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Production of exotic atoms at energies available at the CERN Large Hadron Collider

C. A. Bertulani and M. Ellermann
Department of Physics and Astronomy, Texas A&M University–Commerce, Commerce, Texas 75429, USA

(Received 17 March 2010; published 29 April 2010)

We study in details the space-time dependence of the production of muonic, pionic, and other exotic atoms by
the coherent photon exchange between nuclei at the Large Hadron Collider at CERN. We show that a multipole
expansion of the electromagnetic interaction yields an useful insight of the bound-free production mechanism
which has not been explored in the literature. Predictions for the spatial, temporal, and angular distribution, as
well as the total cross sections, for the production of exotic atoms are also included.
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I. INTRODUCTION

It is undeniable that ultraperipheral collisions (i.e., colli-
sions dominated by the electromagnetic interaction) between
relativistic heavy ions allows interesting physics to be probed.
As far back as 1989 it was noticed that even the Higgs boson
could be produced at comparable rates as in central collisions
between relativistic heavy ions [1,2], the advantage being
that ultraperipheral collisions are cleaner in the sense that
nothing else than the Higgs boson would be observed. By
now, ultraperipheral collisions are known as an excellent tool
for several interesting phenomena and have been discussed in
numerous publications, reviews, and popular articles (see, e.g.,
Refs. [3,4]).

A process of interest in ultraperipheral collisions with
relativistic heavy ions is the production of pairs in which one
of the particles is captured in an orbit around one of the ions
in the collider (“bound-free” pair production). In particular
the process of pair production with capture was used as a
tool to generate the first artificial antihydrogen atom in the
laboratory [5]. The pioneer CERN experiment was followed by
another experiment at Fermilab [6]. The number of antiatoms
produced was shown to be in good agreement with detailed
theoretical predictions [7].

In this article we extend these studies by considering the
production of exotic atoms in p-p and heavy-ion collisions
such as those being carried out at the Large Hadron Collider
(LHC) at CERN. In our notation, an exotic atom is an atom
in which one electron has been replaced by other particles of
the same charge. In contrast to previous approaches, we show
that a multipole expansion of the electromagnetic field yields
several insights in the production mechanism which have not
been explored in the literature. Our calculations apply to the
production of muonic atoms, pionic atoms, protonium, and
so on. The Bohr radius for a muonic atom is much closer
to the nucleus than in an ordinary atom, and corrections due
to quantum electrodynamics are important. The energy levels
and transition rates from excited states to the ground state
of muonic atoms also provide experimental tests of quantum
electrodynamics. Hadronic atoms, such as pionic hydrogen and
kaonic hydrogen, also provide interesting experimental probes
of the theory of quantum chromodynamics. A protonium is
antiprotonic hydrogen, a composite of a negatively charged
antiproton paired with a positively charged proton or nucleus.

Protonium has been studied theoretically mainly by using
nonrelativistic quantum mechanics, which yields predictions
for its binding energy and lifetime. The lifetimes are predicted
in the range of 0.1–10 µs. While protonium production has
a very small cross section in p-p collisions at CERN, the
cross section is appreciable for heavy ions, e.g., for Pb-Pb
collisions. In this case, the antiproton will be captured in
an orbit around one of the Pb nuclei. Such a system would
be of large interest for understanding internucleon forces in
charge-conjugate channels.

Most of our calculations will be for the production of
muonic atoms and p-p collisions. There is no qualitative
difference for the production of other exotic atoms via the
same mechanism, except for the obvious reduction of the
production yields due to mass differences. The production
cross sections for Pb-Pb collisions will be enhanced by a huge
amount, approximately equal to 1010 − 1012, but the details
of the production mechanism are practically the same as in
p-p collisions. In Sec. II we show how a multipole expansion
allows for a clear space-time description of the bound-free
production mechanism. Useful approximate formulas are
derived. In Sec. III we present our numerical results and
discuss the physics properties of our results. Our conclusions
are presented in Sec. IV.

