valence-space IM-SRG has been shown to predict ground and excited states throughout the oxygen, fluorine, and neon isotopic chains [22–24, 30]. Beginning from nuclear forces derived from chiral effective field theory (EFT) [31, 32], 3N forces between core and valence nucleons are typically captured by normal ordering with respect to the \(^{16}\text{O} \) reference. Without these initial 3N forces, the spectra of \(25,26\text{F} \) are much too compressed, but with their addition, the IM-SRG spectra are in reasonable agreement with predictions from phenomenology [23]. More generally, 3N forces are necessary to reproduce properties of exotic nuclei near oxygen and calcium [33–47]. In this work we extend this approach to the ensemble normal-ordering procedure outlined in Ref. [24], which accurately accounts for 3N forces between valence particles and reproduces results of large-space ab initio methods in all cases where those methods are reliable. In all reported results, we use the same initial NN and 3N Hamiltonians as in Ref. [24]. To provide an uncertainty estimate from the many-body method, we perform calculations up to \(e_{\text{max}} \equiv 2n + \ell = 14 \) (with \(n \) as the number of radial nodes, \(\ell \) the orbital angular momentum, while \(e_{\text{max}} + 1 \) corresponds to the number of oscillator shells) and exponentially extrapolate to \(e_{\text{max}} = 24 \) for a range of harmonic-oscillator spacings \(\hbar \omega = 16 – 24 \) MeV. The resulting spread is indicated as a band in all IM-SRG results shown in Fig. 4 and 6. Finally, continuum effects are currently neglected.

Both USDA and IM-SRG calculations are performed within the standard \(sd \) shell above an \(^{16}\text{O} \) core, and hence will only produce positive-parity states. In \(25\text{F} \), where we are also interested in exploring negative-parity states, we compare to predictions from the \(s-p-sd-pf \) WBP interaction [48], but with protons restricted to the \(p-sd \) shells and neutrons restricted to \(sd \) and at most two particles in each of the \(f_{7/2} \), \(p_{3/2} \), and \(p_{1/2} \) orbits. In all cases the shell-model diagonalization was carried out with the NushellX@MSU code [49] to obtain the ground- and excited-state energies discussed below.
IV. ANALYSIS AND RESULTS

A. Experimental results for ^{25}F

The ^{25}F nucleus was populated via the one-proton ($-1p$) knockout reaction from a beam of ^{26}Ne. To select this reaction channel, at least one proton must be detected in the Crystal Ball detector. This selection was made possible after the (neighboring-crystal) add-back treatment of the Crystal Ball data, in order to find the total deposited energy per particle, photon or proton, event by event. We note that two protons can be detected in the case of a (p,2p) reaction with the H nuclei of the target. The decay of unbound resonant states of energies E_i in ^{25}F will lead to the production of ^{24}F, i) either in its ground, so the whole resonance energy E_i comes from the relative energy E_{rel} of the system ($^{24}\text{F}+\text{n}$), $ii)$ or in one of its excited states, that subsequently decays to the ground state by the emission of a γ ray of energy E_{γ}. In the latter case, a coincidence between the neutron and the de-exciting γ ray is observed. The excitation energies E_{exc} of the unbound states in ^{25}F correspond to:

$$E_{exc} = S_n + E_i = S_n + E_{rel} + (E_{\gamma}) \quad (1)$$

where S_n is the neutron emission threshold. The relative energy was reconstructed on an event-by-event basis using the invariant mass equation with the momentum vectors of the fragment ^{24}F and of the neutron:

$$E_{rel} = \sqrt{m_{frag}^2 + m_n^2 + 2 \left(\frac{E_{frag}E_n}{c^4} - \frac{p_{frag}p_n}{c^2} \cos \theta \right) c^2} - m_{frag}c^2 \quad (2)$$

In this equation, m_{frag} and m_n are the rest masses of the fragment and the neutron, E_{frag} and E_n their total energies, p_{frag} and p_n their momenta, and θ their relative angle. As shown in Fig. 2, the ($^{24}\text{F}+\text{n}$) relative energy spectrum displays three resonances. Each was described by a Breit-Wigner function whose width depends on its energy and on the orbital angular momentum ℓ of the emitted neutron [50]:

$$f_\ell(E_{rel}; E_{rel}^i, \Gamma_r) \propto \frac{\Gamma_\ell(E_{rel})}{(E_{rel}^i + \Delta_\ell(E_{rel}) - E_{rel})^2 + \Gamma_\ell(E_{rel})^2/4} \quad (3)$$

with the apparent width defined as:

$$\Gamma_\ell(E_{rel}) = \Gamma_r \times \frac{P_\ell(E_{rel})}{P_\ell(E_{rel}^i)} \quad (4)$$

and the energy shift given by:

$$\Delta_\ell(E_{rel}) = \Gamma_r \times \frac{S_\ell(E_{rel}) - S_\ell(E_{rel}^i)}{2P_\ell(E_{rel})} \quad (5)$$

where P_ℓ and S_ℓ are the penetrability and shift functions, respectively. This prescription, taken from Ref. [16], ensures that the energy shift is eliminated at the resonance energy.

