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Abstract. Recent studies on breakup reactions with the continuum-discretized coupled-
channels method are reviewed. The topics covered are: four-body breakup processes for 6He
induced reaction, dynamical relativistic effects on Coulomb breakup, microscopic description of
projectile breakup processes, description of ternary processes (new triple-α reaction rate) and
new approach to inclusive breakup processes.

1. Introduction
Breakup reaction is an indispensable tool to extract not only structural information on weakly-
bound nuclei but also dynamical properties of reaction systems involving such fragile nuclei.
Recently, breakup properties of unstable nuclei have been studied intensively and extensively.
Further investigation on breakup phenomena will be performed in the near future at forthcoming
RI beam facilities such as FAIR at GSI and FRIB at MSU, and at the brand-new facility RIBF
at RIKEN; some results from RIBF have already been reported [1, 2].

The most successful theoretical model to describe breakup reactions of weakly-bound nuclei
is the continuum-discretized coupled-channels method (CDCC) [3, 4], which was proposed and
developed by Kyushu group about 25 years ago. Recently, some important developments on
CDCC have been made. In this paper we review our recent studies with CDCC on breakup
reactions in a wide range of incident energies and for various reaction systems. The following
five topics are covered:

i. four-body breakup processes for 6He induced reaction,
ii. dynamical relativistic effects on Coulomb breakup,
iii. microscopic description of projectile breakup processes,
iv. description of ternary processes (new triple-α reaction rate),
v. new approach to inclusive breakup processes.

In Sec. 2, a brief introduction to CDCC is described. The aforementioned topics are discussed
in Sec. 3 one by one. Finally, we show summary in Sec. 4.
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2. The continuum-discretized coupled-channels method (CDCC)
In CDCC [3, 4], the total wave function of the reaction system is expanded in terms of a complete
set of the internal states of the projectile (P):

Ψ = φ0χ0 +
∫ ∞

0
φkχkdk, (1)

where φ0 and φk are the wave functions of P in the ground and continuum states, respectively,
and χ’s denote the corresponding wave functions between P and the target nucleus (T). k is
the momentum that specifies the energy of P; if P has a two-body structure, k is the relative
momentum of the constituents of P. We assume in Eq. (1) that P has one bound state just for
simplicity.

The most essential assumption of CDCC is the truncation of the continuum of P, with
introducing a cutoff momentum kmax. Then we discretize the continuum up to kmax into a
finite number of states, i.e., discretized continuum states. There are several choices for the
discretization method: the average method, the mid-point method and the pseudostate method.
The first one that takes an average of the continuum states within a certain range of k has most
widely been used.

After the truncation and discretization, we have the CDCC wave function of the reaction
system:

ΨCDCC =
imax∑
i=0

φ̂iχ̂i, (2)

where i is the index of the ground (i = 0) and the discretized continuum (0 < i ≤ imax) channels;
the symbolˆdenotes a result of discretization.

In CDCC, we assume that the set of {φ̂i}, which defines the modelspace of CDCC, forms a
complete set in the space that is significant for a reaction process considered. In other words,
the CDCC wave function is not exact in entire space but can be used as an exact solution in
evaluation of physics observables; note that a transition matrix contains a residual interaction
that has a finite range. Thus, as mentioned in the review article [5], the modelspace of CDCC
depends in general on the type of the reaction, the physics quantities to be calculated, the
incident energy, outgoing angle, etc. of observation, and also the desired accuracy of the
calculation. One can see that CDCC is an effective reaction model designed to describe physics
observables with sufficiently high but limited accuracy. Note, however, that the theoretical
foundation of CDCC has been established in connection with the distorted-wave Faddeev
equation in [6, 7], and a solution of CDCC is shown to have a proper asymptotic form in
[8].

3. Breakup reaction studies with CDCC
In this section, we review our recent works very briefly. See the references cited in the following
subsections for the details of the formalism, numerical calculation, other results and further
discussion.