II. PRODUCTION OF EXOTIC ATOMS IN ION-ION
COLLISIONS

In the frame of reference of one nucleus, the time-dependent
electromagnetic field generated by the other nucleus is given
by the Lienard-Wiechert potential

Aµ(r, t) = vµφ, with vµ = (1, v), and

φ(r, t) = �Ze2

|R − R′(t)| , (1)

where

r = (x, y, z), R = (x, y, �z), R′ = (bx, by, �vt),

and v is the relative velocity between the nuclei which we
will take to lie along the z axis. � is the relativistic Lorentz
factor � = 1/(1 − v2)1/2 (otherwise explicitly stated, here we
use the units h̄ = c = 1).
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In first-order perturbation theory, the pair-production am-
plitude at time t for a collision with impact parameter b =√

b2
x + b2

y is given in terms of the transition density ρ(r) and
the current density j(r), as

a1st(p, b, t) = 1

i

∫ t

−∞
dt ′eiωt ′

∫
d3rjµ(r)Aµ(r, t ′), (2)

where ω = ε + m − I , with ε equal to the energy of the
free positive particle and I being the ionization energy of
the negative captured particle; m is the rest mass of either
particle. The transition current is given in terms of the Dirac
matrices γµ, and the particle and antiparticle wave functions,
i.e., jµ(r) = e�−γµ�+, where �− is the wave function for
the captured negative particle and �+ that of the free positive
particle.

The multipole expansion of jµAµ has been extensively
discussed in details in Refs. [8–10]. Replacing the Schrödinger
by the Dirac currents in their results, one finds that
jµ(r)Aµ(r, t) = ∑

πlκ Vπlκ (r, b, t), where π = E,M and l =
0, 1, 2, . . ., and κ = −l, . . . , l denote the multipolarities. For
electric E1 (electric dipole) and E2 (electric quadrupole)
multipolarities,

VE1κ (r, b, t)

= �− (r) (1 − γ0γz)rY1κ (r̂) �+ (r)

× �Ze2√2π/3

(b2 + �2v2t2)3/2

{
∓b, (if κ = ±1)√

2vt (if κ = 0),
(3)

VE2κ (r, b, t)

= �− (r) (1 − γ0γz)r
2Y2κ (r̂) �+ (r)

�Ze2√3π/10

(b2 + �2v2t2)5/2

×

⎧⎪⎨
⎪⎩

b2, (if κ = ±2)

∓(�2 + 1)bvt, (if κ = ±1)√
2/3(2�2v2t2 − b2) (if κ = 0).

(4)

In addition, for magnetic dipole (M1) [10],

VM1κ (r, b, t)

=
(pz

m

)
�− (r) (1 − γ0γz)γzrY1κ (r̂) �+ (r)

× �Ze2√2π/3

(b2 + �2v2t2)3/2

{±b, (if κ = ±1)

0 (if κ = 0).
(5)

For the positive particle wave function we use a plane wave
and a correction term to account for the distortion due to
the nuclear charge [7]. The wave function is given by �+ =
N [v(p) exp(ip · r) + � ′

+], where N (ε) = exp(πa+/2)�(1 +
ia+), with a+ = Ze2m/p, with p being the proton momentum,
v(p) the particle spinor, and |N (ε)|2 = 2πa+/[exp(2πa+) +
1]. The correction term � ′

+ is given by Eq. (B5) of Ref. [7],
which for our purposes can be written as

� ′
+(r) = Ze2

2π2
v(p)

∫
d3qe−iq·r 2γ 0ε + iγ · (q − p)

(p − q)2(q2 − p2)
, (6)

with ε =
√

p2 + m2. Parts of this integral can be done
analytically.

For the negative particle we use the distorted hydrogenic
wave function [7] for capture to the ground state,

�−(r) = 1√
π

(
Z

a

)3/2[
1 − i

2
γ 0γ · ∇

]
u(ε0) exp (−Zr/a) ,

(7)

where u is the negative particle spinor, ε0 is the energy of
the exotic atom bound-state, and a = 1/me2 is the hydrogen
Bohr radius. As noted in Ref. [7], the reason why we need
to keep the corrections in the wave functions to first order in
Ze2 is because for ε � m these corrections yield a term of the
same order of magnitude as the plane-wave to the total cross
section. The reason for this are the small distances which enter
in the calculation of the integral in Eq. (2). The wave function
corrections are essential to properly account for the short
distance effects. Such effects are not as important in the
case of bound-free production of heavy particle-antiparticle
pairs, but we keep them for a more accurate description of the
process.