In order to extract the energy E_{rel}^i and the intrinsic width Γ_r of the resonances, the spectrum of Fig. 2 is fitted with a linear combination of three f_ℓ functions which have been folded to include the resolution of the LAND detector, i.e. $\sigma \sim 260$ keV at $E_{rel} = 1$ MeV. In this fit, orbital angular momentum values ℓ between 0 and 2 were tested for each resonance, and the ℓ dependence is weak. A first resonance has been identified at $E_{rel}^1 = 49(9)$ keV ($\Gamma_r^1 = 51(49)$ keV), a second one at $E_{rel}^2 = 389(27)$ keV ($\Gamma_r^2 = 73(70)$ keV), and a third one at $E_{rel}^3 = 1546(106)$ keV ($\Gamma_r^3 = 2500(440)$ keV). The extracted resonance centroids (E_{rel}^i) and widths (Γ_r^i) are based on the fit that uses (f_1, f_2, f_3) for the first, second and third resonances respectively, this combination will be justified in the section IV B. The uncertainties correspond to one sigma. For the $\ell = 2$ resonances, the width of the resonances cannot be extracted easily due to the saturation of the Breit-Wigner line shape when the width Γ_r is increasing [10]. To overcome this problem, another fit was achieved in order to extract Γ_r for $\ell = 2$ resonances. This fit uses simple Breit-Wigner functions without energy shift ($\Delta_\ell(E_{rel} = 0)$ and without angular dependence of the width ($\Gamma_\ell(E_{rel}) = \Gamma_r$). It should be noted that a non-resonant continuum has been estimated using the event-mixing procedure, which is based on the measured pairs of fragment + neutron [51]. This component was added as a free parameter in the fit. However, its contribution has been found to be negligible.

![Graph](image-url)
The relative energy spectrum of Figure 3(b), gated on the 510 keV γ-ray, displays a clear peak at the energy of the first neutron resonance, whose amplitude matches the one expected assuming a γ-ray efficiency of about 25% and a 100% branching to the 2^+_1 excited state. It follows that the energy of the first resonance is $E^1_\gamma = 49(9) + 521(1) = 570(9)$ keV. No clear sign of γ coincidence with the two other neutron resonances is observed. Indeed, from the amplitudes of the second and third resonances observed in the singles spectrum in Fig. 2, approximately 40 and 100 neutrons should have been observed, respectively, in Fig. 3(b) if these resonances would have decayed 100% to the 2^+_1 excited state. The much lower number of observed neutrons, and the fact that no γ-decay branches at higher energies than 521 keV are observed in coincidence, indicates that the second resonance decays directly to the ground state of 24F. As a consequence, the second resonance is located at an excitation energy that is lower than the first one, in contradiction to the suggestion of Ref. [7] where γ-coincidence information was not available. As for the third resonance, the few counts around 1400 keV in Fig. 3(b) might be attributed to a coincidence with the γ ray at 521(1) keV. However, the marginal statistics, as well as the too narrow peak formed by these events, do not allow us to consider that the third resonance decays to the 2^+_1 state in 24F. To summarize, excitation energies of $E^2_{exc} = 4659(104)$ keV, $E^2_{exc} = 4840(100)$ keV, and $E^2_{exc} = 5816(146)$ keV are deduced in 25F using Eq. 1, with the relative energies E^γ_{rel}, the γ-coincidence information, and the neutron emission threshold of $S_n(25F) = 4270(100)$ keV [13] (see Table I).

FIG. 3. (Color online) (a) γ-ray spectrum obtained from the 26Ne(-1p) reaction, in coincidence with 24F and the detection of at least one neutron in LAND. (b) Relative energy spectrum for 25F, gated on the ~510 keV γ-ray transition in 24F.

2 We note that the 2% energy difference observed between these two γ-rays is also observed in 26F: the decay of the 2^+_1 to the 1^+_1 ground state is observed, in our work, near 643 keV instead of 657(7) keV in Ref. [17].

B. Discussion on the results of 25F

In a simplified description of the 26Ne(-1p) reaction, protons are removed from the $\pi d_{5/2}$ orbit, leading primarily to the production of positive-parity (mostly bound) states in 25F (Fig. 4(a,b)). If the 26Ne ground state contains some $2p2h$ neutron excitations $(\nu 1s_{1/2})^{-2}(\nu 0d_{3/2})^2$, positive parity states can also be
produced at higher excitation energy (likely above \(S_n \)) from a similar \(\pi 0d_{5/2} \) proton knockout (Fig. 4(d)). Protons can be removed as well from the deeply bound \(\pi 0p_{1/2} \) orbit, leading to negative parity states with mainly \(1/2^- \) spin-parity value (Fig. 4(c)). We propose that the state at 4840 keV, which decays with a low energy of 49 keV to the excited state of \(^{24}\text{F}\), rather than with a larger energy of 570 keV to the ground state, is a good candidate for a \(1/2^- \) state, since during the decay to the \(2^+_1 \) state in \(^{24}\text{F}\), an \(\ell = 1 \) neutron is emitted. A direct decay to the \(3^+ \) ground state of \(^{24}\text{F}\) would imply that the neutron carried a larger angular momentum of \(\ell = 3 \), which is strongly hindered. The energy of the \(1/2^- \) state is linked to the amplitude of the \(Z = 8 \) gap in \(^{25}\text{F}\).

