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ABSTRACT

The abundances of light elements based on the big bang nucleosynthesis model are calculated using the Tsallis
non-extensive statistics. The impact of the variation of the non-extensive parameter q from the unity value is
compared to observations and to the abundance yields from the standard big bang model. We find large differences
between the reaction rates and the abundance of light elements calculated with the extensive and the non-extensive
statistics. We found that the observations are consistent with a non-extensive parameter q = 1+0.05

−0.12, indicating that
a large deviation from the Boltzmann–Gibbs statistics (q = 1) is highly unlikely.
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1. INTRODUCTION

The cosmological big bang model is in agreement with many
observations relevant for our understanding of the universe.
However, comparison of calculations based on the model
with observations is not straightforward because the data are
subject to poorly known evolutionary effects and systematic
errors. Nonetheless, the model is believed to be the only
probe of physics in the early universe during the interval from
3 to 20 minutes, after which the temperature and density of the
universe fell below that which is required for nuclear fusion and
prevented elements heavier than beryllium from forming. The
model is inline with the cosmic microwave background (CMB)
radiation temperature of 2.275 K (Noterdaeme et al. 2011) and
provides guidance to other areas of science, such as nuclear and
particle physics. Big bang model calculations are also consistent
with the number of light neutrino families Nν = 3. According
to the numerous literature on the subject, the big bang model
can accommodate values between Nν = 1.8 and 3.9 (see, e.g.,
Keith 2002). From the measurement of the Z0 width by LEP
experiments at CERN one knows that Nν = 2.9840 ± 0.0082
(LEP Collaboration 2006).

In the big bang model nearly all neutrons end up in 4He, so that
the relative abundance of 4He depends on the number of neutrino
families and also on the neutron lifetime τn. The sensitivity to
the neutron lifetime affects big bang nucleosynthesis (BBN) in
two ways. The neutron lifetime τn influences the weak reaction
rates because of the relation between τn and the weak coupling
constant. A shorter (longer) τn means that the reaction rates
remain greater (smaller) than the Hubble expansion rate until
a lower (larger) freezeout temperature, having a strong impact
on the equilibrium neutron-to-proton ratio at freezeout. This
n/p ratio is approximately given in thermal equilibrium by
n/p = exp[−Δm/kBT ] ∼ 1/6, where kB is the Boltzmann
constant, T is the temperature at weak freezeout, and Δm is
the neutron–proton mass difference. The other influence of τn

is due to their decay in the interval between weak freezeout
(t ∼ 1 s) and when nucleosynthesis starts (t ∼ 200 s), reducing
the n/p ratio to n/p ∼ 1/7. A shorter τn implies a lower
predicted BBN helium abundance. In this work we will use

the value of τn = 878.5 ± 0.7 ± 0.3 s, according to the most
recent experiments (Serebrov et al. 2005; a recent review on
the neutron lifetime is found in Wietfeldt & Greene 2011).
Recently, the implications of a change in the neutron lifetime on
BBN predictions have been assessed in Mathews et al. (2005).

The baryonic density of the universe deduced from the
observations of the anisotropies of the CMB radiation constrains
the value of the number of baryons per photon, η, which remains
constant during the expansion of the universe. Big bang model
calculations are compatible with the experimentally deduced
value from Wilkinson Microwave Anisotropy Probe (WMAP)
observations, η = (6.16 ± 0.15) × 10−10 (Komatsu et al. 2011).

Of our interest in this work are the abundances of light
elements in BBN. At the very early stages (first 20 minutes)
of the universe evolution, when it was dense and hot enough for
nuclear reactions to take place, the temperature of the primordial
plasma decreased from a few MeV down to about 10 keV,
light nuclides as 2H, 3He, 4He and, to a smaller extent, 7Li
were produced via a network of nuclear processes, resulting
in abundances for these species which can be determined with
several observational techniques and in different astrophysical
environments. Apparent discrepancies for the Li abundances in
metal-poor stars, as measured observationally and as inferred
by WMAP, have promoted a wealth of new inquiries on BBN
and on stellar mixing processes destroying Li, whose results
are not yet final. Further studies of light-element abundances in
low-metallicity stars and extragalactic H ii regions, as well as
better estimates from BBN models are required to tackle this
issue, integrating high-resolution spectroscopic studies of stellar
and interstellar matter with nucleosynthesis models and nuclear
physics experiments and theories (Fields 2011).

The Maxwell–Boltzmann distribution of the kinetic energy of
the ions in a plasma is one of the basic inputs for the calculation
of nuclear reaction rates during the BBN. The distribution is
based on several assumptions inherent to the Boltzmann–Gibbs
(BG) statistics: (1) the collision time is much smaller than the
mean time between collisions, (2) the interaction is local, (3) the
velocities of two particles at the same point are not correlated,
and (4) that energy is locally conserved when using only the
degrees of freedom of the colliding particles (no significant
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amount of energy is transferred to and from collective variables
and fields). If (1) and (2) are not valid, the resulting effective
two-body interaction is non-local and depends on the momen-
tum and energy of the particles. Even when the one-particle en-
ergy distribution is Maxwellian, additional assumptions about
correlations between particles are necessary to deduce that the
relative-velocity distribution is also Maxwellian. Although the
BG description of statistical mechanics is well established in a
seemingly infinite number of situations, in recent years an in-
creasing theoretical effort has concentrated on the development
of alternative approaches to statistical mechanics which includes
the BG statistics as a special limit of a more general theory
(Tsallis 1988; see also Rényi 1960). Such theories aim to de-
scribe systems with long-range interactions and with memory
effects (or non-ergodic systems). A very popular alternative
to the BG statistics was proposed by C. Tsallis (Tsallis 1988;
Gell-Mann & Tsallis 2004), herewith denoted as non-extensive
statistics (for more details on this subject, see the extensive
reviews Gell-Mann & Tsallis 2004; Tsallis et al. 2005; Tsallis
2009). Statistical mechanics assumes that energy is an “exten-
sive” variable, meaning that the total energy of the system is
proportional to the system size; similarly the entropy is also sup-
posed to be extensive. This might be justified due to the short-
range nature of the interactions which hold matter together.
But if one deals with long-range interactions, most prominently
gravity, one can then find that entropy is not extensive (Fa &
Lenzi 2001; Lima et al. 2002; Taruya & Sakagami 2003, 2004;
Chavanis & Sire 2005).