To gain insight into the pair production probability with
capture and its distribution in space-time, we will compare our
numerical results with simplified calculations which neglect
the above mentioned short-distance corrections of the wave
function of the captured negative particle as well as of the free
positive particle. This is a reasonable approximation for small
values of the free particle energy, i.e., for ε ∼ m, as we show
later. This approximation allows us to obtain the coordinate
integral in a1st analytically by using

Fλκ (p) = 1√
π

(
Z

a

)3/2 ∫
d3re−ip·rrλYλκ (r̂)e−Zr/a

= 32
√

π
( a

Z

)5/2

⎧⎨
⎩

xp

(1+x2
p)3 Y1κ (p̂) for λ = 1,

− 6(a/Z)x2
p

(1+x2
p)4 Y2κ (p̂) for λ = 2,

(8)

where xp = ap/Z and p̂ is the unit vector for the positive
particle momentum direction with respect to a z axis pointing
along the beam direction. To calculate total cross sections we
keep the wave function corrections, Eqs. (6) and (7). In this
case, some of the coordinate integrals need to be performed
numerically.

The exotic atom production probability density, at time t

and for a collision with impact parameter b, is obtained by the
square of expression (2), i.e.,

P(p, b, t) =
∑
spins

|a1st(p, b, t)|2 , (9)

where the sum over spins is performed with standard trace
techniques.

The production probability, at time t and for a collision
with impact parameter b, is obtained by integration over
momentum,

P (b, t) =
∫

d3p

(2π )3
P(p, b, t). (10)
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If one neglects the derivative corrections in the particle and
antiparticle wave function, the sum over spins in Eq. (9)
yields

P (b, t) = 4m
∑
λκ

∣∣∣∣
∫

d3p

(2π )3

√
ε + mN (ε)Fλκ (p)

∣∣∣∣
2

× |Gλκ (b, ω, t)|2 , (11)

where the small binding energy I was neglected as it is
small compared to the mass m. The functions Gλκ are
defined as Gλκ = ∫ t

0 exp{−iωt ′}{· · ·}, where the terms inside
braces {· · ·} are the time-dependent terms to the right of the
positive particle wave functions in Eqs. (3)–(5). For the M1
magnetic multipole the same equation can be used with the
replacement

√
ε + m → √

ε − m and multiplied by an extra
factor (pz/m)2.

The cross section for bound-free pair production is obtained
by integrating the production probability over all impact
parameters at t = ∞, i.e.,

σ =
∫

d2bP (b,∞). (12)

The above integral over impact parameters diverge if
the potentials of Eqs. (3)–(5) are used. The reason is that
these potentials are obtained from an expansion of the full
Lienard-Wiechart potential of Eq. (1) which is only valid for
distant collisions, i.e., when the Lorentz-modified projectile
coordinate R′ is larger than the Lorentz-modified internal
coordinate R. A better approach is to use a full representation

of the potential in terms of a momentum transform, as done in
Ref. [7], i.e.,

φ(r, t) = �Ze

2π2

∫
d3q

eiq·[R−R′(t)]

q2
. (13)

This introduces extra integrations over the virtual momentum
q increasing considerably the numerical effort [7].

Recently, it was shown that one can treat the effects of close
collisions (R′ < R) by using the potentials of Eqs. (3)–(5)
for R′ > R and the potentials for close collisions given by
[10] (we will only treat the E1 case for reasons to be shown
later)

V close
E1κ (r, b, t)

= �− (r) (1 − γ0γz)
1

r2
Y ∗

1κ (r̂) �+ (r) Ze2

×
√

2π

3
{g0 (�) + cκg2 (�)}

{√
2vt if κ = 0

∓b if κ = ±1
,

(14)

where c0 = 2/5, c±1 = −1/5, and

g0 (�) = 1

v2
ln [�(1 + v)] ,

(15)

g2 (�) = 5

4v

(
3

v2
− 1

)
ln [�(1 + v)] − 15

2v2
.

