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Abstract

In this brief review, we discuss the basic theoretical concepts used in the
experimental studies of the most common cases of direct reactions such as (a)
elastic scattering, (b) inelastic scattering, (c) Coulomb excitation, (d) transfer
reactions, and (e) breakup reactions.
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Introduction

Direct nuclear reactions occur in a characteristic time of 10−22 s, the time it takes
a nucleon to cross the nucleus. The short time only allows for the interaction with
one or a few nucleons on the surface of the nuclei involved. Contrary to compound
nucleus products, the direct reaction products are not distributed isotropically, but
are focused in the forward direction. Bethe et al. (1952) first understood the mecha-
nism of direct reactions as due mainly to a surface diffractive effect and showed
the way to use them as spectroscopic tools. A recommended list of references,
which will help the reader of this short and scope-limited review, is (Fesbach 1992;
Satchler 1983; Broglia and Winther 1991; Bertulani and Danielewicz 2004; Canto
and Hussein 2013). The dawn of direct reaction theory and its use to study nuclear
structure has been recently reviewed in (Bonaccorso 2018).

Elastic Scattering

Upon hitting a target nucleus, the wave function of an impinging nucleus is modified
by the scattering potential (For simplicity we assume a spherically symmetric
potential.) U(r), leading to the appearance of a phase shift of the outgoing part of
the scattered wave. Elastic scattering occurs when there is no final energy transfer
to the target nucleus. Generally, the projectile wave function is not only modified by
a phase factor, but its magnitude might also change due to a loss of flux from the
elastic channel. For a projectile with momentum p = h̄k, the total wave function at
a distance r from the scattering center is asymptotically given by

Ψ → 1

2i

∞∑

�=0

(2� + 1)ilP�(cosθ)
S�e

i(kr−�π/2) − e−i(kr−�π/2)

kr
, (1)

where θ is the scattering angle and a sum is carried out for all partial waves
(or quantized angular momenta) � = 0, 1, 2, · · · . The complex coefficient S� is
known as scattering matrix, or simply S-matrix. It is called a matrix because when
more than one reaction possibility (or reaction channel) is available, the complex
coefficient S� may acquire multiple labels. If S� = 1, the sum in Eq. (1) leads to
Ψ ∼ exp(ik.r), that is, a plane wave. But if

S� = exp[2iδ�], (2)

and δ� is real, the incoming and outgoing waves have the same magnitude, and the
scattering is termed elastic. The quantities δl are known as phase shifts.

The partial wave expansion, with the labels � = 0, 1, 2, · · · = (s, p, d, · · ·
waves), includes each of the angular momentum components � (in units of h̄) of the
scattered wave. In classical mechanics, the angular momentum is given by � = kb,
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where b is the impact parameter, i.e., the perpendicular distance to the target if the
projectile would move along a straight line. But in quantum mechanics, � is not
a continuous variable, varying in steps of one. To determine the phase shifts and
consequently the full scattering wave, one solves the Schrödinger equation (SE)
for a given partial wave � and its component m along the incident direction. For a
spherically symmetric potential, one can write Ψ�m = Y�m(r̂)u�(r)/(kr) where Y�m

is a spherical harmonics function. One obtains

− h̄2

2μ

[
d2

dr2 − �(� + 1)

r2

]
u�(r) + U(r)u�(r) = Eu�(r), (3)

where μ denotes the reduced mass of the system. The numerical solution of this
equation determines the modification of the partial wave u� with energy E from an
undisturbed partial wave component of the plane wave. By matching the solution
at large distances with the asymptotic plane-wave component, the phase shift is
determined. For charged particles, the Coulomb potential UC leads to an analytical
solution of Eq. (3), and the phase shift is obtained by matching the solution for
U = UN + UC , with the asymptotic Coulomb wave, where we denote UN as the
short-range part (nuclear) of the potential.

Adding all partial waves, Eq. (1) can be rewritten as a sum of a plane wave and a
scattering outgoing wave, Ψ ∼ exp(ik.r) + f (θ)eikr/r , with f (θ) accounting for
the distortion of its outgoing part at the scattering angle θ . f (θ) is known as the
scattering amplitude:

f (θ) = 1

2ik

∞∑

�=0

(2� + 1)(S� − 1)P�(cosθ). (4)

The differential scattering cross section is obtained counting the number of particles
scattered through an angle θ . This is achieved by calculating the particle current
from the SE associated with the wave function Ψ . One obtains

dσe

dΩ
= |f (θ)|2 = 1

4k2

∣∣∣∣
∞∑

�=0

(2� + 1)(1 − S�)P�(cosθ)

∣∣∣∣
2

. (5)

The total scattering cross section is obtained by an integration over angles, yielding

σe = π–λ2
∞∑

�=0

(2� + 1)|1 − S�|2, (6)

with –λ = λ/2π = 1/k. This method works for potentials that decay faster than
1/r , or short-range potentials. For the Coulomb potential, the scattering amplitude
becomes
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fC(θ) = − η

2k sin2(θ/2)
e−iη ln(sin2 θ/2)e2iσ0 , (7)

where η = Z1Z2e
2/h̄v is the Sommerfeld parameter, with Z1 and Z2 being the

nuclear charges and v their relative velocity, and σ0 = arg Γ (1+iη) is the Coulomb
phase. When the scattering occurs under the influence of short-range plus Coulomb
potentials, the correct amplitude entering Eq. (5) is

f (θ) = fC(θ) + fN(θ), (8)

where fN is the amplitude due to the short-range potential only.
In the presence of more than one channel, the elastic scattering may be influenced

by the coupling between them, requiring the solution of coupled differential
equations involving interactions between the channels, after which the S-matrices
can be computed and the prescription leading to the Eq. (4) can be used. Some of
the channels can be inelastic, absorbing energy and thus influencing the elastic
scattering channel. Often, the number of channels is too many to be treated
individually, and one introduces the concept of a complex optical potential (OP),
UOP , the imaginary part of which being responsible for the absorption into the
inelastic channels. The elastic cross section is still given by Eq. (6), but the
magnitude of the S-matrices for the elastic channel becomes smaller than unity.
The absorption, or reaction cross section, σr , is given by

σr = π–λ2
∞∑

�=0

(2� + 1)
[
1 − |S�|2

]
. (9)

This equation has a simple interpretation. π–λ2 is the “quantum area” for a projectile
with momentum k = 1/–λ, 2� + 1 is the number of magnetic states for an angular
momentum �, and 1 − |S�|2 is the absorption probability for the partial wave �.

In a different formalism, the scattering amplitude can be written as

f (θ) = − μ

2πh̄2

〈
k′|U |ψ(+)

k

〉
= − μ

2πh̄2
T (k′, k), (10)

where
∣∣k′〉 is a Dirac “ket” notation for a plane wave with momentum k′ and

∣∣∣ψ(+)
k

〉

is the outgoing wave with momentum k. T (k′, k) is known as the transition or T-
matrix, where

〈
k′|U |ψ(+)

k

〉
= 〈

k′|T |k〉 = T (k′, k). (11)

A formal solution of the scattering problem requires the knowledge of the T-matrix.
This can be achieved by iteration of the full Schrödinger equation, writing it in an
operator form so that Hψ = Eψ . For positive energies E, ψ is the scattering wave
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function. H = H0 + U is the Hamiltonian, with H0 being here the kinetic energy
operator −h̄2∇2/2μ. The formal solution for the T-matrix, entering Eq. (11), is

T = U + UG0T = U + UG0U + · · · , (12)

known as the Lippmann-Schwinger (LS) equation, where the so-called Green’s
function operator is defined as G0 = (H0 − E)−1. The LS equation can be solved
by iteration, as is indicated by the r.h.s. of (12). At high energies, an approximate
solution of the Schrödinger equation yields the eikonal phase shift (Glauber 1959)

2δ(b) = − 1

h̄v

∫
UOP (r)dz, (13)

where the radial coordinate describing the projectile-target relative motion is split
into a transverse, b, and a longitudinal component, z, so that r ≡ (b, z). The
coordinate b is often interpreted as the impact parameter variable in classical
mechanics. In the high-energy regime, the sum over partial waves in Eq. (4) involves
too many terms. One can approximate the sum by an integral over b using � = kb

as a continuous variable. This procedure yields the simple formula (Glauber 1959)

f(θ) = ik

∫
db b J0(qb) [1 − S(b)] , (14)

where q = 2k sin(θ/2) is the momentum transfer in the collision, with the S-matrix
given by S(b) = exp[2iδ(b)] in the eikonal form. Again, for multichannel reactions,
one needs to solve coupled-channels equations.

