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The reactions of relevance for stellar evolution are difficult to measure
directly in the laboratory at the small astrophysical energies. In recent
years, indirect reaction methods have been developed and applied to ex-
tract low-energy astrophysical S-factors. These methods require a combi-
nation of new experimental techniques and theoretical efforts, which are
the subject of this review.
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1. Introduction

Fusion — Fusion cross sections can be calculated from the equation [1]

σF(E) = πλ2
∑
`

(2`+ 1)P`(E) , (1)

where E is the center of mass energy, λ =
√
~2/2mE is the reduced wave-

length and ` = 0, 1, 2, . . . The cross section is proportional to πλ2, the area
of the quantum wave. Each part of the wave corresponds to different impact
parameters having different probabilities for fusion. As the impact parame-
ter increases, so does the angular momentum, hence the reason for the 2`+1
term. P`(E) is the probability that fusion occurs at a given impact param-
eter, or angular momentum. Sometimes, for a better visualization, or for
extrapolation to low energies, one uses the concept of astrophysical S-factor,
redefining the cross section as

σF(E) =
1

E
S(E) exp [−2πη(E)] , (2)
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where η(E) = Z1Z2e
2/~v, with v being the relative velocity. The exponen-

tial function is an approximation to P0(E) for a square-well nuclear potential
plus Coulomb potential, whereas the factor 1/E is proportional to the area
appearing in Eq. (1).

Many reaction channels — Eq. (1) does not work in most situations.
Only by including coupling to other channels, the fusion cross sections can
be reproduced. In coupled channels schemes, one expands the total wave-
function for the system as

Ψ =
∑
i

ai(α)φi(α, qk) , (3)

where φ form the channel basis, α is a dynamical variable (e.g., the dis-
tance between the nuclei), and qk are intrinsic coordinates. Inserting this
expansion in the Schrödinger equation yields a set of CC equations in the
form [2]

dak
dα

=
∑
j

aj 〈φk |U |φj〉 eiEαα/~, (4)

where U is whatever potential couples the channels k and j and Eα =

E
(k)
α − E(j)

α is some sort of transition energy, or transition momentum. In
the presence of continuum states, continuum–continuum coupling (relevant
for breakup channels) can be included by discretizing the continuum. This
goes by the name of Continuum Discretized Coupled-Channels (CDCC) cal-
culations. There are several variations of CC equations, e.g., a set of dif-
ferential equations for the wavefunctions, instead of using basis amplitudes.
Coupled channels calculations with a large number of channels in continuum
couplings are somewhat challenging: the phases of matrix elements can add
destructively or constructively, depending on the system and on the nuclear
model. Such suppressions or enhancements are difficult to interpret.

Radiative capture — For reactions involving light nuclei, only a few
channels are of relevance. In this case, a real potential is enough for the
treatment of fusion. For example, radiative capture cross sections of the
type n + x → a + γ and πL (π = E, (M) = electric (magnetic) L-pole)
transitions can be calculated from [3]

σd.c.
EL,Jb

= const.× |〈lcjc ‖OπL‖ lbjb〉|2 , (5)

where OπL is an EM operator, and 〈lcjc ‖OπL‖ lbjb〉 is a multipole matrix
element involving bound (b) and continuum (c) wavefunctions. For electric
multipole transitions (OπL = rLYLM ),

〈lcjc ‖OEL‖ lbjb〉 = const.×
∞∫

0

dr rLub(r)uc(r) , (6)
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where ui are radial wavefunctions. The total direct capture cross section
is obtained by adding all multipolarities and final spins of the bound state
(E ≡ Enx),

σd.c.(E) =
∑
L,Jb

(SF)Jb σ
d.c.
L,Jb

(E) , (7)

where (SF)Jb are spectroscopic factors.
Asymptotic normalization coefficients— In a microscopic approach,

instead of single-particle wavefunctions one often makes use of overlap inte-
grals, Ib(r), and a many-body wavefunction for the relative motion, uc(r).
Both Ib(r) and uc(r) might be very complicated to calculate, depending
on how elaborated the microscopic model is. The variable r is the relative
coordinate between the nucleon and the nucleus x, with all the intrinsic co-
ordinates of the nucleons in x being integrated out. The direct capture cross
sections are obtained from the calculation of σd.c.

L,Jb
∝ |〈Ib(r)||rLYL||Ψc(r)〉|2.

The imprints of many-body effects will eventually disappear at large
distances between the nucleon and the nucleus. One thus expects that the
overlap function asymptotically matches (r →∞),

Ib(r) = Ci ×
(
W−η,lb+1/2(2κr)

r

) [√
2κ

r
Klb+1/2(κr)

]
, (8)

where () are for protons and [] for neutrons. The binding energy of the
n + x system is related to κ by means of Eb = ~2κ2/2mnx, Wp,q is the
Whittaker function and Kµ is the modified Bessel function. In Eq. (8), Ci
is the Asymptotic Normalization Coefficient (ANC).