It can be informative to compare experimental to calculated single-particle widths \(\Gamma_{sp}(\ell) \) using various assumptions on \(\ell \) values, ranging from 0 to 2. From this procedure, we would ideally obtain further information on the nature and purity of each resonance. Using a Woods-Saxon potential whose depth is adjusted to reproduce the energy centroid of the resonance at 570(9) keV, single particle widths of \(\Gamma_{sp}(0) = 1139 \) keV, \(\Gamma_{sp}(1) = 71 \) keV and \(\Gamma_{sp}(2) = 0.5 \) keV are calculated assuming pure configurations. The presently observed width of 51(49) keV, is compatible with the \(\ell = 1 \) assumption. This is in accordance with the earlier proposed \(1/2^- \) spin-parity, derived from its observed decay to the \(2^+_1 \) excited state of \(^{24}\text{F}\). As for the resonance at 389(27) keV, among the calculated widths of \(\Gamma_{sp}(0) = 3243 \) keV, \(\Gamma_{sp}(1) = 1136 \) keV and \(\Gamma_{sp}(2) = 86 \) keV, a better agreement with the experimental width of \(\Gamma_2 = 73(70) \) keV is obtained with the \(\ell = 2 \) configuration. This state would have a \(5/2^+ \) assignment if it corresponds to the configuration where a proton is knocked out from the \(\pi 0d_{5/2} \) orbit, with a neutron \((\nu 1s_{1/2})^{-2}(\nu 0d_{3/2})^2 \) excitation (Fig. 4(d)) in which neutrons are coupled to \(J = 0 \). Other states \((1/2^-_1 - 9/2^+_1) \) are considered when neutrons are coupled to \(J = 2 \) (Fig. 4(d)). With two neutrons in the \(0d_{5/2} \) orbit, this tentative \(5/2^+_1 \) state likely decays though an \(\ell = 2 \) neutron, leading to final configuration \((\pi 0d_{5/2})^1(\nu 1s_{1/2})^{-2}(\nu 0d_{3/2})^1 \) in \(^{24}\text{F}\). This coupling leads to \(J^\pi = 1^+_1 - 4^+_1 \) states that were searched for by Caceres et al. [30]. However, being at too high excitation energy, the \(5/2^+_1 \) state can only decay to the \(J^\pi = 3^- \) ground state of \(^{24}\text{F}\), that has a \((\pi 0d_{5/2})^1(\nu 1s_{1/2})^{-2} \) configuration. It follows that the decay occurs through the low admixture of the \((\pi 0d_{5/2})^1(\nu 1s_{1/2})^{-2} \) component in the \(J^\pi = 3^- \) ground state. This feature implies an \(\ell = 2 \) decay to the ground state with a low spectroscopic factor value. For the resonance at 1546(106) keV, the width \(\Gamma_2 = 2500(440) \) keV could correspond to several \(\Gamma_{sp}(\ell) \) states originating from the \((1/2^-_1 - 9/2^+_1) \) multiplet (Fig. 4(d)). It could alternatively correspond to another \(\ell = 1 \) state. The characteristics of the identified resonances in \(^{25}\text{F}\) are summarized in Table I.

In Fig. 4 we compare the measured experimental spectrum with the theoretical results. While both IM-SRG and USDA agree for a few excited states, the density of states given by USDA is higher than IM-SRG. The \(5/2^+_2 \) state, predicted by both USDA and IM-SRG to be \((\pi 0d_{5/2})^1(\nu 1s_{1/2})^{-1}(\nu 0d_{3/2})^1 \) configuration (Fig. 4(b)) agrees well with the experimental state at 4.2 MeV. The \(5/2^+_2 \) state from IM-SRG lies at 6.2 MeV but only contains a contribution from the neutron \(2p2h \) configuration \((\nu 1s_{1/2})^{-2}(\nu 0d_{3/2})^2 \) (Fig. 4(d)) on the order of a few percent. In USDA, the \(5/2^+_3 \) and \(5/2^+_2 \) states are close in energy at 5.7 MeV and 6.1 MeV, and both exhibit a very similar \(2p2h \) character of approximately 30%. We also note that the \(J^\pi = 1/2^- \) and \(5/2^+_1 \) states, calculated in Ref. [7] at energies slightly above \(S_n \) using the \(psd \)-shell WPM interaction are good candidates for the above resonances. By using the WPM interaction mentioned in Section III, the newly proposed \(1/2^- \) resonance, that corresponds to a predominant proton cross-shell excitation, is calculated at 5.2 MeV, in reasonable agreement with experiment.

Table I. Characteristics of the \(^{25}\text{F}\) resonances populated via one-proton-knockout \(^{26}\text{Ne}(\pi^-p)\) under the assumption that \(S_n = 4270(100) \) keV [13]. Resonance energies \(E_i \), excitation energies \(E_{exc}^i \), and widths \(\Gamma_i \) of the three resonances are given in keV with calculated single-particle widths \(\Gamma_{sp}(\ell) \), assuming various \(\ell \) values of each resonance.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(E_i)</th>
<th>(E_{exc}^i)</th>
<th>(\Gamma_i)</th>
<th>(\Gamma_{sp}(\ell=0))</th>
<th>(\Gamma_{sp}(\ell=1))</th>
<th>(\Gamma_{sp}(\ell=2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>570(9)</td>
<td>4840(100)</td>
<td>51(49)</td>
<td>1139</td>
<td>71</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>389(27)</td>
<td>4659(104)</td>
<td>73(70)</td>
<td>3243</td>
<td>1136</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>1546(106)</td>
<td>5816(146)</td>
<td>2500(440)</td>
<td>6848</td>
<td>4836</td>
<td>1799</td>
</tr>
</tbody>
</table>

\(^a \) The resonance located at the energy of \(E_i = 570(9) \) keV corresponds to the first peak in the relative energy spectrum of Fig. 2 at \(E_{rel}^i = 49(9) \) keV, to which the coincident \(\gamma \)-ray energy of \(E_\gamma = 521(1) \) keV has been added (see text for details).