At low energies and/or in reactions involving highly charged nuclei, the elastic
scattering is predominantly a Coulomb scattering. The differential scattering cross
section is given by the Rutherford formula, dσR/dθ = a4/ sin4(θ/2) with a =
Z1Z2e

2/μv2. A rough visualization of the scattering process assumes that the
incoming wave splits into two pieces, one passing by one side and the other passing
by the opposite side of the target (conveniently called the near and far sides).
When these two pieces do not interfere, one recovers the classical scattering. A
good measure of the passage from the classical to quantum scattering regime is
obtained by using the Sommerfeld parameter η = Z1Z2e

2/h̄v. When η decreases,
the scattering is increasingly influenced by the interference of the near- and the far-
side waves. Around η ∼ 10 the scattering changes from the so-called Fresnel to the
Fraunhofer regime. This is clearly seen in Fig. 1.

It is clearly visible on the left panel of Fig. 1 that the elastic scattering in the
Fraunhofer regime displays wiggles that are nearly equally displaced. The distance
between the dips in the angular distribution is telltales of the size R of the system
involved, i.e., Δθ ∼ 1/kR, whereas the nearly exponential falloff of the cross
section is due to the diffuseness a of the nuclear surface, i.e., σ(θ) ∝ exp(−qa),
with q being the momentum transfer defined previously. Therefore, elastic scattering
is a very good probe of the nuclear geometry of the optical potential. Figure 2 shows
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Fig. 1 Ratio between the measured cross sections and the Rutherford scattering cross sections for
6Li projectiles incident on different targets at 88 MeV. One clearly sees the transition from classical
to quantum scattering as the Sommerfeld parameter η decreases. Full quantum interference is
visible for very small values of η (Fraunhofer scattering). (Adapted from Ref. Hossain et al. 2013)

examples of elastic scattering angular distributions of 9,10,11Be + Pb at 140 MeV
(about 3.5 times the Coulomb barrier) (Duan et al. 2020). It also shows how the
scattering angle pattern of elastic scattering for a large value of η spreads to larger
angles as the mass of the projectile decreases. But also of relevance for this pattern
is the role of the weakly bound nucleons, to be discussed later.

Inelastic Scattering

Inelastic scattering occurs when a state in the projectile or target nucleus is excited
in the reaction. Consider a nucleus in an initial state | i〉 as an eigenstate of the
internal nuclear Hamiltonian H0. In a direct reaction, the nucleus will be subject
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Fig. 2 Examples of elastic scattering angular distributions of 9,10,11Be + Pb at 140 MeV (about
3.5 times the Coulomb barrier). Adapted from Ref. (Duan et al. 2020)

to an interaction potential U with another nucleus (or with a nucleon). If this
interaction can be treated perturbatively, Fermi’s Golden rule can be used to obtain
the cross section for the excitation of a final state | f 〉, i.e.,

σ = μ

h̄k

2π

h̄
|〈f |U |i〉|2 ρ(Ef ), (15)

where ρ is the density of the final states, i.e., the number of states per energy interval
at the final energy Ef . The nuclear wave functions |i, f 〉 include the internal wave
function |φ〉 of the excited nucleus as well as the relative motion wave function, | χ〉.

The “bra” and “ket” notation used in the above relation can be rewritten in terms
of the intrinsic nuclear coordinate, x, and the relative motion coordinate y,

σ = 2πμ

h̄2k
ρ(Ef )

∣∣∣∣
∫

d3xd3yφ∗
f (x)χ(−)∗(y)U(x, y)φi(x)χ(+)(y)

∣∣∣∣
2

, (16)

where the notation χ± stands for outgoing (incoming) relative motion wave
function. In the plane-wave Born approximation (PWBA), the wave functions χ

are taken as plane waves, and the integral above becomes a Fourier transform for
the momentum transfer q = k′ − k. But, the relative motion wave function χ can
be calculated exactly by solving the SE for the scattering part separately, with the
proper energies Ei and Ef and optical potentials V1 and V2 for the incoming and
outgoing channel, respectively. In this case, Eq. (16) is known as the distorted-wave
Born approximation (DWBA). Figure 3 shows schematically that the terminology
“Born” in the DWBA means that the perturbation theory is treated to first-order
only, i.e., the excited nucleus is assumed to interact only once and weakly with the
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Fig. 3 Schematic
representation of inelastic
scattering described within
DWBA. The nuclear
interaction is taken to first
order (the B in DWBA), and
the distorted waves are
calculated exactly given the
entrance, V1, and outgoing
channel, V2, optical potentials

UV1 V2

other nucleus, while “distorted” means that the relative motion between the nuclei
in the entrance and the outgoing channels is taken into account to all orders.

Angular distributions for inelastic scattering display similar features as elastic
scattering such as oscillations, with the distance between dips becoming a telltale
of the geometry of the reacting nuclei. However, in contrast to elastic scattering and
due to the presence of the interaction potential U in Eq. (16), inelastic scattering
data do not often display an exponential falloff at the Fraunhofer regime because of
the diffuseness of the nuclear densities. The details of the inelastic cross section will
contain information of U(r), as well as the internal wave functions φ. If the optical
potential (determining the distorted waves) and the interaction potential (responsible
for the excitation) are both well known, inelastic scattering can be used as a tool for
spectroscopic studies of the internal wave function φ.

Coupled Channels

The Schrödinger equation (SE) of a nuclear system subject to an external agent V (t)

is governed by the Hamiltonian H(t) = H0 + V (t) where H0 is the non-perturbed
Hamiltonian H0. Let us assume that H0 has eigenvalue and eigenfunction solutions,
i.e., that H0ψn(r) = Enψn(r), and that the eigenfunctions ψn form a complete
basis. The total wave function Ψ , obeying the time-dependent SE, HΨ = ih̄∂Ψ/∂t ,
may be expanded as Ψ = ∑

n an(t)ψne
−iEnt/h̄, where an are time-dependent

coefficients. Inserting this expansion into the time-dependent SE leads to

ih̄
∑

n

ȧnψne
−iEnt/h̄ =

∑

n

V anψne
−iEnt/h̄, (17)

with ȧn ≡ dan(t)/dt . From the orthogonalization properties of the ψn, multiplying
(17) by ψ∗

k and integrating it over the r, one obtains the time-dependent coupled-
channels equations
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ȧk (t) = − i

h̄

∑

n

an (t) Vkn (t) e
i

Ek−En
h̄

t
, (18)

where Vkn = ∫
ψ∗

k V ψn d3r .
A simple derivation of the time-independent coupled-channels equations can be

achieved for high-energy collisions. The replacement z = vt can be done for an
almost undisturbed trajectory of a projectile with velocity v passing by the target
nucleus with an impact parameter b. The general coupled equations are then simply
an outcome of Eq. (18), i.e., Bertulani (2005)

ih̄v
d

dz
Ac(b,z) =

∑

c′
〈Ψc|Vint (b,z)|Ψc′ 〉 Ac′(b,z) eiEcc′z/v, (19)

where we introduced the channel index c = {i, �, m}, with i denoting one of
the nuclear states i > 0, i = 0 the ground state, and � and m are the orbital
angular momentum and its projection along the incident z-axis. Ecc′ = Ec′ − Ec

is the excitation energy. The amplitudes ac were renamed to Ac(b,z). By solving
these equations, using the initial condition, Ac(b,−∞) = δc0, one can obtain the
probability that a channel c is populated in the reaction, |Ac(b,∞)|2.

At lower energies, where the partial wave expansion is more adequate, one can
easily deduce the corresponding coupled-channels equations from Eq. (19) by using
the correspondence of the continuous variable b with the angular momentum: (To
be more precise, one should use b → (�+1/2)/k.) b → �/k. The integrals over the
impact parameter become a sum over the partial waves �. Finally, the consideration
of total angular momenta and spin coupling can be accounted for, with channels
discerning by the angular momentum quantum numbers (J,M).