In the calculation of σd.c.
L,Jb

above, one often meets the situation in which
only the asymptotic part of Ib(r) and Ψc(r) contributes significantly to the
integral over r. In these situations, uc(r) is also well described by a simple
two-body scattering wave (e.g. Coulomb waves). Therefore, the radial inte-
gration in σd.c.

L,Jb
can be done accurately and the only remaining information

from the many-body physics at short-distances is contained in the asymp-
totic normalization coefficient Ci, i.e. σd.c.

L,Jb
∝ C2

i . We thus run into an
effective theory for radiative capture cross sections, in which the constants
Ci carry all the information about the short-distance physics, where the
many-body aspects are relevant [4]. It is worthwhile to mention that these
arguments are reasonable for proton capture at very low energies, because
of the Coulomb barrier.

Resonating group method — One immediate goal can be achieved
in the coming years by using the Resonating Group Method (RGM) or the
Generator Coordinate Method (GCM). These are a set of coupled integro-
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differential equations of the form [5]∑
α′

∫
d3r′

[
HAB
αα′ (r, r

′)− ENAB
αα′ (r, r

′)
]
gα′(r

′) = 0 , (9)

where H(N)(r, r′) = 〈ΨA(α, r)|H(1)|ΨB(α′, r′)〉. In these equations, H is
the Hamiltonian for the system of two nuclei (A and B) with the energy
E, ΨA,B is the wavefunction of nucleus A (and B), and gα(r) is a function
to be found by numerical solution of Eq. (9), which describes the relative
motion of A and B in channel α. Full antisymmetrization between nucleons
of A and B are implicit. Modern nuclear shell-model calculations are able
to provide the wavefunctions ΨA,B for light nuclei [6].

The astrophysical S-factor for the reaction 7Be(p, γ)8B was calculated [7]
and excellent agreement was found with the experimental data in both di-
rect and indirect measurements [7, 8]. The low- and high-energy slopes of
the S-factor obtained with a many-body microscopic calculation [7] is well
described by the fit

S17(E) = (22.109 eV b)
1 + 5.30E + 1.65E2 + 0.857E3

1 + E/0.1375
, (10)

where E is the relative energy (in MeV) of p+7Be in their center-of-mass.
This equation corresponds to a Padé approximant of the S-factor. A sub-
threshold pole due to the binding energy of 8B is responsible for the denom-
inator [9, 10]. Figure 1 shows the world data on 7Be(p, γ)8B compared to
a few of the theoretical calculations. The recent compilation published in
Ref. [11] recommends S17 = 20.8± 0.7 (expt)± 1.4 (theor) eVb.
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Fig. 1. World data on 7Be(p, γ)8B compared to theoretical calculations.
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2. Direct reactions and the role of radioactive beams

Transfer reactions — Transfer reactions A(a, b)B are effective when a
momentum matching exists between the transferred particle and the internal
particles in the nucleus. Thus, beam energies should be in the range of a few
10 MeV per nucleon. Low energy reactions of astrophysical interest can be
extracted directly from breakup reactions A+a −→ b+c+B by means of the
Trojan Horse Method (THM) [12]. If the Fermi momentum of the particle x
inside a = (b+ x) compensates for the initial projectile velocity va, the low
energy reaction A+x = B+c is induced at very low (even vanishing) relative
energy between A and x. Basically, this technique extends the method of
transfer reactions to continuum states. Very successful results using this
technique have been reported [13, 14].

Another transfer method, coined as ANC technique [4, 15, 16] relies on
fact that the amplitude for the radiative capture cross section b+x −→ a+γ
is given by

M =
〈
Iabx(rbx)|O(rbx)|ψ

(+)
i (rbx)

〉
,

where
Iabx = 〈φa(ξb, ξx, rbx)|φx(ξx)φb(ξb)〉

is the integration over the internal coordinates ξb, and ξx, of b and x, respec-
tively. For low energies, the overlap integral Iabx is dominated by contribu-
tions from large rbx. Thus, what matters for the calculation of the matrix
elementM is the asymptotic value of Iabx ∼ CabxW−ηa,1/2(2κbxrbx)/rbx, where
Cabx is the ANC and W is the Whittaker function. This coefficient is the
product of the spectroscopic factor and a normalization constant which de-
pends on the details of the wave function in the interior part of the potential.
Thus, Cabx is the only unknown factor needed to calculate the direct capture
cross section. These normalization coefficients can be found from: (1) anal-
ysis of classical nuclear reactions such as elastic scattering (by extrapolation
of the experimental scattering phase shifts to the bound state pole in the
energy plane), or (2) peripheral transfer reactions whose amplitudes contain
the same overlap function as the amplitude of the corresponding astrophys-
ical radiative capture cross section. One of the many advantages of using
transfer reaction techniques over direct measurements is to avoid the treat-
ment of the electron screening problem [13, 16].