C. Experimental results for \(^{26}\text{F}\)

Unbound states of \(^{26}\text{F}\) were produced using the one-proton knock-out reaction from \(^{27}\text{Ne}\) projectiles. The relative energy spectrum for \(^{26}\text{F}\) \((^{25}\text{F}+n)\) system, shown in Fig. 5(a), displays two resonances. No gamma is found in coincidence with them, implying that they decay directly to the ground state of \(^{25}\text{F}\) and that \(E_{rel}^i = E_i \). Since the additional neutron in \(^{26}\text{F}\) likely occupies the \(\nu 0d_{3/2} \) orbital, an angular momentum \(\ell = 2 \) has been used in the fit of each resonance, leading to \(E_{rel}^i = 323(33) \) keV and \(E_{rel}^{2d} = 1790(290) \) keV. Pure \(\ell = 0 \) are expected to be much broader, as shall be confirmed later in the discussion. The uncertainties correspond to one sigma confidence level. To check the sensitivity of the method, another fit was performed with a zero-energy shift in the \(f_\ell \) function. In this way the extracted centroids of
FIG. 4. (Color online) Left: Illustrative picture of the expected configurations populated in 25F from the 26Ne(-1p) reaction. Right: Experimental level scheme of 25F compared to shell-model calculations performed using the phenomenological USDA [29] and WBP [48] interactions and with ab initio valence-space Hamiltonians derived from IM-SRG [23, 24]. The unbound states above $S_n = 4270(100)$ keV were obtained in the present work, while the bound states were studied in Ref. [52]. Grey rectangles shown in the experimental spectrum and in the IM-SRG predictions correspond to uncertainties on the energy centroids of the states. These uncertainties on calculated energies overlap between 4 and 7 MeV, where many resonances are present. The bound states come mainly from $(\pi^0d_{5/2})^{1}$ (case (a)) and $(\pi^0d_{5/2})^{2}$ (case (b)) configurations. We propose that unbound states come mainly from $(\pi^0p_{1/2})^{-1}(\pi^0d_{5/2})^{1}$ (case (c)) and $(\pi^0d_{5/2})^{1}(\nu^1s_{1/2})^{-2}(\nu^0d_{3/2})^{2}$ (case (d)) configurations.

The resonances correspond to the maxima of the peaks [53]. A compatible result is found, with resonances at 350(50) keV and 1750(150) keV (Figure 5(b)).

In order to determine the width Γ_ℓ of these $\ell = 2$ resonances, the same procedure as for 25F was applied (see paragraph IV A). \(\Gamma_1^{(\ell=2)} = 570(480)\) keV and \(\Gamma_2^{(\ell=2)} = 4200(2500)\) keV were extracted for the first and second resonance widths. Owing to the fact that this fitting function is less adapted to the shape of the resonances, errors bars on these energy centroids are larger, \(E_{1,rel}^{(\ell=2)} = 366(119)\) keV and \(E_{2,rel}^{(\ell=2)} = 2430(650)\) keV, but the centroids themselves are fully compatible with those obtained from previously and listed in Table II.

Single-particle widths \(\Gamma_{sp}^{(\ell=0)} = 3080\) keV, \(\Gamma_{sp}^{(\ell=1)} = 1038\) keV, and \(\Gamma_{sp}^{(\ell=2)} = 74\) keV are calculated for the first resonance at 323 keV (see Table II), which, within the large uncertainties, is compatible with an $\ell = 2$ component. As for the second resonance at 1790 keV, \(\Gamma_{sp}^{(\ell=0)} = 7941\) keV, \(\Gamma_{sp}^{(\ell=1)} = 6127\) keV and \(\Gamma_{sp}^{(\ell=2)} = 2966\) keV are obtained. Considering the large uncertainty on the width of this resonance, it is difficult to conclude which ℓ assignment is preferred, and whether it corresponds to a
single or to multiple overlapping resonances. The characteristics of the resonances identified in \(^{26}\text{F}\), as well as calculated single-particle widths, are summarized in Table II.

![Graph](image1.png)

FIG. 5. (Color online) Relative energy spectrum for \(^{26}\text{F}\). The solid black line shows the result of a Breit-Wigner fit using two \(\ell = 2\) resonances whose centroid values are given in the figure. These resonances are folded with the resolution of the LAND detector. (a) With the energy shift \(\Delta E\) (\(E_{\text{rel}}\)) defined as in Eq. 5. (b) Assuming \(\Delta E(E_{\text{rel}}) = 0\).

D. Discussion on the results of \(^{26}\text{F}\)

It is reasonable to interpret low-lying states of \(^{26}\text{F}\), which can be considered as one proton and one neutron outside a \(^{24}\text{O}\) core or one proton and three neutrons outside a \(^{22}\text{O}\) core, in terms of the IPSM model. The simplest configuration would be \((\pi 0d_{3/2})^1(\nu 0d_{3/2})^1\) coupled above \(^{24}\text{O}\), which generates the \(J^\pi = 1^+ - 4^+\) multiplet (Fig. 6(a)). Among these states, only the \(J = 3^+_1\) has not been experimentally observed. The next most likely multiplets in the IPSM model arise from the \((\pi 0d_{5/2})^1(\nu 1s_{1/2})^{-1}(\nu 0d_{3/2})^2\) configuration above \(^{24}\text{O}\), leading to a \(J^\pi = 2^+, 3^+\) doublet (Fig. 6(b)), and the \((\nu 1s_{1/2})^1(\nu 0d_{3/2})^3\) configuration above \(^{24}\text{O}\), leading to a \(J^\pi = 1^+, 2^+\) doublet (Fig. 6(c)).