In classical statistics, to calculate the average values of some
quantities, such as the energy of the system, the number of
molecules, the volume it occupies, etc., one searches for the
probability distribution which maximizes the entropy, subject
to the constraint that it gives the right average values of those
quantities. As mentioned above, Tsallis proposed to replace
the usual (BG) entropy with a new, non-extensive quantity,
now commonly called the Tsallis entropy, and maximize that,
subject to the same usual constraints. There is actually a whole
infinite family of Tsallis entropies, indexed by a real-valued
parameter q, which quantifies the degree of departure from
extensivity (one gets the usual entropy back again when q =
1). It was shown in many circumstances that the classical results
of statistical mechanics can be translated into the new theory
(Tsallis 2009). The importance of these families of entropies
is that, when applied to ordinary statistical mechanics, they
give rise to probabilities that follow power laws instead of the
exponential laws of the standard case (for details on this see
Tsallis 2009). In most cases that Tsallis formalism is adopted,
e.g., Pessah et al. (2001), the non-extensive parameter q is taken
to be constant and close to the value for which ordinary statistical
mechanics is obtained (q = 1). Some works have also probed
sizable deviations of the non-extensive parameter q from unity
to explain a variety of phenomena in several areas of science
(Gell-Mann & Tsallis 2004).

In the next sections, we show that the Maxwell–Boltzmann
distribution, a cornerstone of the big bang and stellar evolu-
tion nucleosynthesis, is strongly modified by the non-extensive
statistics if q strongly deviates from unity. As a consequence,
it also affects strongly the predictions of the BBN. There is
no “a priori” justification for a large deviation of q from the
unity value during the BBN epoch. In particular, as radiation
is assumed to be in equilibrium with matter during the BBN,
a modification of the Maxwell distribution of velocities would
also impact the Planck distribution of photons. Recent studies on

Figure 1. Modified Gamow distributions Mq (E, T ) of deuterons relevant for
the reaction 2H(d, p)3H at T9 = 1. The solid line, for q = 1, corresponds to
the use of a Maxwell–Boltzmann distribution. Also shown are the results when
using non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed
line).

(A color version of this figure is available in the online journal.)

the temperature fluctuations of the CMB radiation have shown
that a modified Planck distribution based on Tsallis statistics ad-
equately describes the CMB temperature fluctuations measured
by WMAP with q = 1.045 ± 0.005, which is close to unity
but not quite (Bernui et al. 2007). Perhaps more importantly,
Gaussian temperature distributions based on the BG statistics,
corresponding to the q → 1 limit, do not properly represent the
CMB temperature fluctuations (Bernui et al. 2007). Such fluc-
tuations, allowing for even larger variations of q, might occur
during the BBN epoch, also leading to a change of the exponen-
tially decaying tail of the Maxwell velocity distribution.

Based on the successes of the big bang model, it is fair to
assume that it can set strong constraints on the limits of the
parameter q used in a non-extensive statistics description of
the Maxwell–Boltzmann velocity distribution. In the literature,
attempts to solve the lithium problem have assumed all sorts of
“new physics” (Fields 2011). This work adds to the list of new
attempts, although our results imply a much wider impact on
BBN as expected for the solution of the lithium problem. If the
Tsallis statistics appropriately describes the deviations of tails of
statistical distributions, then the BBN would effectively probe
such tails. The Gamow window (see Figure 1) contains a small
fraction of the total area under the velocity distribution. Thus,
only a few particles in the tail of the distributions contribute
to the fusion rates. In fact, the possibility of a deviation of the
Maxwellian distribution and implications of the modification
of the Maxwellian distribution tail for nuclear burning in stars
have already been explored in the past (Lissia & Quarati 2005;
Haubold & Kumar 2008; Degl’Innocenti et al. 1998; Coraddu
et al. 1999). As we show in the next sections, a strong deviation
from q = 1 is very unlikely for the BBN predictions, based on
comparison with observations. Moreover, if q deviates from the
unity value, the lithium problem gets even worse.

2. MAXWELLIAN AND NON-MAXWELLIN
DISTRIBUTIONS

Nuclear reaction rates in the BBN and in stellar evolution are
strongly dependent on the particle velocity distributions. The
fusion reaction rates for nuclear species 1 and 2 are given by
〈σv〉12, i.e., an average of the fusion cross section of 1 + 2 with
their relative velocity, described by a velocity distribution. It is
thus worthwhile to study the modifications of the stellar reaction
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rates due to the modifications introduced by the non-extensive
statistics.

2.1. Non-extensive Statistics

Statistical systems in equilibrium are described by the BG
entropy,

SBG = −kB

∑
i

pi ln pi, (1)

where kB is the Boltzmann constant and pi is the probability of
the ith microstate. For two independent systems A and B, the
probability of the system A + B being in a state i + j, with i a
microstate of A and j a microstate of B, is

pA+B
i+j = pA

i · pB
j . (2)

Therefore, the BG entropy satisfies the relation

SA+B = SA + SB. (3)

Thus, the entropy based on the BG statistic is an extensive
quantity.

In the non-extensive statistics (Tsallis 1988), one replaces the
traditional entropy by the following one:

Sq = kB

1 − ∑
i p

q

i

q − 1
, (4)

where q is a real number. For q = 1, Sq = SBG. Thus, the Tsallis
statistics is a natural generalization of the BG entropy.