At high energies, the angular distribution of the inelastically scattered particles
for the excitation of the channel state c is obtained from

f μ
c (θ) = ik

∫ ∞

0
dbbJμ(qb)S(b)Ac(b,∞), (20)

with k being the projectile wavenumber and q = 2k sin(θ/2) the momentum
transfer. Here, we simplified the notation using μ = Mc − M0, with Mi being
the magnetic quantum number associated with the total angular momentum Ji .
Averaging over the initial spin and summing over the final spin yields the differential
cross section

dσc

dΩ
= 1

2J0 + 1

∑

M0,Mc

∣∣∣f (Mc−M0)
c (θ)

∣∣∣
2
. (21)

At high energies, the S-matrices in Eq. (20) are given by S(b) = exp{2iδ(b)} where
the phase shift can be related to the corresponding nucleon-nucleon (NN) scattering
quantities (Hussein et al. 1991). In this case, the eikonal phase becomes
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2δ(b) =
∫

ρP (q)Γ (q)ρT (q)J0(qb)q dq, (22)

where J0 is the ordinary Bessel function of zeroth order, and the nucleon-nucleon
scattering profile function is parametrized as (Ray 1979)

Γ (q) = i + αNN

4π
σNNe−βNNq2

. (23)

σNN is the total nucleon-nucleon cross section, and αNN is the ratio between the
real and the imaginary part of the NN scattering amplitude. βNN is a momentum
dependence parameter. These parameters are fitted to reproduce the NN scattering
observables. Tables with the energy dependence of these parameters are given in
Refs. Hussein et al. (1991), Aumann and Bertulani (2020).

The total excitation cross section for channel c averaged over the initial spin J0
is given by

σc = 2π

2J0 + 1

∫
dbb|S(b)|2 |Ac(b,∞)|2 . (24)

The coupled-channels method can be used with any nuclear structure model, either
from a two-body, three-body, or many-body description of the nucleus enabling
the calculation of the matrix elements 〈Φc|Vint (b,z)|Φc′ 〉 in Eq. (19). First-order
excitation amplitudes can be calculated from Eq. (19) replacing Ac(b,z) = δc0 on
its right-hand side, leading to

Ac(b,∞) = − i

h̄v

∫ ∞

−∞
dz 〈Φc|Vint (b,z)|Φ0〉 eiE0cz/v. (25)

If the states c are in the continuum, then Eq. (21) means

dσc

dΩdE
= 1

2J0 + 1

∑

M0,Mc

∣∣∣f (Mc−M0)(θ, E = Ec)

∣∣∣
2
, (26)

for one of the states in the continuum with energy Ec.
The angular distribution integrated over all continuum energies is given by

dσc

dΩ
= 1

2J0 + 1

∑

M0,Mc

∫
dE

∣∣∣f (Mc−M0)(θ, E)

∣∣∣
2
. (27)

For large bombarding energies so that q � kθ � k sin θ , it follows that dΩ =
2πqdq/k2, and
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Fig. 4 CDCC calculations (Druet and Descouvemont 2012) for 11Be + 64Zn at 24.5 MeV
compared to experimental data (Di Pietro et al. 2010). 11Be(g.s.) and 11Be(g.s., 1/2−) denote the
one-channel (ground state only) and two-channel calculations (ground state and the first excited
state). The elastic cross sections are divided by the Rutherford cross sections. Calculations based
on CDCC, shown as a continuous curve, nearly match the data, taking into account a discretized
continuum. The long-dashed curve neglects the spin of the projectile

σc = 2π

2J0 + 1

∑

M0,Mc

∫
dbb

∫
db′b′

∫
dqqJμ(qb)Jμ(qb′)S(b)S∗(b′)

×A (b,∞)A ∗(b′,∞) = 1

2J0 + 1

∫
db b|S(b)|2 |Ac(b.∞)|2 . (28)

In calculations involving weakly bound nuclei, the transition to the continuum
(breakup) is followed by a coupling between states in the continuum. The states in
the continuum can be treated as isolated discretized states. Such formalism is known
as the continuum-discretized coupled-channels (CDCC) equations. Figure 4 shows
an example of a coupled-channels calculation with the addition of couplings in the
continuum (Druet and Descouvemont 2012). One sees that the inclusion of channel
coupling considerably improves the comparison with the experiment (Di Pietro et al.
2010). Due to the relatively low energy of the projectile (24.5 MeV), the CDCC
calculations are in this case performed using the partial wave expansion method.

The Optical Potential

The simple description of high-energy collisions presented above is not adequate
at lower energies, and a good knowledge of an optical potential U will be the
most important ingredient in the calculations of elastic and inelastic scattering.
The optical potential (OP) contains information about the leakage of probability
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from a channel of interest, e.g., the elastic channel, to other channels involving
the excitation of nuclear states. Traditional theoretical methods assume that all
our ignorance about the numerous relevant channels can be simulated by the
introduction of an imaginary potential W . A popular form of the phenomenological
OP is

U(r) = V0(r) + Vs(r)(l · s) + VC(r) + iW(r), (29)

where V0 is the central part of a real potential, Vs is a spin-orbit component, and VC

is the Coulomb potential between the nuclei. The functional forms of the potentials
V0 and W are usually taken as a Woods-Saxon (or Fermi) function

f (r) = f0

1 + exp
(

r−R0
a0

) , (30)

where f0 (strength), R0 (radius), and a0 (diffuseness) are taken as adjustable
parameters. The second term on the r.h.s. of Eq. (29) is usually taken as a derivative
of the function (30) and accounts for the increased probability of nucleon-nucleon
collisions at the nuclear surface due to a decrease of the Pauli principle at lower
nucleon densities. It also accounts for the surface preference of the spin-orbit
potential.

Many other methods exist to deduce the optical potential from basic details of
nuclear structure and reactions. A popular case is the folding potential, obtained
from the ground-state nuclear densities ρ(r) and the nucleon-nucleon potential

U(r) =
∫

d3r ′vNN(r′ − r)ρA(r′), for nucleon-nucleus,

=
∫

d3r ′vNN(r′ + r′′ − r)ρA(r′)ρB(r′′). for nucleus-nucleus. (31)

To these real potentials, corresponding imaginary parts are introduced usually with
the same form as the real parts multiplied by constants adjusted to reproduce
experimental observables. A modification of these equations can be introduced to
account for medium effects of the nucleon-nucleon interaction, vNN , inducing an
energy dependence vNN(r, E) to obtain a corresponding energy-dependent optical
potential U(r, E). A variety of effective interactions accounting for medium effects
have been developed such as the M3Y (Bertsch et al. 1977), Love-Franey (Franey
and Love 1985), the JLM (Jeukenne et al. 1977), and many other popular optical
potentials.

A microscopic formalism for the optical potential can be developed by linking
the T-matrix for the nucleus-nucleus collisions to T-matrices for nucleon-nucleon
scattering. As a starting point, one uses the Lippmann-Schwinger equation for the
whole system of A + B nucleons, yielding the approximate equation (Feshbach
1958)



Direct Nuclear Reactions 13

U =
∑

i =j

tij +
∑

i =j

tij
1 − |Ψ0 >< Ψ0|

E + h̄2∇2/2μ + iε
tij + · · · = ULO + UNLO + · · · , (32)

where the sum runs over all nucleons, E is the total energy of the colliding nucleus-
nucleus system, tij are the T-matrices for (free) nucleon-nucleon scattering for their
relative motion, ∇ is a derivative of the center-of-mass motion of the system, and
|Ψ0〉 = ∣∣Ψ A

0

〉 ∣∣Ψ B
0

〉
is the product of the ground-state wave functions for nuclei A

and B. The factor iε is included in Eq. (32) to account for the proper outgoing wave
boundary condition. As shown in Ref. (Hussein et al. 1991), this formalism allows
for an understanding on how the optical potential is influenced by multiple nucleon-
nucleon collisions, where ULO is the leading-order optical potential, UNLO the
next-to-leading order correction, and so on. For heavy nuclei, UNLO and higher-
order corrections still comprise an important part of the whole optical potential
(Hussein et al. 1991).