A resonance \(271(37)\) keV above the neutron threshold was previously observed in \(^{26}\text{F}\) using the nucleon-exchange reaction \(^{26}\text{Ne} \rightarrow ^{26}\text{F}\) [7], in which one \(\pi 0d_{5/2}\) proton in \(^{26}\text{Ne}\) is converted into a neutron in the \(\nu 0d_{3/2}\) orbital, and should produce all states of the \(J^\pi = 1^+ - 4^+\) multiplet. As favored by this reaction mechanism, the \(271(37)\) keV resonance could correspond to the missing \(J^\pi = 3^+_1\) state of the multiplet, but no spin assignment was proposed in Ref. [7]. The knockout of a \(\pi 0d_{5/2}\) proton from \(^{27}\text{Ne}\) will also leave the \(^{26}\text{F}\) nucleus in a similar \((\pi 0d_{5/2})^1(\nu 0d_{3/2})^1\) configuration and produce the same multiplet of states (Fig. 6(a)). Therefore, the fact that the same resonance is observed in the two experiments, at \(271(37)\) keV in Ref. [7] and at \(323(33)\) keV in the present work, gives further confidence in the assignment of this resonance as a \(J^\pi = 3^+_1\) state. The width of the resonance, in accordance with an \(\ell = 2\) emission, also supports this assignment.

No other resonance was observed in Ref. [7]. In the knockout reaction, higher energy resonances would be produced only when some neutron or proton admixture is present in the \(^{27}\text{Ne}\) ground state. Results of the \(^{26}\text{Ne}(d, p)^{27}\text{Ne}\) [54] transfer reaction have revealed that some neutron excitations across \(N = 16\) occur, i.e., \((\nu 1s_{1/2})^{-1}(\nu 0d_{3/2})^2\), as indicated by the partial vacancy of the \(\nu 1s_{1/2}\) orbit and the increased occupancy of the \(\nu 0d_{3/2}\) orbit. This offers the possibility to produce the \(J^\pi = 2^+, 3^+\) states in \(^{26}\text{F}\) from the knockout of \(^{27}\text{Ne}\) (Fig. 6(b)), making the second (broad) resonance a good candidate for one or two of these states.

Proton \((\pi 0d_{5/2})^{-2}(\pi 1s_{1/2})^2\) admixtures in the ground state configuration of \(^{27}\text{Ne}\) are also possible (Fig. 6(c)), as the two proton orbits are relatively close in energy (a \(1/2^+\) state, originating from the \((\pi 0d_{5/2})^{-2}(\pi 1s_{1/2})^1\) configuration, has been proposed at \(1720(15)\) keV in \(^{25}\text{F}\) [52]). This would produce \(J^\pi = 1^+, 2^+\) resonances in \(^{26}\text{F}\), populated in the knockout reaction from \(^{27}\text{Ne}\). While not excluded, such \(2p2h\) proton excitations in \(^{27}\text{Ne}\) are unlikely for two reasons. First, the pairing energy, which scales with \((2j + 1)\), in principle favors keeping protons in the \(\pi 0d_{5/2}\) orbit rather than promoting them to the upper \(\pi 1s_{1/2}\) orbit. Second, from the analysis of the one-proton

<table>
<thead>
<tr>
<th>(i)</th>
<th>(E^\ast_i)</th>
<th>(E_{\text{exc}}^i)</th>
<th>(\Gamma^i)</th>
<th>(\Gamma_\nu^f(\ell = 0))</th>
<th>(\Gamma_\nu^f(\ell = 1))</th>
<th>(\Gamma_\nu^f(\ell = 2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>323(33)</td>
<td>1394(134)</td>
<td>570(480)</td>
<td>3080</td>
<td>1038</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>1790(290)</td>
<td>2861(318)</td>
<td>4200(2500)</td>
<td>7941</td>
<td>6127</td>
<td>2966</td>
</tr>
</tbody>
</table>
knockout reaction in 26Ne, we find an upper value of 8% for the direct feeding of the $1/2^+$ state at 1720(15) keV in 25F and therefore for the $2p2h$ content of the 26Ne ground state. If the two 2^+ states (of the $J^x=2^+, 3^+$ and the $J^x=1^+, 2^+$ multiplets) were produced from these neutron or proton excitations, their configuration would likely be mixed, especially if the resonances lie close in energy. Comparison with shell-model calculations will now help complete this qualitative discussion.