Now it follows that

Sq(A + B) = Sq(A) + Sq(B) +
(1 − q)

kB

Sq(A)Sq(B). (5)

The variable q is a measure of the non-extensivity. Tsallis
has shown that a formalism of statistical mechanics can be
consistently developed in terms of this generalized entropy
(Tsallis 2009).

A consequence of the non-extensive formalism is that the
distribution function which maximizes Sq is non-Maxwellian
(Silva et al. 1998; Lima et al. 2000; Muñoz 2006). For q = 1,
the Maxwell distribution function is reproduced. But for q < 1,
high-energy states are more probable than in the extensive case.
On the other hand, for q > 1 high-energy states are less probable
than in the extensive case, and there is a cutoff beyond which
no states exist.

2.2. Maxwellian Distribution

In stars, the thermonuclear reaction rate with a Maxwellian
distribution is given by (Fowler et al. 1967)

Rij = NiNj

1 + δij

〈σv〉 = NiNj

1 + δij

(
8

πμ

)1/2 (
1

kBT

)3/2

×
∫ ∞

0
dES(E) exp

[
−

(
E

kBT
+ 2πη(E)

)]
, (6)

where σ is the fusion cross section, v is the relative velocity
of the ij -pair, Ni is the number of nuclei of species i, μ is
the reduced mass of i + j, T is the temperature, S(E) is the
astrophysical S-factor, and η = ZiZje

2/h̄v is the Sommerfeld
parameter, with Zi the ith nuclide charge and E = μv2/2 is the
relative energy of i + j.

The energy dependence of the reaction cross sections is
usually expressed in terms of the equation

σ (E) = S(E)

E
exp [−2πη(E)] . (7)

We write 2πη = b/
√

E, where

b = 0.9898ZiZj

√
A MeV1/2, (8)

where A is the reduced mass in amu. The factor 1 + δij in the
denominator of Equation (6) corrects for the double-counting
when i = j . The S-factor has a relatively weak dependence on
the energy E, except when it is close to a resonance, where it is
strongly peaked.

2.3. Non-Maxwellian Distribution

The non-extensive description of the Maxwell–Boltzmann
distribution corresponds to the substitution f (E) → fq(E),
where (Tsallis 2009)

fq(E) =
[

1 − q − 1

kBT
E

]1/q−1

q→1−→ exp

(
− E

kBT

)
, 0 < E < ∞. (9)

If q − 1 < 0, Equation (9) is real for any value of E � 0.
However, if q − 1 > 0, f (E) is real only if the quantity in
square brackets is positive. This means that

0 � E � kBT

q − 1
, if q � 1

0 � E, if q � 1. (10)

Thus, in the interval 0 < q < 1 one has 0 < E < ∞ and for
1 < q < ∞ one has 0 < E < Emax = kBT /(q − 1).

With this new statistics, the reaction rate becomes

Rij = NiNj

1 + δij

Iq, (11)

and the rate integral, Iq, is given by

Iq =
∫ Emax

0
dES(E)Mq(E, T ), (12)

where the “modified” Gamow energy distribution

Mq(E, T ) = A(q, T )

(
1 − q − 1

kBT
E

)1/q−1

e−b/
√

E

= A(q, T )

(
1 − q − 1

0.08617T9
E

)1/q−1

× exp

[
−0.9898ZiZj

√
A

E

]
(13)

is the non-extensive Maxwell velocity distribution, Emax = ∞
for 0 < q < 1 and Emax = kBT /(1 − q) for 1 < q < ∞, and
E is in MeV units. A(q, T ) is a normalization constant which
depends on the temperature and the non-extensive parameter q.
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2.4. Non-Maxwellian Distribution for Relative Velocities

It is worthwhile to note that if the one-particle energy
distribution is Maxwellian, it does not necessarily imply that
the relative velocity distribution is also Maxwellian. Additional
assumptions about correlations between particles are necessary
to deduce that the relative-velocity distribution, which is the
relevant quantity for rate calculations, is also Maxwellian. This
has been discussed in detail in Lissia & Quarati (2005), Tsallis
(1988), and Kaniadakis et al. (2005) where non-Maxwellian
distributions, such as in Equation (13), were shown to arise
from non-extensive statistics.

Here we show that if the non-Maxwellian particle velocity
distribution is given by Equation (9), then a two-particle relative
can be modified to account for the center of mass recoil. Calling
the kinetic energy of a particle Ei, this distribution is given by

f (i)
q =

(
1 − q − 1

kT
Ei

)1/q−1

→ exp

[
−

(
Ei

kT

)]
. (14)

The two-particle energy distribution is f (1)
q f (2)

q . We now
exponentiate the Tsallis distribution

f (i)
q = exp

{
1

q − 1

[
ln

(
1 − q − 1

kT
Ei

)]}
(15)

and the product f (12)
q = f (1)

q f (2)
q reduces to

f (12)
q = exp

{
1

q − 1

[
ln

(
1 − q − 1

kT
E1

) (
1 − q − 1

kT
E2)

)]}
.

(16)

Since Ei = miv
2
i /2, and thus, E1 + E2 = μv2/2 + MV 2/2,

where μ is the reduced mass of the two particles, M = m1 +m2,
v is the relative velocity, and V is the center of mass velocity,
the product inside the natural logarithm can be reduced to

1 − 1 − q

kT

(
μv2

2
+

MV 2

2

)
+

(
1 − q

kT

)2
μv2

2

MV 2

2

=
(

1 − 1 − q

kT

μv2

2

)(
1 − 1 − q

kT

MV 2

2

)
. (17)

Thus, the two-body distribution factorizes into a product of
relative and center of mass parts:

f (12)
q (v, V, T ) = f (rel)

q (v, T )f (cm)
q (V, T ), (18)

where

f (rel)
q (v, T ) = Arel(q, T )

(
1 − 1 − q

kT

μv2

2

)1/q−1

f (cm)
q (V, T ) = Acm(q, T )

(
1 − 1 − q

kT

MV 2

2

)1/q−1

, (19)

with the normalization constants obtained from the condition∫
d3vd3Vf (12)

q (v, V, T ) = 1. (20)

Because the distribution factorizes, the unit normalization can
be achieved for the relative and center of mass distributions

separately. The distribution needed in the reaction rate formula
is, therefore,

fq(v, T ) =
∫

d3Vf (12)
q (v, V, T ) = f (rel)

q (v, T ), (21)

which attains the same form as for the absolute distribution.
In the limit q → 1 the two-particle distribution reduces to a

Gaussian, with the last term in the left-hand side of Equation (17)
dropping out,

f (12)
q = A(q, T ) exp

{[
−

(
μv2/2 + MV 2/2

kT

)]}
, (22)

as expected.