The medium effects on the nucleon-nucleon scattering cannot be neglected in
most cases. Introducing the Pauli principle for nucleon-nucleon scattering in the
medium implies solving an equation similar to the Lippmann-Schwinger equation,
known as the G-matrix, and often written the form of the Bethe-Goldstone equation
(Gomes et al. 1958)

〈
k′|G|k〉 = 〈

k′|vNN |k〉 +
∫

d3k′′

(2π)3

〈
k′|vNN |k′′〉Q(k′′)

〈
k′′|G|k〉

E(P′′, k′′) − E0 + iε
, (33)

where E(P, k) = e(P+k)+ e(P−k) are off-shell nucleon single-particle energies,
with P being the nucleon-nucleon center-of-mass momentum and k their relative
momentum. E0 is the on-shell energy, i.e., when the final and initial energies and
momenta of the nucleons obey conservation laws. As with the case of the Lippmann-
Schwinger equation, the Bethe-Goldstone equation can be solved by iteration. The
operator Q(k′′) is equal to one if the individual momenta of the nucleons are larger
than the local Fermi momentum, i.e., if |k1,2| > kF , where k1,2 = P ± k. If this
condition is not valid, Q(k′′) = 0.

A similar method accounts for the medium modification of the nucleon-nucleon
force and is known as the Brueckner theory. Similar to the Bethe-Goldstone
equation, the nucleon-nucleon interaction in the nuclear medium is formally given
by Goldstone (1957)

v(p) = 〈p|v|p〉 = Re
∑

k<kF

〈pq|G|pq − qp〉 , (34)

where |pq − qp〉 is a short-hand notation of the anti-symmetrization of the nucleon
wave functions. In the Brueckner scheme, this equation is solved self-consistently,
i.e., the single-particle energies e depend on the nucleon-nucleon potential v(p),
which depends on the solution for the G-matrix, which in turn depends on e and
v(p).
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A microscopic description of the optical potential has to include the loss of
energy into nuclear excitation and the details of the nuclear wave functions. A
traditional method to tackle these features uses the concept of self-energies induced
by all possible intermediate states. For example, in the particle-vibrator coupling
model (Bernard and Van Giai 1980), the optical potential arises from the relation

U(E, r, r′) = UHF (r, r′) + Σ(E, r, r′), (35)

where UHF is a mean-field potential and the self-energy is given by

Σ(E, r, r′) = 1

2J0 + 1

⎛

⎝
∑

nL,p>F

|〈i||V ||p, nL〉|2
E − εp − EnL − iη

+
∑

nL,h<F

|〈i||V ||h, nL〉|2
E − εh + EnL − iη

⎞

⎠ ,

(36)

with |nL > denoting phonon states, |p〉 (|h〉) particle (hole) states, and εp (εh) their
respective energies. A nuclear structure model is used to obtain the wave functions
corresponding to all the states entering this equation.

There exist other microscopic formalisms for the optical potentials such as
the dispersive optical potential model (DOM) based on its functional analytical
properties (Mahaux and Sartor 1991). It recalls the physical concept that a scattered
wave is only emitted after the arrival of the incident wave. As a consequence, one
finds that

U(E, r, r′) = U0(r, r′) + V (E, r, r′) + iW(E, r, r′), (37)

where the real and imaginary parts of the potential are related by the dispersion
relation

W(E, r, r′) = i
P

π

∫
dE′ V(E, r, r′)

E − E′ , (38)

where P denotes the principal value of the integral. The DOM has been applied to
a large number of data (see, e.g., Ref. Mueller et al. 2011), and microscopic ab initio
calculations for the nuclear states have been incorporated in its numerical derivation
(Waldecker et al. 2011).

Coulomb Excitation

Coulomb excitation is a specific inelastic scattering process where one nucleus
excites another via its electromagnetic (EM) field V . The EM field can be
decomposed in a sum of multipoles, for example, E1, E2, M1, · · · , each one
containing angular momentum and parity. At low-collision energies, E2 (electric
quadrupole) excitations are stronger, whereas at higher energies E1 (electric dipole)
excitations prevail.
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At low energies (below the Coulomb barrier), Coulomb excitation has been
used to analyze experiments on multiple excitations and reorientation effects
(Alder and Winther 1965; Cline 1986). At relativistic energies, the kinematics is
characterized by near straight-line trajectories and by retardation effects due to
special relativity (Alder and Winther 1975). A full quantum mechanical theory
of relativistic Coulomb excitation was developed in Refs. Bertulani and Baur
(1985), Bertulani and Nathan (1993), including diffraction and absorptive effects.
At intermediate energies (20 < Elab < 200 MeV/nucleon), both retardation and
relativistic corrections of the Rutherford trajectories are necessary for an accurate
description of the reaction (Aleixo and Bertulani 1989).

In first-order perturbation theory, the differential cross section is given by

dσi→f

dΩ
= dσR

dΩ

16π2Z2
2e2

h̄2

∑

πλμ

B(πλ, Ii → If )

(2λ + 1)3 | S(πλ,μ) |2, (39)

where dσR/dΩ is the Rutherford cross section and Z2 is the projectile charge.
B(πλ, Ii → If ) is known as the reduced matrix element of the excited nucleus,
where πλ = E1, E2, M1, . . . is the excitation multipolarity, and μ = −λ,−λ +
1, . . . , λ. The orbital integrals S(πλ,μ) include information on the reaction
dynamics, i.e., on the details of the EM fields (Aleixo and Bertulani 1989).

Coulomb excitation is an external process, occurring when the nuclear matter of
the nuclei do not overlap. This implies that the Coulomb excitation matrix elements
display the same form, or operators, as those for the excitation by real photons
(except for E0 excitations, usually very small). As a consequence, the Coulomb
excitation cross sections can always be written as (Bertulani and Baur 1988)

dσC (Ex)

dEx

=
∑

Eλ

nEλ (Ex)

Ex

σ
γ

Eλ (Ex) +
∑

Mλ

nMλ (Ex)

Ex

σ
γ

Mλ (Ex) , (40)

where σ
γ
πλ (Ex) are cross sections induced by real photons (photonuclear cross

sections) with multipolarity πλ. Ex is the excitation (or photon) energy, and
nM/Eλ(Ex) are known as virtual photon numbers (Bertulani and Baur 1988).

Photoabsorption cross sections are functions of the reduced matrix elements, for
the excitation energy Ex . Explicitly (Bertulani and Baur 1988),

σπλ
γ (Ex) = (2π)3(λ + 1)

λ [(2λ + 1)!!]2

(
Ex

h̄c

)2λ−1
dB (πλ,Ex)

dEx

, (41)

where dB/dEx are known as electromagnetic response functions. The total transi-
tion strength is the integral

B(πλ, Ii → If ) =
∫

dEx

dB (πλ,Ex)

dEx

. (42)



16 C. A. Bertulani and A. Bonaccorso

The differential cross sections can also be expressed in terms of equivalent photons,
namely,

dσC(Ex)

dΩ
= 1

Ex

∑

πλ

dnπλ

dΩ
(Ex, θ)σπλ

γ (Ex), (43)

with Ω being the solid scattering angle. This is the same as Eq. (39), but rewritten in
a simpler form, helping us to immediately see the connection with the cross sections
induced by real photons.

Figure 5 shows a calculation (Eγ ≡ Ex) for virtual photons with E1 multi-
polarity, and three typical bombarding energies, “as viewed” by a lead projectile
incident on a lead target at impact parameters larger than b = 12.3 fm. When
the projectile energy increases, more virtual photons with larger energies become
available. The energy of states probed is also increased, making it possible to
study giant resonances, lepton and meson production, and the production of heavy
particles (Bertulani and Baur 1988).

A photonuclear reaction can access information complementary to Coulomb
excitation. For photon energies larger than nucleon separation energies, the photo-
absorption cross section displays characteristic single-particle resonances. For
energies in the range of 15–25 MeV, a wide and large peak is observed, known
as the giant electric dipole resonance (E1 excitation). Figure 6 exhibits the
photoabsorption cross section of 136Xe at photon energies around the electric dipole
giant resonance and the double giant dipole resonance (Schmidt et al. 1993).