In Fig. 6 the proposed experimental level scheme for 26F is compared to results of phenomenological shell-model calculations from the USDA Hamiltonian and ab initio valence-space IM-SRG. Both calculations reproduce the energies of the two bound excited states in 26F, $J^x = 2^+_2$ and 4^+_2. In addition the one neutron separation energy predicted by IM-SRG of $S_n=1020(100)$ keV agrees well with experiment. The first excited state above the neutron threshold likely corresponds to the $J^x = 3^+_1$ state belonging to the $J^x = 1^+_1 - 4^+_1$ multiplet, lying within several hundred keV of both USDA and IM-SRG predictions. Its calculated neutron occupancies, which are approximately 1.9 $\nu_1s_{1/2}$ and 1.3 $\nu_0d_{3/2}$, for both IM-SRG and USDA, correspond to a predominant $(\nu_1s_{1/2})^2(\nu_0d_{3/2})^1$ single-particle configuration (Fig. 6(a)). Moreover, these occupancies are nearly identical to those of all other members of the $J^x = 1^+_1 - 4^+_1$ multiplet for both interactions. The calculations also predict unbound $J^x = 2^+_3, 1^+_2,$ and 3^+_2 states at higher excitation energies, with occupancies corresponding to the IPSM configurations estimated earlier. From IM-SRG and USDA, the $J^x = 2^+_3, 3^+_2$ states have approximately a 1.9 and 2.0 $\nu_0d_{3/2}$ occupancy, respectively, compatible with a $2p1h$ excitation. With an occupancy of 0.8 in the $\pi_1s_{1/2}$ orbital, both calculations predict the $J^x = 1^+_2$ state to correspond to the proton excitation configuration of Fig. 6(c). The $J^x = 2^+_2$, however, has a more mixed configuration between a proton excitation to the $\pi_1s_{1/2}$ orbital and a neutron promoted to the $\nu_0d_{3/2}$ orbital. Experimentally, only a broad resonance, centered at about 1790 keV, is observed. This broad component can encompass the three lowest calculated resonances $2^+_2, 1^+_2$ and 3^+_2 that lie within 1 MeV of excitation energy.

Despite this general agreement, we note a systematic shift of several hundred keV between IM-SRG predictions and the experimental resonances. With 3N forces among valence particles accurately captured in the ensemble normal ordering procedure, a likely origin of this discrepancy would be effects of the continuum. For the narrow 3^+_2 resonance, the effect would appear to be minor, of the order of 200–300 keV. For broader resonances farther from the neutron-separation threshold, the impact of the continuum could be much larger, e.g., the predicted 3^+_2 state is approximately 1 MeV higher than the broad experimentally observed resonance structure. While 200–300 keV is approximately the effect seen in other ab initio studies of this region which include continuum degrees of freedom [35], deviations of this order are expected even with the USD class of Hamiltonians. Furthermore, truncations in the ab initio approach, such as the normal-ordered two-body approximation for 3N forces or higher orders in the chiral effective field theory expansion, could provide corrections of several hundred keV or more, and until all such effects are explicitly included in the IM-SRG calculations, any conclusion remains tentative. Since USDA partially includes effects of both continuum and 3N forces (implicitly captured when fitting to data), as expected, it agrees reasonably with both measured resonances.

One important word of caution must be added concerning the S_n value of 26F and its consequence on a possible shift in excitation energy of the resonances. The tabulated S_n value of 0.80(12) MeV was derived from a time-of-flight measurement of 26F nuclei produced in a fragmentation reaction [18] in which the existence of the 4^+_1 isomer at 643 keV [6] was not known. Therefore, this value contains some mixture of the ground state and isomeric states, and should be considered as a lower value of S_n. By assuming an isomeric ratio of 42(8)%, derived from the production of 26F in the same fragmentation reaction, the S_n value is increased by 270(50) keV, yielding $S_n = 1.07(13)$ MeV. This corresponds to the S_n value adopted in Fig. 6. If the isomeric ratio were 100%, the S_n value would reach 1.44(12) MeV, and the excitation energy of all resonances would increase by 373 keV, bringing the 3^+_2 closer to the USDA and IM-SRG theoretical predictions. The production of a high-J isomer in a fragmentation reaction, to our knowledge, has never reached 100%, and 42(8)% is already among the highest isomeric ratios observed at intermediate energies. Finally, we note that using the S_n value of 0.77(11) MeV given in the 2012 atomic mass evaluation [13], the energy of the unbound states are only shifted by 30 keV compared to the use of $S_n = 0.80(12)$ MeV [18].

We now turn to experimental interaction energies, Int(J)exp, which in the IPSM limit would correspond to the interaction between a $0d_{5/2}$ proton and a $0d_{3/2}$ neutron above a 24O core coupled to different spin orientations J. We define this quantity in terms of the experimental energies in 25,26F, 24O and 25O following the formalism of Ref. [6]:

$$\text{Int}(J) = \text{BE}(^{26}\text{F})_J - \text{BE}(^{26}\text{F})_{\text{free}},$$

where

$$\text{BE}(^{26}\text{F})_{\text{free}} = \text{BE}(^{25}\text{F}) + \text{BE}(^{24}\text{O}) - \text{BE}(^{24}\text{O}),$$

and $\text{BE}(^{26}\text{F})_J$ is the energy of a given J^x state in 26F. Values of Int(1,2,4)exp, obtained in Ref. [6], and Int(3)$^{exp} = -0.45(19)$ MeV, derived from the 3^+_1 energy measured in the present work, are listed in Table III. The corresponding effective experimental monopole interaction (i.e., the J-averaged interaction energy) amounts to $V_{pn}^{\text{exp}} \simeq -1$ MeV.

For comparison, we first consider Int(J)d, calculated in a simple picture of a proton-neutron system interacting via a zero-range δ-interaction, decomposed into radial
FIG. 6. (Color online) Left: Illustrative picture of the expected configurations populated in 26F from the 27Ne(-1p) reaction.