2.5. Equilibrium with Electrons, Photons, and Neutrinos

One of the important questions regarding a plasma with
particles (i.e., nuclei) described by the non-extensive statistics
is how to generalize Fermi–Dirac (FD), Bose–Einstein (BE),
and Tsallis statistics to become more unified statistics with the
distribution for the particles. This has been studied in Buyukkiliç
& Demirhan (2000), where it was shown that a similar non-
extensive statistic for the distribution can be obtained for
fermions and bosons and is given by

n±
q (E) = 1[

1 − (q − 1) (E−μ)
kT

]1/q−1
± 1

, (23)

where μ is the chemical potential. This reproduces the Fermi
distribution, n+, for q → 1 and the BE distribution for photons,
n−, for μ = 0 and q → 1. Planck’s law for the distribution
of radiation is obtained by multiplying n− in Equation (23)
(with μ = 0) by h̄ω2/(4π2c2), where E = h̄ω. The number
density of electrons can be obtained from n+ in Equation (23)
with the proper phase factors depending if the electrons are non-
relativistic or relativistic. Normalization factors A±(q, T ) also
need to be introduced, as before.

The electron density during the early universe varies strongly
with the temperature. At T9 = 10, the electron density is about
1032 cm−3, much larger than the electron number density at the
center of the Sun, nsun

e ∼ 1026 cm−3. The large electron density
is due to the e+e− production by the abundant photons during the
BBN. However, the large electron densities do not influence the
nuclear reactions during the BBN. In fact, the enhancement of
the nuclear reaction rates due to electron screening was shown
to be very small (Wang et al. 2011). The electron Fermi en-
ergy for these densities is also much smaller than kT for the
energy relevant for BBN, so that one can also use μ = 0 in
Equation (23) for n+.

In Figure 2, we plot the relative difference ratio (n±
q −n±)/n±

between non-extensive, nq, and extensive, n = nq→1, statistics.
For both distributions, we use μ = 0. The solid curves are
for FD statistics, n+, and dashed curves are for BE statistics,
n−. We show results for q = 2 and q = 0.5, with T9 = 10.
One sees that the non-extensive distributions are enhanced for
q > 1 and suppressed for q < 1, as compared to the respective
FD and BE quantum distributions. The deviations for the FD
and BE statistics also grow larger with the energy. For example,
the non-extensive electron distribution is roughly a factor of two
larger than the usual FD distribution at Ee = 1 MeV, at T9 = 10.

While we do not obtain numerical results with modified
DG and BE distributions here, it can be expected that these
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Figure 2. Relative difference ratio (n±
q −n±)/n± between non-extensive, nq, and

extensive, n = nq→1, statistics. Solid curves are for Fermi–Dirac statistics, n+,
and dashed curves are for Bose–Einstein statistics, n−. For both distributions,
we use μ = 0. Results are shown for q = 2 and q = 0.5, with T9 = 10.

(A color version of this figure is available in the online journal.)

generalizations will have a strong influence on the freezeout
temperature and the neutron to proton, n/p, ratio. A numerical
study of this problem may be presented in another paper. The
freezeout temperature occurs when the rate, Γ ∼ 〈σv〉, for
weak reaction νe + n → p + e− becomes slower than the
expansion rate of the universe. Because during the BBN the
densities of all particles, including neutrinos, are low compared
to kT , the chemical potential μ can be set to zero in the
calculation of all reaction rates. The adoption of non-extensive
quantum distributions such as in Equation (23) will lead to the
same powers of the temperature as those predicted by the FD
distribution and the BE distribution. For example, Planck’s law
for the total blackbody is U ∝ T 4, being form invariant with
respect to non-extensive entropic index q which determines the
degree of non-extensivity (Buyukkiliç et al. 2002). This result
means that the weak decay reaction rates do not depend on the
non-extensive parameter q. The freezeout temperature and n/p
ratio remain the same as before.

More detailed studies have indicated that Planck’s law of
blackbody radiation and other thermodynamical quantities aris-
ing from non-extensive quantum statistics can yield different
powers of temperature than for the non-extensive case (Aragao-
Rego et al. 2003; Nauenberg 2003; Tsallis 2004; Chamati et al.
2004). If that is the case, then a study of the influence of non-
extensive statistics on the weak decay rates and electromagnetic
processes during BBN is worth pursuing.

2.6. Thermodynamical Equilibrium

The physical appeal for non-extensivity is the role of
long-range interactions, which also implies non-equilibrium.
Accepting non-extensive entropy means abandoning the most
important concept of thermodynamics, namely, the tendency of
any system to reach equilibrium. This also means that the con-
cept of non-extensivity means renouncing the second law of
thermodynamics altogether!

The comments above, which seem to be shared by part of the
community (see, e.g., Nauenberg 2003; Zanette & Montemurro
2003, 2004; Bouchet et al. 2006; Dauxois 2007; Touchette
2013), are worrisome when one has to consider a medium
composed of particles obeying classical and quantum statistics.
It is not clear, for example, if the non-extensive parameter q has
to be the same for all particle distributions, both classical and

Figure 3. S-factor for the reaction 2H(d, p)3H as a function of the relative energy
E and the temperature T9. The data are from Schulte et al. (1972), Krauss et al.
(1987), Brown & Jarmie (1990), Bosch & Hale (1992), and Greife et al. (1995).
The solid curve is a polynomial fit to the experimental data.