3.1. Four-body breakup processes for 6He induced reaction
To describe a breakup process of a three-body projectile like 6He, we need discretized continuum
states of the three-body system. It is very difficult to obtain them by directly solving a three-
body scattering problem. However, if we diagonalize a Hamiltonian of 6He, we automatically
obtain the eigenstates both below and above the three-body threshold energy. The latter states
(the pseudostates) can be assumed as discretized continuum states. Thus, we obtain the total
wave function of the four-body system, i.e., the three-body projectile and the target nucleus,
in terms of finite number of channels. This four-body CDCC was established in [9]; for the
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calculation of 6He wave functions, the Gaussian expansion method [10] that has been highly
successful in few-body physics is adopted.

Four-body CDCC is applied to the 6He elastic scattering by 209Bi near the Coulomb barrier
energy [11]. Figure 1 shows the elastic differential cross section (in ratio to the Rutherford cross
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Figure 1. Angular distribution of the
elastic differential cross section as the
ratio to the Rutherford cross section for
the 6He+209Bi scattering at 22.5 MeV.
The solid (dashed) and dotted (dot-
dashed) lines show the results of the
four-body CDCC (three-body CDCC)
calculation with and without breakup
effects, respectively. The experimental
data are taken from [12, 13]. We take
the incident energy of 22.5 MeV shown
in the first paper of Aguilera et al. [12].

section) at 22.5 MeV, as a function of the center-of-mass scattering angle. The solid line is the
result of four-body CDCC and the dashed line is that of three-body CDCC based on a naive
dineutron model for 6He. One sees that four-body CDCC reproduces the experimental data
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Figure 2. E1 strength distribution of 6He as
a function of ε. The bars show B(E1;n) from
the 0+ ground state to the nth pseudostates of
6He. The solid, dashed and dash-dotted lines
respectively show the smeared E1 strength
distributions assuming the Lorentzian form
with the width of 0.5, 0.2 and 0.1(εn +
0.975) MeV; εn denotes the eigenenergy of the
nth pseudostate.
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Figure 3. E1 strength distribution of
6He as a function of ε obtained with
the smoothing method in [17]. The
dotted, dashed and solid lines show
the results with different modelspace
of the 6He wave function (see [17] for
details). Also shown for comparison by
the dot-dashed curve is the result of the
simple smoothing method with a energy-
dependent width, i.e., the dash-dotted
line in Fig. 2.
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[12, 13] well, while three-body CDCC does not. The results of four-body CDCC and three-body
CDCC without breakup effects of 6He are shown by the dotted and dot-dashed lines, respectively.
The difference between the solid and dotted (dashed and dot-dashed) lines shows effects of the
four-body (three-body) breakup on the elastic cross section. The breakup effects on the elastic
cross section, i.e., virtual breakup processes, are found to be very important in this reaction.

Recently, Rodŕıguez-Gallardo and collaborators [14] developed an alternative four-body
CDCC, with directly calculating three-body scattering states of 6He. The method also
reproduces well the elastic cross section of 6He on 208Pb near the Coulomb barrier energy.
As future work, systematic analysis of four-body breakup will be necessary. Another important
subject is the extension of four-body CDCC to 5- and 6-body reaction systems; we are planning
to achieve this by incorporating cluster-orbital shell-model (COSM) wave functions [15, 16].

Description of breakup spectrum is a hot topic of four-body CDCC. Since CDCC uses
discretized continuum states, the resulting breakup cross sections are discrete. In Fig. 2 we
show by histogram a typical example of the discrete result of the energy distribution of the
electric dipole (E1) strength dB(E1)/dε for 6He, with ε the breakup energy of 6He measured
from the three-body (4He+n+n) threshold. To compare the result of CDCC with experimental
data, we must construct a smooth spectrum from the histogram. Note that a simple smearing
procedure assuming a Lorentzian form, with any choice of parameters, does not work at all, as
shown by the three lines in Fig. 2. Thus, we proposed a new smoothing method with the use
of the Lippmann-Schwinger equation [17], which was found to successfully reproduce a smooth
dB(E1)/dε, if experimental resolution was taken into account; the result is shown in Fig. 3.