Giant resonances occur in basically all nuclei along the periodic table. Their
centroid energy decreases following the phenomenological formula EGDR �
80/A1/3 for A > 20. Their widths are almost all in the range between 3.5 MeV
and 5 MeV, with few cases reaching up to 7 MeV. They are collective excitations
with many nucleons participating at once. The oscillating electric field of a photon
effectively induces collective oscillations of protons against neutrons. Among the
giant resonances, the giant electric dipole (GDR) resonance absorbs one unit of

Fig. 5 Number of virtual
photons with E1
multipolarity, for three typical
bombarding energies, “as
viewed” by a Pb projectile
nucleus incident on a Pb
target with impact parameters
larger than bmin = 12.3 fm
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Fig. 6 Coulomb excitation cross section for 136Xe (700 MeV/nucleon) nuclei impinging on lead
(solid circles) and carbon nuclear targets (open circles). The dashed curve includes the excitation
of isoscalar and isovector giant quadrupole resonances and the isovector giant dipole resonance
(IVGDR). The double giant dipole resonance (DGDR) was clearly identified as a bump in the
spectrum at about twice the energy of the IVGDR (Schmidt et al. 1993)

angular momentum (Δl = 1), e.g., if the nucleus is even-even, it is taken to an
1− state. It is also an isovector resonance because isospin is also changed by one
unit (ΔT = 1). Protons and neutrons vibrating in phase yield isoscalar resonances
(ΔT = 0), and if in opposite phases, they yield isovector resonances (ΔT = 1). The
photon excites less effectively giant isoscalar resonances, with ΔT = 0. Isoscalar
monopole (Δl = 0) resonances are mostly excited in reactions involving the nuclear
interaction. In a giant electric quadrupole resonance, the nucleus vibrates in an
ellipsoidal mode. In a giant monopole resonance, the nucleus contracts and expands
radially, known as a breathing mode, also occurring in isoscalar and isovector forms.
Monopole resonances are a good probe of the compressibility of nuclear matter.

Magnetic giant resonances involve spin vibrations where nucleons with spin-
up oscillate out of phase with nucleons with spin-down, also including isoscalar
and isovector modes. Charge-exchange reactions are a good probe of magnetic
resonances induced when a projectile charge changes down to Z − 1 or up to
Z + 1, as, for example, induced in (p,n), (d,p), and (d,n) reactions. Giant spin-flip
resonances are also known as giant Gamow-Teller resonances.

Giant resonances have also been observed in excited nuclei, first predicted by
using the Brink-Axel hypothesis (Brink 1955; Axel 1962). Two giant resonances can
be excited simultaneously, e.g., the double giant dipole resonance (or multiphonon
giant resonance) has been observed in double charge-exchange reactions with pion
probes in 32S (Mordechai et al. 1988). Coulomb excitation is perhaps the best
probe to excite giant multiphonon resonances, as predicted in Ref. (Bertulani and
Baur 1988) and observed in Ref. (Schmidt et al. 1993). Figure 6 shows a beautiful
example of the excitation of the double giant resonance.
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Charge-Exchange Reactions

Charge-exchange reactions are used as a probe to extract the magnitude of Gamow-
Teller, B(GT ), and Fermi, B(F), matrix elements, not accessible in β-decay
experiments (Taddeucci et al. 1987). This technique relies on the similarity of the
interaction in charge-exchange reactions and the spin-isospin operators involved in
weak decay. Using the DWBA approximation, one can show that the cross section
for charge exchange at small momentum transfers q is proportional to B(GT ) and
B(F) (Bertulani 1993):

dσ

dΩ
(θ = 0◦) =

(
μ

2πh̄

)2 kf

ki

ND|Jστ |2 [B(GT ) + CF B(F)] , (44)

where μ is the reduced mass, ki(kf ) is the initial (final) relative momentum, ND

is a correction factor (accounting for initial- and final-state interactions), Jστ is the
volume integral of the GT part of the effective nucleon-nucleon interaction, the con-
stant CF = |Jτ /Jστ |2 accounts for possible Fermi excitations, and B(α = GT,F)

is the reduced transition probability for spin-flip and non-spin-flip transitions (τk is
the isospin operator). For non-spin-flip transitions, it is given by

B(F) = 1

2Ji + 1
|〈f ||

∑

k

τ
(±)
k ||i〉|2,

and for spin-flip (σk is the spin operator),

B(GT ) = 1

2Ji + 1
|〈f ||

∑

k

σkτ
(±)
k ||i〉|2.

Small momentum transfers, q ∼ 0, occur at very small scattering angles, when
θ � 1/kR, where R is a rough measure of the nuclear radius and k is the projectile
wavenumber.

Charge-exchange reactions at high energies are due to the exchange of charged
pions and rho mesons carrying spin and isospin quantum numbers. Figure 7 displays
the energy dependence of the nucleon-nucleon potential at forward angles. The
separate contributions of spin-isospin, στ , and isospin, τ , parts of the interaction
are also shown. One observes that intermediate energy collisions, i.e., around
E ∼ 100–300 MeV, have larger στ than τ contributions. For this reason, this energy
range is better suited for studies of the Gamow-Teller matrix elements needed for
astrophysics. Therefore, at intermediate energy collisions,

dσ

dq
(q = 0) ∼ KND|Jστ |2B(GT ), (45)
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Fig. 7 Strength of the
nucleon-nucleon potential at
forward scattering angles.
Separate contributions are
shown for the spin-isospin,
στ , and the isospin, τ ,
components of the interaction
as a function of the laboratory
energy

with K being a kinematical constant. In the plane-wave Born approximation, the
charge-exchange scattering matrix elements are given by Bertulani (1993)

Mexch(q) =
〈
Ψ

(f )
A (rA)Ψ

(f )
B (rB)

∣∣∣e−iq·rAVexch(q)eiq·rB

∣∣∣ Ψ (i)
A (rA)Ψ

(i)
B (rB)

〉
,

(46)

with q being the momentum transfer and Ψ
(i,f )
A,B the intrinsic wave functions of

nuclei A and B for the initial i and final f states. rA,B are intrinsic coordinates
of the participating nucleons, and Vexch is charge-exchange part of the nucleon-
nucleon interaction containing spin and isospin operators. At forward angles and
low-momentum transfers, q ∼ 0, the matrix element (46) becomes

Mexch(q ∼ 0) ∼ V
(0)
exch(q ∼ 0)MA(F,GT )MB(F,GT ) , (47)

where V
(0)
exch is the volume part of the interaction, and

Mexch(F,GT ) =
〈
Ψ

(f )
A,B ||(1, σ )τ ||Ψ (i)

A,B

〉

are Fermi (F) or Gamow-Teller (GT) matrix elements for the nuclear transition. One
certainly expects deviations from the PWBA, and B(GT ) values extracted using
Eq. (45) can become inaccurate. This equation has been widely used in the literature,
although it is known to fail in some situations. It can be used with caution to infer
electron capture, beta-decay, or neutrino scattering response functions in nuclei from
charge-exchange reactions (Bertulani and Lotti 1997).

The validity of one-step processes in Eq. (44) is a reasonable assumption for
(p, n) reactions. But, in heavy-ion charge-exchange reactions, this might not
be as appropriate, as shown in Refs. Lenske et al. (1989), Bertulani (1993).
Multistep processes including the physical exchange of a proton and a neutron
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were considered in Ref. (Lenske et al. 1989) and shown to be relevant up to 100
MeV/nucleon. Deviations from Eq. (44) are common under many circumstances
(Bertulani and Lotti 1997). For GT transitions comprising a small fraction of the
sum rule, a direct proportionality between σ(p, n) and B(GT ) values does not exist.
Discrepancies have also been observed (Watson et al. 1985) in reactions with odd-A
nuclei including 13C, 15N, 35Cl, and 39K and in charge exchange with heavy ions
(Steiner et al. 1996).

Double Charge-Exchange and Double Beta-Decay

A more ambitious reaction probe involves double charge-exchange reactions, seen
schematically in Fig. 8. They may be used to extract matrix elements for double
beta-decay in nuclei for a number of energetically allowed decays. In the DWBA,
amplitude for this process involves the matrix element

M (k, k′) =
∑

γ,k′′
Cγ

〈
χ

(−)

k′

∣∣∣∣Vexch

1

Ek − εγ,k′′ − T − Vexch

Vexch

∣∣∣∣ χ
+
k

〉
, (48)

where χk is the distorted scattering wave in an optical potential U , k, k′ are the
initial and final scattering momenta, k′′ is the momentum of an intermediate state γ

with energy εγ,k′′ , and T is the kinetic energy operator. Cγ includes spectroscopic
amplitudes of the intermediate states. At forward scattering angles and using the
same approximations as in Eq. (47), a proportionality also emerges between double
charge-exchange reactions and double beta-decay processes. The typical cross
sections in a single-step charge-exchange reaction are a few millibarns, whereas
a double charge-exchange cross section is expected to be less than microbarns
(Bertulani 1993).