(A color version of this figure is available in the online journal.)

quantum. Even worse is the possibility that the temperatures are
not the same for the different particle systems in the plasma.

In this work, we will avoid a longer discussion on the validity
of the Tsallis statistics for a plasma such as that existing
during the BBN. We will only consider the effect of its use for
calculating nuclear reaction rates in the plasma, assuming that
it can be described by a classical distribution of velocities. This
study will allow us to constrain the non-extensive parameter q
based on a comparison with observations.

3. REACTION RATES DURING BIG BANG
NUCLEOSYNTHESIS

Based on the abundant literature on non-extensive statistics
(see, e.g., Lissia & Quarati 2005; Haubold & Kumar 2008;
Degl’Innocenti et al. 1998; Coraddu et al. 1999; Tsallis 1988),
we do not expect that the non-extensive parameter q differs
appreciably from the unity value. However, in order to study
the influence of a non-Maxwellian distribution on BBN we will
explore values of q rather different than unity, namely, q = 0.5
and q = 2. This will allow us to pursue a better understanding
of the nature of the physics involved in the departure from
the BG statistics. In Figure 1, we plot the Gamow energy
distributions of deuterons relevant for the reaction 2H(d, p)3H
at T9 = 1. The solid line, for q = 1, corresponds to the use
of the Maxwell–Boltzmann distribution. Also shown are results
for non-extensive distributions for q = 0.5 (dotted line) and
q = 2 (dashed line). One observes that for q < 1, higher kinetic
energies are more accessible than in the extensive case (q = 1).
For q > 1, high energies are less probable than in the extensive
case, and there is a cutoff beyond which no kinetic energy is
reached. In the example shown in the figure for q = 2, the cutoff
occurs at 0.086 MeV, or 86 keV.

We will explore the modifications of the BBN elemental
abundances due to a variation of the non-extensive statistics
parameter q. We will express our reaction rates in the form
NA〈σv〉 (in units of cm3 mol−1 s−1), where NA is the Avogadro
number and 〈σv〉 involves the integral in Equation (6) with the
Maxwell distribution f (E) replaced by Equation (9). First, we
show how the reaction rates are modified for q 
= 1.

In Figure 3, we show the S-factor for the reaction 2H(d, p)3H
as a function of the relative energy E. Also shown is the
dependence on T9 (temperature in units of 109 K) for the

5



The Astrophysical Journal, 767:67 (11pp), 2013 April 10 Bertulani, Fuqua, & Hussein

Figure 4. Reaction rates for 2H(d, p)3H as a function of the temperature T9 for
different values of the non-extensive parameter q. The rates are given in terms of
the natural logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). Results with the
use of non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed
line) are shown.

(A color version of this figure is available in the online journal.)

effective Gamow energy:

E = E0 = 0.122
(
Z2

i Z
2
jA

)1/3
T

2/3
9 MeV, (24)

where A is the reduced mass in amu. The data are from Schulte
et al. (1972), Krauss et al. (1987), Brown & Jarmie (1990),
Bosch & Hale (1992), and Greife et al. (1995) and the solid
curve is a chi-square polynomial function fit to the data.

Using the chi-square polynomial fit obtained to fit the data
presented in Figure 3, we show in Figure 4 the reaction rates for
2H(d, p)3H as a function of the temperature T9 for two different
values of the non-extensive parameter q. The integrals in
Equation (12) are performed numerically. For charge particles,
a good accuracy (within 0.1%) is reached using the integration
limits between E0 − 5ΔE and E0 + 5ΔE, where ΔE is given
by Equation (25) below. The rates are expressed in terms of
the natural logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1).
The solid curve corresponds to the usual Maxwell–Boltzmann
distribution, i.e., q = 1. The dashed and dotted curves are
obtained for q = 2 and q = 0.5, respectively. In both cases,
we see deviations from the Maxwellian rate. For q > 1,
the deviations are rather large and the tendency is an overall
suppression of the reaction rates, especially at low temperatures.
This effect arises from the non-Maxwellian energy cutoff which
for this reaction occurs at 0.086T9 MeV and which prevents a
great number of reactions from occurring at higher energies.

For q < 1, the nearly similar result as with the
Maxwell–Boltzmann distribution is due to a competition be-
tween suppression in reaction rates at low energies and their
enhancement at high energies. The relevant range of energies is
set by the Gamow energy which for a Maxwellian distribution
is given by Equation (24) and by the energy window,

ΔE = 0.2368
(
Z2

i Z
2
jA

)1/6
T

5/6
9 MeV, (25)

which for the reaction 2H(d, p)3H amounts to 0.2368T
5/6

9 MeV.
This explains why, at T9 = 1, the range of relevant energies for
the calculation of the reaction rate is shown by the solid curve
in Figure 1. For q < 1, the Gamow window ΔE is larger and
there is as much a contribution from the suppression of reaction
rates at low energies compared to the Maxwell–Boltzmann
distribution as there is a corresponding enhancement at higher
energies. This explains the nearly equal results shown in Figure 4
for q = 1 and q < 1. This finding applies to all charged

Figure 5. S-factor for the reaction 7Li(p, α)4He as a function of the relative
energy E and T9. The data are from Freeman et al. (1958), Cassagnou et al.
(1962, 1963), Mani et al. (1964), Fiedler & Kunze (1967), Lerner & Marion
(1969), Spinka et al. (1971), Rolfs & Kavanagh (1986), Werby (1973), and
Engstler et al. (1992a, 1992b). The solid curve is a chi-square function fit to the
data using a sum of polynomials plus Breit–Wigner functions.

(A color version of this figure is available in the online journal.)

particle reaction rates, except for those when the S-factor has
a strong dependence on energy at, and around, E = E0.
But no such behavior exists for the most important charged-
induced reactions in the BBN (neutron-induced reactions will
be discussed separately).