Right: Experimental level scheme of 26F compared to shell-model calculations performed using the phenomenological USDA interaction [29] and with ab initio valence-space Hamiltonians derived from IM-SRG [23, 24]. The energies of unbound states, above $S_n=1071(130)$ keV, were newly measured in this work, while those of the bound states are taken from Refs. [6, 17, 19]. Grey rectangles shown in the experimental spectrum and in the IM-SRG predictions correspond to uncertainties on the energies centroids of the states and of the S_n. The bound states $J^\pi=1^+\!/\!-1^-$, $4^+\!/\!-1^-$ as well as the unbound $J^\pi=3^+$ state are proposed to come from $(\pi d_5/2)\!^1(\nu d_3/2)\!^1$ (case (a)) configuration, while the second unbound state could come from $(\pi d_5/2)\!^1(\nu s_1/2)\!^{-1}(\nu d_3/2)\!^2$ (case (b)) and/or $(\pi s_1/2)\!^1(\nu d_3/2)\!^1$ (case (c)) configurations.

$F_R(n_p, \ell_p, n_n, \ell_n)$ and angular $A(j_p, j_n, J)$ parts [55]:

$$\text{Int}^d(j_p, j_n, J) = F_R(n_p, \ell_p, n_n, \ell_n)A(j_p, j_n, J),$$

(8)

where the radial overlap between the proton and neutron wave functions is:

$$F_R(n_p, \ell_p, n_n, \ell_n) = \frac{V_0}{4\pi} \int_0^\infty \frac{1}{r^2} [R_{n_p, \ell_p}(r)R_{n_n, \ell_n}(r)]^2 dr$$

(9)

We account for the unknown strength of the nuclear interaction V_0, by normalizing $\text{Int}^d(J)$ to experimental data, i.e. in the present case to $\text{Int}(1)^\text{exp}$. The angular part, $A(j_p, j_n, J)$, lifts the degeneracy between the different J states of the multiplet and is independent of the choice of the nuclear interaction. In Fig. 7, the values of $\text{Int}(J)^\text{exp}$ display an upward parabola as a function of $J(J+1)$. As expected, $\text{Int}(1)^\text{exp}$ and $\text{Int}(4)^\text{exp}$, that correspond to the coupling of a proton in $0d_5/2$ and a neutron in $0d_3/2$ in coplanar orbits, have the strongest intensities.

Contrary to well bound systems, the radial overlap between the proton and the neutron becomes poorer from one J state to another as the neutron becomes less and less bound. This introduces an implicit J-dependence of the radial part $F_R(n_p, \ell_p, n_n, \ell_n)$ that we shall characterize by a reduction factor $R(J)$. To determine $R(J)$, the proton-neutron radial overlap was calculated using experimental neutron binding energies in the 26F system. The corresponding wave functions were obtained by solving the Schrödinger equation in a Woods-Saxon potential, with a depth adjusted to reproduce the observed neutron or proton binding energies for the states of the 26F multiplet. Compared to the 1^+ state, smaller radial overlaps are found for other J states, which we characterize with the reduction factors, $R(J)$, shown in Table III. Being the least bound, the $J = 3$ state experiences the
FIG. 7. Experimental interaction energies corresponding to the $\pi 0d_{5/2} \times \nu 0d_{3/2}$ coupling in 26F, Int(J)$_{exp}$ (green circles), are plotted as a function of $J(J+1)$ and compared to calculations using (a) a delta interaction without (▼) or with (■) J-dependent radial corrections (see text for details), (b) the IM-SRG procedure, and (c) the USDA interaction. Fitted parabolas are drawn to guide the eye. Extracted experimental and calculated monopole values V_{pn} are given in each panel. All values of Int(J) and V_{pn} are given in Table III.

![Diagram](image)

Table III. Experimental and calculated interaction energies, Int(J) in MeV, between a $0d_{5/2}$ proton and a $0d_{3/2}$ neutron in 26F. Calculated results are obtained from USDA and IM-SRG shell model calculations and a schematic δ interaction. $R(J)$ denotes a correction applied to Int(J)$^\delta$ to deduce the interaction energy Int(J)$^{\delta+corr}$ (see text for details).

<table>
<thead>
<tr>
<th>J</th>
<th>Int(J)$_{exp}$</th>
<th>Int(J)$_{\delta}$</th>
<th>Int(J)$_{\delta+corr}$</th>
<th>IM-SRG</th>
<th>USDA</th>
<th>$R(J)$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$-1.85(13)$</td>
<td>-1.85</td>
<td>-1.85</td>
<td>100a</td>
<td></td>
<td>100b</td>
</tr>
<tr>
<td>2</td>
<td>$-1.19(14)$</td>
<td>-0.90</td>
<td>-0.82</td>
<td>91</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>$-0.45(19)$</td>
<td>-0.37</td>
<td>-0.28</td>
<td>74</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>$-1.21(13)$</td>
<td>-1.32</td>
<td>-1.21</td>
<td>91</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>

a Obtained when using $S_n = 1.07(13)$ MeV [6, 18].

b Normalized to Int(1)$_{exp}$.

The largest correction factor $R(J)$ of 74%. Applying this J-dependent correction $R(J)$ on the radial wave function, that leads to Int(J)$^{\delta+corr}$. Despite the largest reduction factor $R(J)$ for the $J = 3$ state, the Int(3)$^\delta$ value of -0.37 MeV is only slightly modified by about 100 keV (Int(3)$^{\delta+corr} = -0.28$ MeV) owing to its weak intensity. As shown in Table III, both calculated interaction energies, Int(J)$^\delta$ and Int(J)$^{\delta+corr}$, compare reasonably well with experimental values, Int(J)$_{exp}$. This shows that a fairly good description of the amplitude of the multiplet is obtained with this schematic model, with a modest shift of the unbound $J = 3$ state as compared to if it were treated as a bound state.