The alternative four-body CDCC [14] can construct a smooth spectrum of breakup observable
much easier, in principle, than the original four-body CDCC, since in the former the three-
body scattering states are directly calculated. At this stage, however, because of the limited
modelspace, it seems difficult to compare the result shown in [14] with experimental data. Very
recently, another smoothing procedure using the complex scaling method [18, 19] has been
proposed in [20] and shown to work very well to obtain smooth breakup cross sections.
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Figure 4. Double differential breakup cross section for 8B+208Pb at 250 MeV/nucleon including
dynamical relativistic corrections (left panel) and its relative difference from the calculation
without relativistic corrections (right panel).
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3.2. Dynamical relativistic effects on Coulomb breakup
When one deals with a process at intermediate energies, kinematical correction due to relativity
is usually included. What we propose here is to directly include relativistic Coulomb interaction,
i.e., the Liénard-Wiechert potential. It should be noted that this is usually done in calculation
with a virtual photon theory. However, inclusion of the relativistic Coulomb interaction in
CDCC has not been done.

In [21] and [22], a new version of CDCC incorporating the Liénard-Wiechert potential is
developed. The left panel of Fig. 4 shows the double differential breakup cross section of 8B by
208Pb at 250 MeV per nucleon. θ is the scattering angle of the center mass of 7Be and p, and
ε is the breakup energy between the two fragments. In the right panel, the relative difference
between the relativistic and nonrelativistic results is shown. One sees significant increase in the
cross section of several tens of percent level. It should be noted that this dynamical relativistic
effects are important not in the tail of the cross section but near the peak. Thus, we conclude
that the relativistic treatment of Coulomb interaction is necessary to analyze Coulomb breakup
processes at intermediate energies to be measured in the new and forthcoming RI beam facilities.

3.3. Microscopic description of projectile breakup processes
An essential ingredient of CDCC for systematic analysis of breakup reactions is optical potentials
between A and individual constituents of P, which are not always available phenomenologically.
Thus, we need a microscopic framework to obtain optical potentials for various reaction systems
in a wide range of incident energies.

For nucleon-nucleus potential, the method proposed by Brieva and Rook [23, 24, 25] has
widely been used to obtain a microscopic local potential. Recently, it has been shown in [26]
that the Brieva-Rook (BR) localization is valid for wide range of incident energies, by directly
comparing the result of BR calculation with the solution of the exact nonlocal Schrödinger
equation. In Fig. 5 we show the elastic differential cross sections of the proton scattering on

c.m. scattering angle (deg) c.m. scattering angle (deg)

momentum transfer (fm−1) momentum transfer (fm−1)

dσ
/d

Ω
 (m

b/
sr
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Sakaguchi et al. Baker et al.

exact
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exact
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Figure 5. The elastic differential cross sections of the proton scattering on 90Zr at (a) 65 MeV
and (b) 800 MeV. The solid lines represent the results of the exact calculation, while the dashed
lines show the results of the calculation with the BR localization. Experimental data are taken
from [29, 30].
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90Zr at (a) 65 MeV and (b) 800 MeV. The solid and dashed lines respectively show the results
of the exact calculation and the BR localization.

For nucleus-nucleus potentials, Furumoto and the collaborators [27] have done intensive
study with proposing a new nucleon-nucleon g matrix [28] that contains three-body force effects
phenomenologically.

Therefore, we are ready for systematic analysis of experimental data of breakup processes of
unstable nuclei. We call CDCC with microscopic optical potentials microscopic CDCC.

3.4. Description of ternary processes (new triple-α reaction rate)
In this subsection, the description of ternary processes, in which there are three incident particles,
is discussed. The ternary process can be considered to be a reaction process that begins with
an unbound state of a two-body projectile. In this sense, it is closely related to the breakup
reaction theory.
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resonant capture. The result of CDCC
with Nomoto’s approximation is shown
by the dotted line. The dash-dotted line
shows the reaction rate of NACRE [32].