The findings described above for the reaction 2H(d, p)3H
are not specific but apply to all charged particles of relevance
to the BBN. We demonstrate this with one more example:
the 7Li(p, α)4He reaction, responsible for 7Li destruction. In
Figure 5, we show the S-factor for this reaction as a function
of the relative energy E. One sees prominent resonances at
higher energies. Also shown in the figure is the dependence
of the reaction on T9. The data are from Freeman et al. (1958),
Cassagnou et al. (1962, 1963), Mani et al. (1964), Fiedler &
Kunze (1967), Lerner & Marion (1969), Spinka et al. (1971),
Rolfs & Kavanagh (1986), Werby (1973), and Engstler et al.
(1992a, 1992b) and the solid curve is a chi-square function
fit to the data using a sum of polynomials plus Breit–Wigner
functions.

Using the chi-square function fit obtained to fit the data
presented in Figure 5, we show in Figure 6 the reaction rates
for 7Li(p,α)4He as a function of the temperature T9 for two
different values of the non-extensive parameter q. The rates are
given in terms of the natural logarithm of NA〈σv〉 (in units
of cm3 mol−1 s−1). The solid curve corresponds to the usual
Maxwell–Boltzmann distribution, i.e., q = 1. The dashed and
dotted curves are obtained for q = 2 and q = 0.5, respectively.
As with the reaction presented in Figure 4, in both cases we see
deviations from the Maxwellian rate. But, as before, for q = 2
the deviations are larger and the tendency is a strong suppression
of the reaction rates as the temperature decreases. It is interesting
to note that the non-Maxwellian rates for q = 0.5 are more
sensitive to the resonances than for q > 1. This is because, as
seen in Figure 1, for q < 1 the velocity distribution is spread
to considerably larger values of energies, being therefore more
sensitive to the location of high-energy resonances.

We now turn to neutron-induced reactions, which are only
a few cases of high relevance for the BBN, notably the
p(n, γ )d, 3He(n, p)t , and 7Be(n, p)7Li reactions. For neutron-
induced reactions, the cross section at low energies is usually
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Figure 6. Reaction rates for 7Li(p,α)4He as a function of the temperature T9
for two different values of the non-extensive parameter q. The rates are given in
terms of the natural logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). Results
with the use of non-extensive distributions for q = 0.5 (dotted line) and q = 2
(dashed line) are shown.

(A color version of this figure is available in the online journal.)

Figure 7. Spectral function Mq (E, T ) for protons and neutrons relevant for
the reaction p(n, γ )d at T9 = 0.1 (upper panel) and T9 = 10 (lower panel).
The solid line, for q = 1, corresponds to the usual Boltzmann distribution.
Also shown are non-extensive distributions for q = 0.5 (dotted line) and q = 2
(dashed line).

(A color version of this figure is available in the online journal.)

proportional to 1/v, where v = √
2mE/h̄ is the neutron velocity.

Thus, it is sometimes appropriate to rewrite Equation (7) as

σ (E) = S(E)

E
= R(E)√

E
, (26)

where R(E) is a slowly varying function of energy similar to
an S-factor. The distribution function within the reaction rate
integral (12) is also rewritten as

Mq(E, T ) = A(q, T )fq(E) = A(q, T )

(
1 − q − 1

kBT
E

)1/q−1

.

(27)

The absence of the tunneling factor exp(−b/
√

E) in
Equation (27) inhibits the dependence of the reaction rates on
the non-extensive parameter q.

In Figure 7, we plot the kinetic energy distributions of
nucleons relevant for the reaction p(n, γ )d at T9 = 0.1 (upper
panel) and T9 = 10 (lower panel). The solid line, for q = 1,
corresponds to the usual Boltzmann distribution. Also shown are

Figure 8. Energy dependence of R(E) = S(E)
√

E for the reaction
7Be(n, p)7Li. The experimental data were collected from Gibbons & Macklin
(1959), Borchers & Poppe (1963), Sekharan et al. (1976), Poppe et al. (1976),
and Koehler et al. (1988). The solid curve is a function fit to the experimental
data using a set of polynomials and Breit–Wigner functions.

(A color version of this figure is available in the online journal.)

results for the non-extensive distributions for q = 0.5 (dotted
line) and q = 2 (dashed line). One observes that, as for the
charged particles case, with q < 1 higher kinetic energies are
more probable than in the extensive case (q = 1). With q > 1,
high energies are less accessible than in the extensive case, and
there is a cutoff beyond which no kinetic energy is reached.
A noticeable difference from the case of charged particles
is the absence of the Coulomb barrier and a corresponding
lack of suppression of the reaction rates at low energies.
As the temperature increases, the relative difference between
the Maxwell–Boltzmann and the non-Maxwellian distributions
decreases appreciably. This will lead to a rather distinctive
pattern of the reaction rates for charged-induced reactions as
compared to neutron-induced reactions.

For neutron-induced reactions, a good accuracy (within
0.1%) for the numerical calculation of the reaction rates with
Equation (12) is reached using the integration limits between
E = 0 and E = 20 kBT . As an example we will now
consider the reaction 7Be(n, p)7Li. The energy dependence
of R(E) = S(E)

√
E for this reaction is shown in Figure 8.

The experimental data were collected from Gibbons & Macklin
(1959), Borchers & Poppe (1963), Sekharan et al. (1976), Poppe
et al. (1976), and Koehler et al. (1988).