Double beta-decay is typically ground-state to ground-state transitions, accom-
panied by two neutrino emissions or by no neutrino emission. In the latter scenario,
they place constraints on particle physics beyond the standard model, involving

U U���� ����

Fig. 8 Schematic description of a double charge-exchange reaction, where a two-step process is
induced by the nucleon-nucleon interaction. The optical potential U is responsible for the elastic
scattering of the incoming and outgoing nuclei, whereas the charge exchange is viewed as pion+rho
exchange in nucleon-nucleon interactions
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concepts such as lepton number nonconservation and the neutrino being a Majorana
particle, e.g., its own antiparticle. Neutrinoless double beta-decay studies involve
the neutrino mass and complicated nuclear transition matrix elements. Double beta-
decays into two neutrinos have been observed (Elliott et al. 1987), but neutrinoless
double beta-decay still remains elusive in experimental nuclear physics.

Fermi-type operators do not contribute appreciably to double beta-decay when
neutrinos are emitted, because the ground state of the final nucleus is not a double
isobaric analog of its initial state. Hence, the relevant transitions are of double
Gamow-Teller type. In neutrinoless beta-decay, Gamow-Teller are expected to be
larger than Fermi transitions (Zheng et al. 1990). Using double charge-exchange
reactions as a probe of double beta-decay matrix elements is now being pursued by
many experimental groups (see, e.g., Matsubara et al. 2013; Kisamori et al. 2016;
Cappuzzello et al. 2018) not only for assessing neutrinoless double beta-decay but
also to study exotic nuclear structures (see, e.g., Lenske et al. 2018; Shimizu et al.
2018).

Figure 9 shows that a correlation seems to exist between calculated double
charge-exchange (DCE) nuclear matrix elements (NMEs) for Gamow-Teller (GT)
transitions and neutrinoless double beta-decay (0νββ) (adapted from Ref. San-
topinto et al. 2018). The calculations have been performed for 116Cd → 116Sn,
128Te → 128Xe, 82Se → 82Kr, and 76Ge → 76Se. The nearly linear correlation
can be explained with a transparent reaction theory, and if it remains robust, it

Fig. 9 Correlation between the calculated double charge-exchange (DCE) nuclear matrix ele-
ments (NMEs) for Gamow-Teller (GT) transitions and for neutrinoless double beta-decay (0νββ)
(Santopinto et al. 2018). The theoretical results are for 116Cd → 116Sn, 128Te → 128Xe, 82Se
→ 82Kr, and 76Ge → 76Se, respectively
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will open the possibility of extracting neutrinoless double beta-decay NMEs from
experimental data on DCE at forward angles. A recent review provides many
clarifications for charge-exchange reactions as a probe of nuclear β-decay (Lenske
et al. 2019).

Transfer Reactions

In the scattering of two nuclei, nucleon transfer reactions occur when a nucleon
or a cluster of nucleons initially in a bound state of one of the two nuclei ends
up in a bound state of the other nucleus. From the point of view of quantum
mechanics, this happens because when the two nuclei are close together, there is a
finite overlap between the tails of the initial and final wave functions. If this overlap
is large, the cross section will be large compared to other reaction cross sections.
For this reason transfer reactions are very selective, in particular for heavy nuclei,
and they can be a very powerful spectroscopic tool. One can get information on
the spectroscopic factors (SF) and/or asymptotic normalization constants (ANC)
and the angular momentum quantum numbers of the wave functions. The negative
single-particle binding energies of valence nucleons are known when the nucleus
mass is accurately determined experimentally. However for nuclei very close to the
drip line it might happen than the mass is not so well determined due to the nucleus
very short time-life.

A transfer reaction can be represented as

A1(a1 + x) + A2 → a1 + (A2 + x), (49)

where x is the transferred nucleon or cluster.
A simple classical relationship between the binding energies (εn1 and εn2 )

and the incident energy per nucleon 1
2mv2 indicates that the optimum matching

condition (Von Oertzen 1985; Bonaccorso et al. 1987; Brink 1972, 1985) is

|εn1 − εn2| = 1

2
mv2. (50)

Equation (50) shows that when 1
2mv2 is very large and/or one of the binding

energies is very small, then the most favored final energy for the nucleon/cluster
might be positive. In this case one would talk of transfer to the continuum which
is usually called breakup and that we will discuss in the following section. Further-
more, it has been shown both experimentally (Winfield et al. 1988) and theoretically
(Von Oertzen 1985; Bonaccorso et al. 1987) that the transfer probability increases
from the Coulomb barrier up to a maximum at an incident energy Ecrit , given
approximately by the condition

Ecrit = |Q| − VCB/A12, (51)
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where Q is the reaction Q-value, VCB = Z1Z2e
2/Rs is the value of the projectile-

target Coulomb barrier at the strong absorption radius Rs , and A12 = A1A2/(A1 +
A2).

At high energies the transfer probability decreases with the angular momentum
and spin of the initial and final state. The spin dependence of the transfer probability
is influenced both by the reaction Q-value and by the spin coupling factors between
initial and final states. Classical arguments suggest (Buttle and Goldfarb 1971; Brink
1972) that spin-flip transitions (j1 = l1 ± 1

2 → j2 = l2 ∓ 1
2 ) are favored at low

incident energies, while the opposite occurs at high energies. The inversion from
one regime of spin selectivity to the other occurs when Einc ≈ Ecrit . On the other
hand, because the angular momentum must be conserved, the difference between the
initial and final angular momenta must be provided by the relative motion angular
momentum, such that (Brink 1972)

h̄(λ1 − λ2) =
∣∣∣∣
RQeff

v

∣∣∣∣ (52)

where Qeff takes into account the Coulomb barriers and R is close to the sum of
the radii of projectile and target. If the matching conditions are not satisfied, the
cross sections for transfer are going to be depleted with respect to other competing
channels.

Following the discussion of transfer reactions contained in (Aumann et al. 2021),
Figs. 10 and 11 show two examples of the momentum matching condition. Figure 10
contrasts the neutron-adding (d, p) and (α,3He) reactions on 60Ni, while Fig. 11
compares the neutron-removing (p,d) and (3He,α) reactions on 76Se (Schiffer et al.
2008) and (Schiffer et al. 2013). In the first example, the beam energies were
about 5 MeV/nucleon for the (d,p) reaction and 9.5 MeV/nucleon for the (α,3He)
reaction, both being near the peak cross sections, as seen in Fig. 10. These results
are consistent with some previous works on heavy ion scattering (Winfield et al.
1988; Von Oertzen 1985; Bonaccorso et al. 1987).

From Fig. 11, bottom part, the energy spectra for the two reactions, (d,p) and
(α,3He), appear to be very different. The momentum matching condition, shown
in the inset, indicates RQeff ≈ 1 for the (d, p) reaction and ≈ 4 for the
(α,3He) reaction. The ratios of the cross sections between the two reactions for
�=1 or 4 differ by nearly two orders of magnitude depending on their � value.
This is an astonishing demonstration that momentum matching occurs. We thus
understand that the cross sections from the respective reactions are low (high)
because of poor (good) momentum matching. When the matching is poor, the
contributions of more complicated, indirect (multistep) pathways can contribute
more significantly, and the interpretation of the cross section being a simple one-
step process becomes questionable. As a result the structure information extracted,
such as the spectroscopic factors, for example, will not be reliable.