We add for comparison in Table III and Fig. 7 interaction energies obtained from the USDA and IM-SRG calculations. For USDA and IM-SRG the monopole interaction V_{pn} amounts to about -1.4 MeV. This is larger than the experimental value of -1.06 MeV, pointing to a smallest monopole interaction as compared to calculations. As seen in Table III and in Fig. 7, the amplitude of the multiplet parabola of USDA is also larger than experiment, while the energy of the $J = 3$ state is in good agreement. This suggests that the residual energy, that lifts the degeneracy between the J-components of the multiplet, is smaller than calculated. Both effects of smaller monopole and residual interactions, as compared to calculations, could be interpreted (with the word of caution concerning the binding energy of the 26F ground state mentioned before) as an effect of the proximity of the continuum on the effective proton-neutron interaction. We note that the IM-SRG values, not normalized to any experimental data, reproduce the Int(J)$_{exp}$ values, though with some overbinding. This is likely due to the starting SRG-evolved NN+3N Hamiltonians, which are known to gradually overbind with increasing nucleon number past 16O [23, 24].

V. CONCLUSION

Unbound states in 25,26F have been studied using the one-proton knockout reaction from 26,27Ne projectiles. Resonances at 49(9) keV, 389(27) keV, and
1546(106) keV were measured in 25F. Being in coincidence with the 521 keV transition, the energy of the $2^+ \rightarrow \text{g.s.}$ transition in 24F, the energy of the first resonance must be shifted upward compared to the value derived in Ref. [7], where the γ-ray detection was not available. This state at $E_{\text{exc}} = 4840(100)$ keV is a good candidate for a proton $\pi 0p_{1/2}$ hole (1/2$^-$ state) configuration, as discussed in comparison to shell-model calculations using the WBP interaction.

Unbound states in 26F have been studied using the same procedure. Two resonances have been observed at 323(33) keV and 1790(290) keV. The first resonance has been identified as a convincing candidate for the 3^+_1 state of the $J^\pi = 1^+_1 - 4^+_1$ multiplet, based on its observation in the two selective reactions of charge exchange from 26Ne and of knockout from 27Ne, as well as its relatively narrow width. The second broad resonance, not observed in previous studies, might reflect several states that could not be distinguished, corresponding to neutron (2ρh) or proton (1ρ) components.

These $J^\pi = 1^+_1 - 4^+_1$ states, arising from the $(\pi 0d_{5/2})^1(\nu 0d_{3/2})^1$ coupling, are particularly adapted to probe the evolution of Int(J) close to the neutron drip line. Energies of these $J^\pi = 1^+_1 - 4^+_1$ states have been compared with phenomenological shell-model calculations using the USDA interaction and ab initio valence-space IM-SRG calculations. In the two cases, an overall agreement between predicted and measured energies is found for the bound states. However, higher-lying states are found to be too high in energy, highlighting the need to include effects of the continuum for broad resonances. It is deduced here that, as compared to models that don’t treat the effect of continuum, (i) the overall effective interaction is weakened by about 30-40% and (ii) the amplitude of the multiplet of $J^\pi = 1^+_1 - 4^+_1$ states is more compressed, though correlations (overlap between the $0d_{5/2}$ proton and the $0d_{3/2}$ neutron wave functions) are still strong enough to lift the degeneracy between these J states.

The 26F nucleus is therefore particularly adapted to probe the effect of the continuum on the effective experimental proton-neutron interaction, and data presented in this paper, as well as in references [5–7, 9, 17], provide stringent constraints for future theory development including the treatment of the continuum and aiming at a better description of shell evolution at the drip lines. We note however that a large part of the conclusions drawn here rely on the S_n value of 26F that is subject to uncertainties because its atomic mass was measured with an unknown fraction of the $J = 4^+$ isomer at 643 keV. We therefore strongly encourage to confirm the S_n value of 26F to put the comparison between experiment and theory on a more reliable basis.

ACKNOWLEDGMENTS

P. Van Isacker and M. Ploszajczak are greatly acknowledged for fruitful discussions and suggestions on how to improve the manuscript. TRIUMF receives funding via a contribution through the National Research Council of Canada. This work was supported in part by NSERC, the NUCLEI SciDAC Collaboration under the U.S. Department of Energy Grants No. DE- SC0008533 and DE-SC0008511, the National Science Foundation under Grants No. PHY-1404159, the European Research Council Grant No. 307986 STRONGINT, the Deutsche Forschungsgesellschaft under Grant SFB 1245, and the BMBF under Contracts No. 05P15DFN1 and 05P15WOFNA. Computations were performed with an allocation of computing resources at the Jülich Supercomputing Center, Ohio Supercomputer Center (OSC), and the Michigan State University High Performance Computing Center (HPCC)/Institute for Cyber-Enabled Research (iCER). This work has also been supported by the Spanish MINECO via project FA2013-41267-P, C. A. Bertulani acknowledges support from U. S. DOE Grant DE-FG02-08ER41533 and the U. S. NSF Grant No. 1415656. M. Petri acknowledges support from the Helmholtz International Center for FAIR within the framework of the LOEWE program launched by the State of Hesse.