In [31], formulation of the ternary process based on CDCC is developed, and applied to the
study of the triple-α reaction. We describe resonant and nonresonant processes on the same
footing. Figure 6 shows the resulting reaction rate. The horizontal axis is temperature and the
vertical axis is the order of the rate. The solid line is the new reaction rate calculated with CDCC,
which is much larger than the rate of NACRE [32] shown by the dash-dotted line. The difference
is up to about 20 orders of magnitude around 107 K. We stress that it is shown in [31] that the
method for describing three-particle processes proposed by Nomoto [33, 34], Nomoto’s method,
that has widely been used in nuclearastrophysical studies including the NACRE compilation,
is very crude, and even unphysical. This can be understood clearly if one sees the reaction
probability (σv)ε1,E , where ε1 is the α-α relative energy and E is the total energy of the three-α
system. The solid line in Fig. 7 shows (σv)ε1,E for ε1 = 38.2 keV, which corresponds to the
nonresonant α-α state below the α-α resonance at 92.0 keV, calculated with CDCC. On the
other hand, in Nomoto’s method, the probability shown by the dashed line is used. One sees
that it has a resonance peak at different energy from that of the Holye state (E = 387 keV). This
is the same as at different ε1. Therefore, one finds that Nomoto’s method implicitly assumes
that there are infinite number of resonances around the Hoyle resonance, which is obviously
inconsistent with the experimental information on 12C. Furthermore, if we adopt in our CDCC
calculation the unphysical assumption used in Nomoto’s method (and also in NACRE), we
obtain the reaction rate shown by the dotted line in Fig. 6 that agrees well with the rate of
NACRE.

We stress that the calculation of the triple-α reaction at low energies requires extremely large
modelspace as described in [31]. We have confirmed a clear convergence of the reaction rate with
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show the reaction probability (σv)ε1,E
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respect to the modelspace of CDCC; the maximum value rmax of the α-α relative coordinate r
is set to 5,000 fm. If r is truncated at a smaller value, say, 200 fm, we have a reaction rate much
smaller than the rate shown by the solid line in Fig. 6, by about 6 orders of magnitude at 108 K.
It is also found that one channel calculation never converges, and an adiabatic description of the
three-particle system at low energies does not work at all. More detailed analysis of the triple-α
process with CDCC will be shown in a forthcoming paper.

In [35], it is reported that a stellar evolution model computed with our new triple-α reaction
rate causes inconsistency with the observations of red giant branches; they have no such a
problem when the triple-α reaction rate of NACRE is adopted. Since we have clarified that the
description of the nonresonant triple-α process in NACRE has no theoretical foundation, further
investigation on what causes the inconsistency in [35] will be very interesting and important.

Very recently, our new reaction rate has been applied to study on Cepheids [36]. It is shown
that if our new reaction rate is slightly tuned, a long-standing problem between calculation and
observation on Cepheids can be resolved, which clearly shows the importance of the increase in
the triple-α reaction rate around 108 K, compared with the rate of NACRE.

3.5. New approach to inclusive breakup processes
Let us consider the 7Li(d, nx) reaction. Here x means that the final state except for the neutron
is not specified. This inclusive breakup process is called also a stripping or incomplete fusion
process. In [37] we propose a new method to describe the inclusive breakup cross section with
decomposing the total fusion cross section:

σTF =
2μ

h̄2K
|〈Ψ |−Wp − Wn|Ψ〉| . (3)

In Eq. (3), Ψ is the total wave function of the p + n+7Li three body system calculated with
CDCC, μ and K are, respectively, the reduced mass and relative momentum between d and 7Li,
and Wp (Wn) is the imaginary part of the proton (neutron) optical potential for 7Li. In [37], we
divide the integration region into four:

∫
drp

∫
drn =

∫
rp<rab

p

drp

∫
rn<rab

p

drn +
∫

rp<rab
p

drp

∫
rn>rab

p

drn

+
∫

rp>rab
p

drp

∫
rn<rab

p

drn +
∫

rp>rab
p

drp

∫
rn>rab

p

drn, (4)

with introducing absorbing radii for proton (rab
p ) and neutron (rab

n ). The first term on the
right-hand-side (r.h.s.) of Eq. (4) corresponds to the process in which both proton and neutron
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are absorbed. The second (third) term on r.h.s. represents the process in which only proton
(neutron) is absorbed. Note that the contribution of the fourth term is negligible. Thus, if we
take just the second term, we can obtain the cross section of the inclusive (d, nx) process.