Transfer observables can be calculated with the DWBA theory or with semi-
classical methods which are obtained from the previous when certain conditions
apply. First we derive the formulae for the angular distributions in DWBA theory.
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Fig. 10 Energy dependence
of two reactions, 60Ni(d,p)
and 60Ni(α,p), showing a
peak at the critical energy.
See text for details

The scattering amplitude for a reaction A1(A2, a1)a2 in the center-of-mass frame is

TDWBA(θ, φ) = − μβ

2πh̄2

∫ ∫
χ

(−)
β (kβ , rβ)∗

〈
a1, a2

∣∣Veff

∣∣ A1, A2
〉
χ(+)

α (kα, rα)drβ ,

(53)

where the functions χα and χβ are distorted waves describing the elastic scattering
of the particles in the entrance (α = A1 + A2) and exit (β = a1 + a2) channels, with
momentum and relative coordinates kα,β and rα,β , respectively. Veff denotes the
interaction inducing the transition, and μβ is the reduced mass in the exit channel.

It follows that the cross section for a single-particle (s.p.) state, with a certain
angular momentum and orbital angular momentum transfer, is

dσ(θ)

dΩ
= vβ

vα

|TDWBA(θ)|2 , (54)
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Fig. 11 Spectra from the
neutron-adding (p, d) and
(3He,α) reactions, top figure,
and neutron-removing (d, p)
and (α,3He) reactions, bottom
figure. Shown in the inset is
the momentum matching
which indicates RQeff ≈ 1
for the (d, p) reaction and
RQeff ≈ 4 for the (α,3He)
reaction. The ratios of the
cross sections between the
two reactions for � = 1 or 4
differ by about two orders of
magnitude depending on their
� value demonstrating the
effect of the momentum
matching

where vα and vβ are the center-of-mass velocities in the incoming and outgoing
channels.

In Eq. (53), the matrix element
〈
a1, a2

∣∣Veff

∣∣A1, A2
〉

includes an integral over
the internal coordinates of the many-body wave functions of the incident and
outgoing particles. It is common to assume that Veff does not depend on the internal
coordinates. For example, if a2 emerges from the addition of one neutron to the
target A2, one needs to perform the overlap integral

∫
dξ Ψ ∗

a2
(ξ, r)ΨA2(ξ) ≡ ψ

�,j
A2a2

(r), (55)

where ξ stands for the internal coordinates of A and r that of the additional neutron.
This overlap integral is proportional to the probability amplitude to find the state a1

when a nucleon is removed from A1. Generally, ψ
�,j
A1a1

(r) is not normalized to one.
Its normalization yields the so-called spectroscopic factor:
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∫
dr|ψ�,j

A1a1
(r)|2 = S

�,j
A1a1

. (56)

In practical calculations using the DWBA, the overlap function is often approx-
imated by a single-particle (s.p.) wave function, obtained from the solution of a
Schrödinger equation with a mean-field potential (such as a Woods-Saxon type),
with the appropriate separation energy and quantum numbers �, j . Since the s.p.

wave function is unit normalized, one writes

ψ
�,j
A1a1

(r) ≈
√

S
�,j
A1a1

ψ
�,j
sp (r), (57)

where ψ
�,j
sp (r) is the s.p. wave function.

With explicit account of the angular momentum, additional Clebsch-Gordan
coefficients appear in the formalism. In addition, if the isospin formalism is used
to express the states A and B, another isospin coefficient (C) appears. They are
sometimes singled out from the definition of the spectroscopic factors and hence
written explicitly as (C2S). The use of Clebsch-Gordan coefficients in the context
of transfer reactions is thoroughly discussed in Ref. (Schiffer 1969), and an explicit
example is given in Ref. (Szwec et al. 2016). C2 is often taken as one and not
discussed at length or maybe intentionally or unintentionally ignored.

If the s.p. overlap Eq. (57) is included in the scattering amplitude, Eq. (53),
one may write the differential cross section as a s.p. cross section multiplied by a
respective spectroscopic factor, i.e.,

dσ(θ)

dΩ
= ω (C2Si)

dσ (θ)

dΩ

∣∣∣∣
sp

, (58)

where Si is the spectroscopic factor for the specific state i. Notice that, if both the
projectile and target overlap functions are written in terms of s.p. overlaps, a product
of the corresponding spectroscopic factors will appear in Eq. (58). An additional
statistical factor ω is needed, which is (2j + 1) for adding and one for removing
nucleons.

The angular distributions obtained in this way are characterized by oscillations
that depend on the transferred angular momentum, and thus their measure has been
routinely used to determine l-values for the final (initial) s.p. states. This is most
easily done in (d,p) and (α,3He) reactions because in this case the initial angular
momentum is zero. On the other hand, heavy ion reactions are useful when one
wants to study final states of high spins because they are favored in this case due
to the large relative angular momentum. However, in heavy ion reactions, there are
other channels competing with transfer; thus the underlying core-target interaction
is quasi-elastic and coupled-channels calculations are necessary. For these reasons,
at present most of the time, one prefers to use (d,p) reactions.
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Breakup Reactions

In the previous section, we have argued that breakup reactions have the same
physical origin as transfer reactions and that they become dominant when following
Eq. (50) the most favored nucleon or cluster final energy is positive. According to
quantum mechanics (QM), positive energies give rise to a continuum spectrum.
Therefore, breakup can be seen as a transfer reaction in which all final energies are
possible. In transfer reactions the nucleon final-state wave function is determined
only by the final nucleus potential. On the other hand, in breakup reactions the
particle final state is in the continuum; the particle will have final-state interactions
with both the initial and final nucleus potentials; thus in principle its wave function
should reflect both these potentials. Clearly, breakup is more complicated than
transfer but at the same time can give more information on the two interacting nuclei,
and it all depends on the measured observables.

In an exclusive reaction, the breakup particle is measured in coincidence with
the core of origin, then one has access to the continuum spectrum of the original
nucleus, and the energy spectrum will provide information on resonance states of
the projectile. In such a case, the mechanism is the same as inelastic excitation to
the continuum. In Fig. 12 we give an example for the reaction (Blanchon et al. 2007;
Simon et al. 2007) 11Li(12C,X)9Li+n at 264 MeV/nucleon. The data and theoretical
analysis give information on the low-lying resonances of the unbound nucleus 10Li
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Fig. 12 Relative-energy spectrum n-9Li following 11Li projectile fragmentation in the reaction
(Blanchon et al. 2007; Simon et al. 2007) 11Li(12C,X)9Li+n at 264 MeV/nucleon. The inset
details how the data and theoretical analysis yields information on the low-lying resonances of
the unbound nucleus 10Li and on the corresponding components of the two-neutron halo nucleus
11Li ground-state wave function
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and on the corresponding components of the two-neutron halo nucleus 11Li ground-
state wave function.

In an inclusive reaction, only the original core is measured. A continuum
energy spectrum is obtained which contains mainly information on the final-state
interaction of the breakup particle with the target. If the target final state is not
determined, the spectrum contains the effect of both elastic and inelastic scattering
similarly to what is discussed in previous sections for a beam of free particles.
However, because in the initial state the particle is bound, the treatment needs
special care. Some examples are given in Fig. 13. On the top part of the figure,
the spectra are given as a function of the core final momentum. Their shape and
width give information on the angular momentum and separation energy of the
nucleon in the initial state. The figure at the bottom shows an energy spectrum for the
target plus one neutron. It is obtained from the projectile-core energy (missing mass)
measurement after the collision. One can see the presence of low-lying resonances
as well as a large bump due to the re-scattering of the nucleon on the target. The peak
of the breakup bump or of the simple spectra at the top of the figure corresponds to
the nucleon optimal final energy according to Eq. (50).

Breakup can be seen to happen because the nuclear target potential perturbs the
initial bound state. When the target is very heavy and the initial state weakly bound,
there is also another mechanism known as Coulomb breakup (Alder and Winther
1975; Bertulani and Baur 1985). It is manly due to the recoil of the core which
generates a dipole potential such that there is an effective Coulomb force acting
on the breakup particle. Typical measurements consist in taking in coincidence the
breakup particle and its core. However because the effect of the nuclear potential
is always present, the formalism must take care of the interference between the two
mechanisms (Bonaccorso 2018). For example, Coulomb breakup must be taken into
account in reactions involving the weakly bound deuteron unless the other nucleus
involved is very light.

Breakup reactions have been extensively studied from the early 1980s when it
was noticed that in a systematic of reaction cross sections of helium, beryllium, and
lithium projectiles in correspondence to some isotopes (6Be,11Be,11Li), the cross
sections showed an unexpected enhancement (Tanihata et al. 1985) (see Fig. 14).
This is due to the weakly bound valence neutrons and thus to the strong effect of the
breakup channel. For the same nuclei and the same reason, the effect of breakup can
also be seen on the elastic scattering angular distributions, in the form of a depletion
of elastic scattering cross sections with respect to neighboring nuclei, as shown by
Fig. 2.