Using the chi-square fit with a sum of polynomials and
Breit–Wigner functions obtained to reproduce the data in
Figure 8, we show in Figure 9 the reaction rates for 7Be(n, p)7Li
as a function of the temperature T9 for different values of
the non-extensive parameter q. The rates are given in terms of the
natural logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). The
solid curve corresponds to the usual Boltzmann distribution,
i.e., q = 1. The dashed and dotted curves are obtained for
q = 2 and q = 0.5, respectively. In contrast to reactions
induced by charged particles, we now see strong deviations
from the Maxwellian rate both for q > 1 and q < 1. For q < 1,
the deviations are larger at small temperatures and decrease as
the energy increases, tending asymptotically to the Maxwellian
rate at large temperatures. This behavior can be understood
from Figure 7 (for 7Be(n, p)7Li the results are nearly the same
as in Figure 7). At small temperatures, e.g., T9 = 0.1, the
distribution for q = 0.5 is strongly enhanced at large energies
and the tendency is that the reaction rates increase at low
temperatures. This enhancement disappears as the temperature
increases (lower panel of Figure 7). For q = 2 the reaction rate is
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Figure 9. Reaction rates for 7Be(n, p)7Li as a function of the temperature T9
for two different values of the non-extensive parameter q. The rates are given in
terms of the logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). Results with the
use of non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed
line) are shown.

(A color version of this figure is available in the online journal.)

suppressed, although not as much as for the charged-induced
reactions, the reason being compensation by an increase because
of normalization at low energies.

Having discussed the dependence of the reaction rates on the
non-extensive parameter q for a few standard reactions, we now
consider the implications of the non-extensive statistics to the
predictions of the BBN. It is clear from the results presented
above that an appreciable impact on the abundances of light
elements will arise.

4. BBN WITH NON-EXTENSIVE STATISTICS

The BBN is sensitive to certain parameters, including the
baryon-to-photon ratio, number of neutrino families, and the
neutron decay lifetime. We use the values η = 6.19 × 10−10,
Nν = 3, and τn = 878.5 s for the baryon–photon ratio, number
of neutrino families, and neutron decay lifetime, respectively.
Our BBN abundances were calculated with a modified version
of the standard BBN code derived from Wagoner et al. (1967),
L. Kawano (1988, unpublished),5 and Kawano (1992).

Although BBN nucleosynthesis can involve reactions up
to the CNO cycle (Coc et al. 2012), the most important
reactions which can significantly affect the predictions of the
abundances of the light elements [4He, D, 3He, 7Li] are n-decay,
p(n, γ )d, d(p,γ )3He, d(d, n)3He, d(d, p)t , 3He(n, p)t , t(d,
n)4He, 3He(d, p)4He, 3He(α, γ )7Be, t(α, γ )7Li, 7Be(n, p)7Li,
and 7Li(p, α)4He. Except for these reactions, we have used
the reaction rates needed for the remaining reactions from a
compilation by NACRE (Angulo et al. 1999) and that reported
in Descouvemont et al. (2004). For the 11 reactions mentioned
above, we have collected data from Smith et al. (1993), Angulo
et al. (1999), and Descouvemont et al. (2004) and references
mentioned therein (data for n(p, γ, d) reaction were taken from
the online ENDF database6; see also Cyburt 2004; Ando et al.
2006), fitted the S-factors with a sum of polynomials and
Breit–Wigner functions, and calculated the reaction rates for
Maxwellian and non-Maxwellian distributions.

5 FERMILAB Report No. PUB-88/34-A.
6 ENDF/B-VI, Online database at the NNDC Online Data Service,
http://www.nndc.bnl.gov

Figure 10. Deuterium abundance. The solid curve is the result obtained with
the standard Maxwell distributions for the reaction rates. Results with the use
of non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed line)
are shown.

(A color version of this figure is available in the online journal.)

4.1. Elemental Abundances

In Figure 10, we show the calculated deuterium abundance.
The solid curve is the result with the standard Maxwell distribu-
tions for the reaction rates. Using the non-extensive distributions
yields the dotted line for q = 0.5 and the dashed line for q = 2.
It is interesting to observe that the deuterium abundances are
only moderately modified due to the use of the non-extensive
statistics for q = 0.5. Up to temperatures of the order of T9 = 1,
the abundance for D/H tends to agree for the extensive and non-
extensive statistics. This is due to the fact that any deuterium that
is formed is immediately destroyed (a situation known as the
deuterium bottleneck). But, as the temperature decreases, the re-
action rates for the p(n, γ )d reaction are considerably enhanced
for q = 2 (see Figure 7), and perhaps more importantly, they
are strongly suppressed for all other reactions involving deu-
terium destruction, as clearly seen in Figure 4. This creates an
unexpected overabundance of deuterons for the non-extensive
statistics with q = 2. The deuterium, a very fragile isotope, is
easily destroyed after the BBN and astrated. Its primordial abun-
dance is determined from observations of interstellar clouds at
high redshift, on the line of sight of distant quasars. These
observations are scarce but allow to set an average value of
D/H = 2.82+0.20

−0.19 × 10−5 (Pettini et al. 2008). The predictions
for the D/H ratio with the q = 2 statistics (D/H = 5.70×10−3)
are about a factor of 200 larger than those from the standard
BBN model, clearly in disagreement with the observation.

A much more stringent constraint for elemental abundances
is given by 4He, which observations set at about 4He/H ≡ Yp =
0.2561±0.0108 (Boesgaard & Steigman 1985; Aver et al. 2010;
Izotov & Thuan 2010). The 4He abundance generated from
our BBN calculation is plotted in Figure 11. The solid curve
is the result obtained with the standard Maxwell distribution
for the reaction rates. Using the non-extensive distributions
yields the dotted line for q = 0.5 and the dashed line for q = 2.
Again, the predicted abundances for q = 2 deviate substantially
from standard BBN results. This time only about half of 4He is
produced with the use of a non-extensive statistics with q = 2.
The reason for this is the suppression of the reaction rates for
the formation of 4He with q = 2 through the charged particle
reactions, t(d, n)4He and 3He(d, p)4He.

A strong impact of using non-extensive statistics for both
q = 0.5 and q = 2 values of the non-extensive parameter is
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Figure 11. 4He abundance. The solid curve is the result obtained with the
standard Maxwell distributions for the reaction rates. Results with the use of
non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed line)
are also shown.

(A color version of this figure is available in the online journal.)