The integrals over r now have to be carried out by using Eq. (3)
for R′ > R and Eq. (14) for R′ < R. In particular, for b = 0
one gets

1

i

∫ t

−∞
dt ′eiωt ′V close

E1κ (r, b, t ′) = δκ,0�n (r) (1 − γ0γz)
1

r2
Y ∗

10 (r̂) �p (r) 4

√
π

3
Ze2�v {g0 (�) + c0g2 (�)}

× 1

ω2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin

(
Rω

�v

)
− Rω

�v
cos

(
Rω

�v

)
if R � �vt

e−iRω/�v

(
i − Rω

�v

)
+ ieitω(itω − 1) if R > �vt

, (16)

For � � 1, g0(�) + c0g2(�) = 2 ln(2�) − 15/2. When t =
∞ only the upper term in the last part of this equation
contributes (R < ∞) to the production probability.

We use the above separation of close and distant collisions
to make an estimate of their relative contributions to the
total cross section. To obtain the total cross sections we use
the formalism developed in Ref. [7] which allows a better
reduction of the integrations in momentum space. Adapting
their results for ion-ion collisions, we get

σ = 256πZ7e4

3a5

∫ ∞

m−I

dε |N (ε)|2 p

ω

∫ ∞

0
dq

q(q2 + ω2/�2v2)

(q2 − ω2/�2v2)2

× (p2 + 3q2 + 3ω2/v2)(3p2 + q2 + ω2/v2)

(q2 + ω2/v2 − p2)6
. (17)

Note that we keep the relative velocity v between the
colliding nuclei in all formulas, although v ∼ c. This is
necessary because sometimes important combinations of 1 and
v conspire and combine into Lorentz factors � = (1 − v2)−1/2

in subsequent steps of the calculations.

III. RESULTS

At the Large Hadron Collider (LHC) at CERN the Lorentz
γ factor in the laboratory frame, �lab, is 7000 for p-p and 3000
for Pb-Pb collisions. The relationship between the Lorentz
contraction factor associated with the relative velocity between
the colliding nuclei, and the collider energy per nucleon,
E/A, in GeV, is given by � = 2(�2

lab − 1) 	 2(1.0735E/A)2.
This means that for the production of exotic atoms we have
effectively � 	 108 for p-p and � 	 107 for Pb-Pb collisions.
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FIG. 1. (Color online) Relative probability PEλ(b, t)/PE1(b, t =
∞), for production of a muonic atom in p-p collisions at the LHC
with an impact parameter b = amuon = 255 fm, where amuon is the
Bohr radius for a muonic atom.

In Fig. 1 we plot the relative probability
PEλ(b, t)/PE1(b, t = ∞), for production of a muonic
atom in p-p collisions at the LHC with an impact parameter
b = amuon = 255 fm, where amuon is the Bohr radius for
a muonic atom. The time scale is in units of 10−8 fm/c.
The probability is normalized so that it is equal to the
asymptotic value of the E1 multipolarity. In absolute
values the probabilities are very small, justifying the use of
perturbation theory. The E2 probability tends to its asymptotic
value faster than E1. This can be understood from Eqs. (3)
and (4) as the time dependence of the E2 field is determined
by a higher inverse power of time. The asymptotic value of
the E2 probability is about a factor 4 smaller than the E1 case.
As a function of the impact parameter, the E2 probability
decreases with an additional 1/b2 dependence as compared to
E1. This yields cross sections for pair production with capture
due to the E2 field being much smaller than that with E1.
The probabilities and cross sections are also much smaller
in the case of the M1 multipolarity, due to the factor (pz/m)
in Eq. (5). This is also substantiated by the approximation in
Eq. (11), which has a factor

√
ε − m instead of the

√
ε + m

which appears in the electric multipole cases. For low positive
particle momentum this leads to a further suppression of the
M1 multipolarity.