The theoretical treatment of breakup is in principle very complicated because,
at least in DWBA, an expression like Eq. (53) must be solved with a three-body
final state which would take into account the nucleon-core, nucleon-target, core-
target nuclear potentials plus the core-target Coulomb interaction and, if the breakup
particle or cluster is charged, its Coulomb interaction with core and target. However,
there is possibly a simplification due to the fact that large breakup cross sections are
measured only for peripheral reactions which apart from the breakup are otherwise



Direct Nuclear Reactions 29

Fi
g

.
1

3
E

xa
m

pl
es

of
m

om
en

tu
m

an
d

en
er

gy
sp

ec
tr

a
ta

ke
n

fr
om

R
ef

s.
B

on
ac

co
rs

o
et

al
.(

19
94

),
E

nd
er

s
et

al
.(

20
02

),
Fl

av
ig

ny
et

al
.(

20
12

).
T

he
to

p
le

ft
pa

ne
l

sh
ow

s
th

e
pa

ra
lle

l-
m

om
en

tu
m

di
st

ri
bu

tio
ns

of
th

e
co

re
of

16
C

an
d

14
O

af
te

r
nu

cl
eo

n
re

m
ov

al
du

e
to

in
te

ra
ct

io
ns

w
ith

a
9
B

e
ta

rg
et

at
80

M
eV

/n
uc

le
on

.D
at

a
ar

e
fr

om
R

ef
.(

Fl
av

ig
ny

et
al

.2
01

2)
.T

he
cu

rv
es

di
sp

la
y

th
e

re
su

lts
of

di
ff

er
en

tt
he

or
et

ic
al

m
od

el
s.

O
n

th
e

to
p

pa
ne

lr
ig

ht
,t

he
sa

m
e

so
rt

of
di

st
ri

bu
tio

ns
ar

e
sh

ow
n

fo
r

th
e

re
ac

tio
n

9
B

e(
34

Si
,33

Si
)

at
69

M
eV

/n
uc

le
on

.D
at

a
ar

e
fr

om
R

ef
.(

E
nd

er
s

et
al

.2
00

2)
.T

he
bo

tto
m

pa
ne

ls
ho

w
s

th
e

en
er

gy
sp

ec
tr

a
of

th
e

fr
ag

m
en

ts
in

th
e

re
ac

tio
n

20
8
Pb

(40
A

r,39
A

r)
at

41
M

eV
/n

uc
le

on
(B

on
ac

co
rs

o
et

al
.1

99
4)



30 C. A. Bertulani and A. Bonaccorso

Fig. 14 Experimentally
extracted interaction radii of
light nuclei, determined from
the interaction cross sections.
The interaction radius (RI ) is
defined by
σI = π(RP

I + RT
I )2, where P

and T denote the projectile
and target, respectively. A
sudden increase of matter
radii is seen for nuclei near
neutron drip line (Tanihata
1996)

quasi-elastic. At small impact parameters instead channels other than breakup take
over, and thus the exact value of the breakup cross section is not important. In
such circumstances the core and nucleon behaviors can be decoupled, the so-
called core-spectator model applies, and the final cross section can be represented
semiclassically by an integration over core-target impact parameters

dσ−n

dζ
= C2S

∫
d2bc|SCT (bc)|2 dP−n(bc)

dζ
. (59)

In Eq. (59) the variable ζ can be the nucleon final energy in the continuum, if
εn2 > 0 in Eq. (50) and/or the nucleon relative momentum with respect to the
core or target given by four-energy momentum conservation (see, e.g., Firk 2010)
and the relative Jacobian. The differential cross section dσ−n/dζ then becomes
directly comparable to the measured momentum distributions function of P//, the
core parallel momentum, as in the spectra at the top of Fig. 13. If a shell model
Woods-Saxon wave function is used for the initial nucleon wave function, C2S

is the spectroscopic factor of the initial state exactly as in Eq. (58). In the core-
spectator model, the breakup cross section is obtained by integrating the differential
breakup probability on the core-target impact parameter bc by weighting it with the
probability |SCT (bc)|2 that the measured core has survived “intact" the scattering.
Breakup reactions substitute transfer as spectroscopic tools whenever in Eq. (50)
the most favorite final energy is positive εn2 > 0. This typically happens when
εn1 << 1

2mv2.
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In the following we will give three expressions for the breakup probability
dP−n(bc)/dζ which would be used to calculate spectra as those in Figs. 12 and 13,
respectively. The energy spectrum of a breakup nucleon with respect of its core of
origin is given by an inelastic excitation-like expression:

dPin

dεn2
= C

1

2l1 + 1
Σm1,m2 |1 − S̄m1,m2 |2|Im1,m2 |2, (60)

where C contains various kinematical factors and S̄m1,m2 = exp[2i(δ + ν)] is
a nucleon-core off-the-energy-shell S-matrix which depends on the nucleon-core
phase shift δ but contains also an extra phase ν due to the initial bound state.
|I |2 ∼ e−2γ bc/b3

c can be interpreted as an inelastic-like form factor, and it is
interesting to compare it to the transfer to the continuum form factor e−2ηbc/bc given
in the following expression. The inelastic form factor decreases with the impact
parameter much faster than the transfer/breakup form factor. This is a well-known
characteristic for final bound states (Broglia and Winther 1991), and it would be
interesting to see that it persists for final continuum states in future studies.

The nucleon-target energy spectrum can be calculated with

dP−n

dεn2
≈ 1

2
Σj2(2j2 + 1)(|1 − Sj2 |2 + 1 − |Sj2 |2)

e−2ηbc

2ηbc

Fn2,n1, (61)

where Sj2 is the free particle S-matrix obtained with a proper nucleon-target optical
potential, η is a kinematical factor, and Fn2,n1 contains various initial and final
states kinematical and spin variables. e−2ηbc/2ηbc can be seen as a breakup form
factor. The two terms proportional to |1−Sj2 |2 and (1−|Sj2 |2) represent the elastic
and inelastic re-scattering of the nucleon on the target. These are indicated by the
dotted and dashed curves in the top RHS spectra of Fig. 13.

If the eikonal approximation is used, the previous equation becomes

dP−n(bc)

dk1
=

∫
d2bn2(|1−S(bn2)|2 +1−|(bn2)|2)|ψ̃n1(|bn2 −bc|, k1)|2, (62)

where, as in the transfer case, ψn1 is the initial-state single-particle wave function.
In the previous expression, it enters via its one-dimensional Fourier transform with
respect to k1 = (εn2 − εn1 − 1

2mv2)/h̄v which is the nucleon parallel-momentum
component with respect to the core. Energy and momentum conservation implies
that the core parallel-momentum distribution in the laboratory is

P// =
√

(Tp + εn1 − εn2)2 + 2Mr(Tp + εn1 − εn2),

such that a measurement of the latter gives a direct information on the momentum
distribution of the valence particle in the initial state of the projectile. Tp is
the projectile kinetic energy and Mr the residual mass. Thus, inserting Eq. (62)
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in Eq. (59), the cross section differential with respect to the intrinsic parallel
momentum in the core is obtained in the full eikonal formalism. Finally, by
transforming in terms of the core parallel-momentum distribution P//, the cross
section becomes comparable to the measured spectrum.

Conclusions

In this review, we have chosen to discuss only a small subset of properties and
features of direct nuclear reactions. Many subjects were left out and only very
general aspects for specific cases have been discussed. Direct nuclear reactions have
been a cornerstone tool to probe nuclear structure and continuously are used in new
studies involving radioactive nuclear beams. In fact, nucleon removal and breakup
reactions have been used for a long time to infer basic properties of nuclei, leading
to some surprises, as shown in Fig. 14, where the large nuclear matter extension in
the so-called halo nuclei was first identified. This finding was the seed of a new era
in nuclear physics, allowing for the development of new theoretical formulations for
direct nuclear reactions involving weakly bound nuclei. Direct nuclear reactions is
still a very active field in nuclear physics both as an experimental tool of choice and
as a playground for new ideas and developments in nuclear reaction theory.
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