Figure 12. 3He abundance. The solid curve is the result obtained with the
standard Maxwell distributions for the reaction rates. Results with the use of
non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed line)
are also shown.

(A color version of this figure is available in the online journal.)

seen in Figure 12 for the 3He abundance. While for q = 2
there is an overshooting in the production of 3He, for q = 0.5
one finds a smaller value than the one predicted by the standard
BBN. This is due to the distinct results for the destruction of 3He
through the reaction 3He(n, p)t , which is enhanced for q = 0.5
and suppressed for q = 2, in the same way as it happens for the
reaction 7Be(n, p)7Li, shown in Figure 8. 3He is both produced
and destroyed in stars and its abundance is still subject to large
uncertainties, 3He/H = (1.1 ± 0.2) × 10−5 (Bania et al. 2002;
Vangioni-Flam et al. 2003).

Non-extensive statistics for both q = 0.5 and q = 2 values
also alter substantially the 7Li abundance, as shown in Figure 13.
For both values of the non-extensive parameter, q = 2 and
q = 0.5, there is an overshooting in the production of 7Li.
The increase in the 7Li abundance is more accentuated for
q = 2. The lithium problem is associated with a smaller value
of the observed 7Li abundance as compared to the predictions
of BBN. There have been many attempts to solve this problem
by testing all kinds of modifications of the parameters of the
BBN or the physics behind it (a sample of this literature is
found in Fields 2011; Cyburt 2004; Nollett & Burles 2000;

Figure 13. 7Li abundance. The solid curve is the result obtained with the
standard Maxwell distributions for the reaction rates. Results with the use of
non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed line)
are also shown.

(A color version of this figure is available in the online journal.)

Table 1
Predictions of the BBN (with ηWMAP = 6.2 × 10−10) with Maxwellian and

Non-Maxwellian Distributions Compared with Observations

Maxwell Non-Max. Non-Max. Observation
BBN q = 0.5 q = 2

4He/H 0.249 0.243 0.141 0.2561 ± 0.0108
D/H 2.62 3.31 570 2.82+0.20

−0.19(×10−5)
3He/H 0.98 0.91 69.1 (1.1 ± 0.2)(×10−5)
7Li/H 4.39 6.89 356. (1.58 ± 0.31)(×10−10)

Notes. All numbers have the same power of 10 as in the last column.

Cyburt et al. 2008; Cyburt & Pospelov 2009; Boyd et al. 2010;
Wang et al. 2011; Kirsebom & Davids 2011; Iocco & Pato
2012 and references therein). In the present case, the use of
a non-Maxwellian velocity distribution seems to worsen this
scenario. A recent analysis yields the observational value of
7Li/H = (1.58 ± 0.31) × 10−10 (Sbordone et al. 2010).

4.2. Sensitivity Study

We have calculated a window of opportunity for the non-
extensive parameter q with which one can reproduce the
observed abundance of light elements. We chose the data for the
abundances, Yi, of 4He/H, D/H, 3He/H, and 7Li as reference.
We then applied the ordinary χ2 statistics, defined by the
minimization of

χ2 =
∑

i

[Yi(q) − Yi(obs)]2

σi

, (28)

where Yi(q) are the abundances obtained with the non-extensive
statistics with parameter q, Yi(obs) are the observed abundances,
and σi are the errors for each datum, and the sum is over all data
mentioned in Table 1. From this chi-square fit we conclude that
q = 1+0.05

−0.12 is compatible with observations.
No attempt has been made to determine which element

dominates the constraint on q. This might be important for
a detailed study of the elemental abundance influence from
nuclear physics inputs, namely, the uncertainty of the reaction
cross sections. A study along these lines might be carried in a
similar fashion as described in Nollett & Burles (2000). Weights
on the reliability of observational data should also be considered
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for a more detailed analysis. For example, constraints arising
from 3He/H abundance may not be considered trustworthy
because of uncertain galactic chemical evolution. On the other
hand, a constraint from the observation of 3He/D is more robust,
and so on. Based on our discussion in Section 2, it is more
important to determine how the non-extensive statistics can
modify more stringent conditions during the big bang, such
as the modification of weak decay rates and its influence on the
n/p ratio which strongly affects the 4He abundance.

5. CONCLUSIONS

In Table 1, we present results for the predictions of the
BBN with Maxwellian and non-Maxwellian distributions. The
predictions are compared with data from observations reported
in the literature. It is evident that the results obtained with the
non-extensive statistics strongly disagree with the data. The
overabundance of 7Li compared to observation gets worse if
q > 1. The three light elements D, 4He, and 7Li constrain the
primordial abundances rather well. For all these abundances, a
non-extensive statistics with q > 1 leads to a greater discrepancy
with the experimental data.

Except for the case of 3He the use of non-extensive statis-
tics with q < 0.5 does not rule out its validity when the non-
Maxwellian BBN results are compared to observations. 3He is
at present only accessible in our Galaxy’s interstellar medium.
This means that it cannot be measured at low metallicity, a
requirement to make a fair comparison to the primordial gen-
eration of light elements. This also means that the primordial
3He abundance cannot be determined reliably. The result pre-
sented for the 3He abundance in Table 1 is quoted from Bania
et al. (2002). Note that our analysis does not include the changes
that the non-extensive statistics would bring to the n/p conver-
sion rates. The electron distributions would also be expected to
change accordingly. This would change the freezeout tempera-
ture and a corresponding influence on the 4He abundance.

We conclude that it does not seem possible to change
the Maxwell–Boltzmann statistics to reproduce the observed
abundance of light elements in the universe without destroying
many other successful predictions of BBN. A chi-square fit of
our calculations with the observations of elemental abundance
concludes that the non-extensive parameter is constrained to q =
1+0.05

−0.12. This means that, should a non-Maxwellian distribution
due to the use of the Tsallis non-extensive statistics be confirmed
(with a sizable deviation from q = 1), our understanding of the
cosmic evolution of the universe would have to be significantly
changed.
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