We thus conclude that the E1 multipolarity alone is
responsible for most part of the bound-free pair-production
probability. This comes as no surprise because of the very large
� factor in the frame of reference of the exotic atom. The spatial
distribution of the time-dependent field is compressed as a
pancakelike object with a spatial width z = ct = b/�. For
b = 200 fm this is equal to z 	 10−6 fm for the LHC. Even
for very large impact parameters, e.g., 1Å = 105 fm, z is
small compared to the nuclear sizes. The E2 field is a measure
of the “tidal” force, proportional to the spatial spreading of the
electric field [3]. This “tidal” effect becomes larger at smaller
velocities, when the field lines are not as compressed. The
large value of � also leads to a complete dominance of the
κ = ±1 component of the E1 field in Eq. (3).

FIG. 2. (Color online) Coordinate distribution in the plane along
the beam axis of the probability for production of muonic atoms with
capture in the K shell with p-p collisions at the LHC. The impact
parameter is chosen as b = amuon = 255 fm and is along the vertical
axis.

The above discussion implies that in order to calculate pair
production with capture in ultraperipheral collisions at the
LHC one needs to consider only the E1 field, with κ = ±1,
in Eq. (3). The asymptotic production probability amplitude,
Eq. (2), for a given impact parameter b, is then given by

aκ=±1(p, b) = 2κi
Ze2

vb

√
2π

3
ξK1(ξ )

×
∫

d3r�n (r) (1 − γ0γz)rY1κ (r̂) �p (r) ,

(18)

where ξ = ωb/�v and K1 is the modified Bessel function
of first order. Note that ξK1(ξ ) 	 1 for ξ � 1. For ξ > 1,
ξK1(ξ ) drops to zero exponentially. This means that the
production probability drops as 1/b2 up to bmax ≈ �h̄c/m ≈
1010(MeV fm)/mc2 for p-p collisions at the LHC. For pro-
duction of muons and pions with capture this means bmax ≈
108 fm, whereas for proton-antiproton with capture, this means
bmax ≈ 107 fm.

In Fig. 2 we show the coordinate space distribution for
production of muons with capture in the K shell in p-p
collisions at the LHC. The distribution is shown in a plane
containing the beam direction and the impact parameter vector.
The calculation is done for the E1 multipolarity and for an
impact parameter b = amuon. The positive muon energy is
taken as ε = 1.1mµ and its direction of emission is chosen
as 100◦ when measured along the direction of motion of the
muonic atom. One notes that the production mechanism is
more efficient in regions perpendicular to the beam axis. The
darker areas are representative of larger production rates in
coordinate space. Figure 3 shows the same result but as seen
in the plane perpendicular to the beam axis. In this case, the
impact parameter vector lies along the x direction. We observe
that the probability density is largest within a toruslike region
with a radius r ≈ amuon from the origin of the muonic atom,
with the torus axis along the beam direction.
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FIG. 3. (Color online) Same as the previous figure, but in the
plane perpendicular to the beam axis. The impact parameter vector
lies along the x direction.

We now use Eq. (16) to obtain the production probability
of muonic atoms at the LHC at zero impact parameter. We
find that the probability is five orders of magnitude smaller
than that with b = amuon. We easily understand this result
by inspection of Eq. (16). When t = ∞ only the upper
term in the last part contributes (R < ∞) to the production
probability. This term oscillates harmonically as a function of
ωR/�v ≈ 2mR/�v. For R along the z direction this variable
varies as 2mc2z/h̄c. As the largest contribution to the integral
arises for z ≈ amuon, this variable is much larger than the
unity, causing the harmonic functions to oscillate wildly, and
leading to a small value of the integral over coordinates (matrix
element).

We now perform an estimate of the contribution of
collisions with small impact parameters by using Eq. (16)
and integrating it numerically over time, space, and impact
parameters for several energies and angles of the emitted
positive muon. To obtain these estimates, we have used the
functions �− and �+ without the derivative corrections. The
integrals are performed for b < amuon. We compare with the re-
sults obtained using Eq. (18) for b � amuon. We find that the
impact parameter region b > amuon contributes at least a factor
100 more to the cross section than the region with b < amuon.
Such findings are confirmed by an integration over the free
positive muon energy. This is also confirmed using Eqs. (18)
and (16) and �− and �+ without derivative corrections. Our
numerical results are shown in Fig. 4. We clearly see that
the small impact parameters, b � amuon yield a much smaller
probability than b � amuon.