The point is how to determine the absorbing radii. In [37] we use the result of theoretical
analysis of the 7Li(d, nx) reaction at 40 MeV; we analyzed in [38] the double differential cross
section data [39] by summing up the elastic breakup cross section calculated with CDCC and
the stripping cross section calculated with the Glauber model. The data are reproduced very
well with no free parameter, except for the contribution of the preequilibrium and evaporation
processes that are negligible where the stripping process is important. Thus, we conclude that
the integrated value of the stripping cross section calculated with the Glauber model can be
regarded as an experimental value. The absorbing radii are fixed to reproduce this value at
40 MeV.

We show in Fig. 8 the result of the inclusive breakup cross sections as a function of the
deuteron incident energy. The dashed (dash-dotted) line shows the proton-absorbed (neutron-
absorbed) cross section and the solid line is the complete fusion cross section. These three values
are comparable above 30 MeV, and much larger than the elastic breakup cross section shown by
the dotted line. Another finding is the energy dependence of the dashed and dash-dotted lines
is very different at low energies. This difference comes from different energy dependence of the
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proton and neutron optical potentials [40, 41] adopted. In Fig. 9 we show the comparison between
our results and the results based on the method proposed by Diaz-Torres and Thompson [42] and
Iijima [43]. The preceding method assumes that the three-body wave function corresponding to
breakup channels are only responsible to the inclusive breakup, or incomplete fusion. However,
the method is found to give much smaller cross sections than the present calculation. Since our
result at 40 MeV is fitted to the experimental value, we can conclude that the previous method
does not work, at least for the 7Li(d, nx) process at 40 MeV. Description of the double-differential
cross sections of inclusive processes with CDCC will be important future work.

4. Summary
In the present paper, some recent studies on breakup reactions by means of the continuum-
discretized coupled-channels method (CDCC) are briefly reviewed. Future plans described in
the preceding subsections will be very important for theoretical nuclear reaction studies. Another
topic to be addressed is the quantitative description of transfer reactions. Recently, numerical
comparison between the results of CDCC and Faddeev for various reactions was reported [44];
there remains a significant difference only for a transfer process. More accurate description of
transfer reactions with CDCC than in [44] will be an interesting and important subject in future.
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[37] Hashimoto S, Ogata K, Chiba S and Yahiro M 2009 Prog. Theor. Phys. 122 1291
[38] Ye T, Watanabe Y and Ogata K, 2009 Phys. Rev. C 80 014604
[39] Hagiwara M, Itoga T, Kawata N, Hirabayashi N, Oishi T, Yamauchi T, Baba M, Sugimoto M and Muroga

T 2005 Fusion Sci. Technol. 48 1320
[40] Chiba S, Togasaki K, Ibaraki M, Baba M, Matsuyama S, Hirakawa N, Shibata K, Iwamoto O, Koning A J,

Hale G M and Chadwick M B 1998 Phys. Rev. C 58 2205
[41] Ye T, Watanabe Y, Ogata K and Chiba S 2008 Phys. Rev. C 78 024611
[42] Diaz-Torres A and Thompson I J 2002 Phys. Rev. C 65 024606
[43] Iijima M, Aoki Y, Ozawa A and Okumura N 2007 Nucl. Phys. A 793 79
[44] Deltuva A, Moro A M, Cravo E, Nunes F M and Fonseca A C 2007 Phys. Rev. C 76 064602

International Nuclear Physics Conference 2010 (INPC2010) IOP Publishing
Journal of Physics: Conference Series 312 (2011) 082008 doi:10.1088/1742-6596/312/8/082008

10