In Fig. 5, we plot the angular distribution of positive muon
when the negative muon is captured by a proton at the LHC
as a function of the angle that the free muon has with the
direction of motion of the muonic atom and of the energy of
the free positive muon. The impact parameter is chosen as
b = amuon. The units in the contour plot are arbitrary, with the
darker areas being the region of highest probability. The plot
shows that the higher the electron energy is, the more backward
peaked the distribution becomes. In the frame of reference of
the atom, the angular distribution of the positive particles is
backward peaked, along the beam axis, which opposes the

0 100 200 300 400 500
b  [fm]

0

10

20

30

P
(b

) 
 [

10
-1

1 ]

FIG. 4. (Color online) Probability of muonic atom production in
p-p collisions at the LHC as a function of the impact parameter.

direction of motion of the nucleus capturing the muon. The
higher the positive muon energy is, the more backward peaked
the distribution becomes. The most probable energy of the
free muon is nonrelativistic, i.e., ε 	 m. For such low-energy
muons the opening angle for emission of the free muon is
larger. In a collider, a Lorentz transformation of these results
to the laboratory frame implies that all particles are seen along
the beam direction, within an opening angle of order of 1/�.
That is, all positive particles are seen along the same direction
as the beam.

Using Eq. (17) we calculate the cross sections for produc-
tion of exotic atoms in p-p and Pb-Pb collisions at the LHC.
Our results are shown in Table I. Whereas the cross sections
are small for p-p collisions, they are by no means negligible
for Pb-Pb collisions. This is due to the factor Z7 in Eq. (17),

FIG. 5. (Color online) Contour plot with the angular distribution
of the positive muon when the negative muon is captured by a proton
at the LHC, as a function of the angle that the free muon has with the
direction of motion of the muonic atom and of the energy of the free
positive muon.

044910-5



C. A. BERTULANI AND M. ELLERMANN PHYSICAL REVIEW C 81, 044910 (2010)

TABLE I. Cross sections for production of exotic atoms in p-p
and Pb-Pb collisions at the CERN Large Hadron Collider (LHC).

Exotic atom p-p Pb-Pb

Hydrogen 63.4 pb 132 b
Muonic 44.8 × 10−4 pb 0.16 mb
Pionic 21.3 × 10−4 pb 0.09 mb
Kaonic 1.3 × 10−4 pb 4.3 µb
ρ atom 0.51 × 10−4 pb 1.3 µb
Protonium 0.09 × 10−4 pb 0.3 µb

although a reduction of this Z dependence arises from the
distortion factor N .

IV. CONCLUSIONS

Because of the very strong electromagnetic fields of short
duration, new and interesting physics arise at the LHC. We
have studied the space-time dependence of the cross sections
for production of exotic atoms in ultraperipheral collisions
at the LHC. We have considered the case of muonic, pionic
and antiprotonic (or protonium) atoms. A very transparent
and simple formulation is obtained using the lowest-order
corrections for the positron and electron wave functions and a
multipole expansion of the electromagnetic field separated in
the regions of small (i.e., b smaller than the Bohr radius) and

large impact parameters. Whereas most of our discussion and
conclusions have been based on calculations of muonic atoms,
the qualitative aspects will not change for pionic, protonic,
or other exotic atoms, except for the magnitude of the cross
sections. The space-time and impact parameter dependencies
will also be similar for Pb-Pb collisions.

We considered the capture of negative particles in the K
shell of either the proton of the Pb nucleus. This is the largest
contribution to the capture cross section. Inclusion of capture to
all other shells will increase by about 20% of the our calculated
cross sections, according to early estimates for electron-pair
production with capture [3]. Depending on the relevance of this
process to peripheral collisions with relativistic heavy ions and
on the accuracy attained by the experiments, further theoretical
studies on the capture to higher orbits could be necessary. The
distortion of the wave functions due to the nuclear size should
also be considered. Due to their small charges, p-p collisions
will not yield a measurable amount of exotic atoms, but in
Pb-Pb collisions we expect an abundant number of events of
production of exotic atoms. This will open opportunities to
study the properties of exotic atoms and their decay widths.
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