Intermediate energy Coulomb excitation — The Coulomb excita-
tion cross section is given by

dσi→f

dΩ
=

(
dσ

dΩ

)
el

16π2Z2
2e

2

~2

∑
πλµ

B (πλ, Ii → If)

(2λ+ 1)3
| S(πλ, µ) |2 , (11)
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where B(πλ, Ii → If) is the reduced transition probability of the projectile
nucleus, πλ = E1, E2, M1, . . . is the multipolarity of the excitation, and
µ = −λ,−λ+ 1, . . . , λ.

The relativistic corrections to the Rutherford formula for (dσ/dΩ)el (rel-
evant for collisions at 50 MeV/nucleon and above) has been investigated in
Ref. [17]. It was shown that the scattering angle increases by up to 6% when
relativistic corrections are included in nuclear collisions at 100 MeV/nucleon.
The effect on the elastic scattering cross section is even more drastic: up to
13% for center-of-mass scattering angles around 0–4 degrees.

The orbital integrals S(πλ, µ) contain the information about relativistic
corrections. Inclusion of absorption effects in S(πλ, µ) due to the imaginary
part of an optical nucleus–nucleus potential where worked out in Ref. [18].
These orbital integrals depend on the Lorentz factor γ = (1 − v2/c2)−1/2,
with c being the speed of light, on the multipolarity πλµ, and on the adi-
abaticity parameter ξ(b) = ωfib/γv < 1, where ωfi = (Ef − Ei) /~ is the
excitation energy (in units of ~) and b is the impact parameter.

Reference [19] has shown that at 10 MeV/nucleon the relativistic correc-
tions are important only at the level of 1%. At 500 MeV/nucleon, the correct
treatment of the recoil corrections is relevant on the level of 1%. Thus the
non-relativistic treatment of Coulomb excitation [20] can be safely used for
energies below about 10 MeV/nucleon and the relativistic treatment with
a straight-line trajectory [21] is adequate above about 500 MeV/nucleon.
However, at energies around 50 to 100 MeV/nucleon, accelerator energies
common to most radioactive beam facilities, it is very important to use a
correct treatment of recoil and relativistic effects, both kinematically and
dynamically. At these energies, the corrections can add up to 50%. These
effects were also shown in Ref. [22] for the case of excitation of giant reso-
nances in collisions at intermediate energies.

A reliable extraction of useful nuclear properties, like the electromagnetic
response (B(E2)-values, γ-ray angular distribution, etc.) from Coulomb
excitation experiments at intermediate energies requires a proper treatment
of special relativity [19, 23]. The dynamical relativistic effects have often
been neglected in the analysis of experiments elsewhere (see, e.g. [24]). The
effect is highly non-linear, i.e. a 10% increase in the velocity might lead to a
50% increase (or decrease) of certain physical observables. A general review
of the importance of the relativistic dynamical effects in intermediate energy
collisions has been presented in Ref. [2, 25].

The Coulomb dissociation method — The Coulomb dissociation
method is quite simple. The (differential, or angle integrated) Coulomb
breakup cross section for a+ A −→ b+ c+ A follows from Eq. (11). It can
be rewritten as
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dσπλC (ω)

dΩ
= Nπλ(ω; θ;φ) . σπλγ+a → b+c(ω) , (12)

where ω is the energy transferred from the relative motion to the breakup,
and σπλγ+a → b+c(ω) is the photo nuclear cross section for the multipolarity
πλ and photon energy ω. The function Nπλ, sometimes called virtual pho-
ton numbers, depends on ω, the relative motion energy, nuclear charges and
radii, and the scattering angleΩ = (θ, φ). Nπλ can be reliably calculated [26]
for each multipolarity πλ. Time reversal allows one to deduce the radiative
capture cross section b+ c −→ a+ γ from σπλγ+a → b+c(ω). This method was
proposed in Ref. [27] and has been tested successfully in a number of reac-
tions of interest for astrophysics. The most celebrated case is the reaction
7Be(p, γ)8B [28], followed by numerous experiments in the last decade (see
e.g. Ref. [29]).

Equation (12) is based on first-order perturbation theory. It also as-
sumes that the nuclear contribution to the breakup is small, or that it can
be separated under certain experimental conditions. The contribution of
the nuclear breakup has been examined by several authors (see, e.g. [30]).
8B has a small proton separation energy (≈ 140 keV). For such loosely-
bound systems it had been shown that multiple-step, or higher-order effects,
are important [31]. These effects occur by means of continuum–continuum
transitions. Detailed studies of dynamic contributions to the breakup were
explored in Refs. [32, 33] and in several other publications which followed.
The role of higher multipolarities (e.g., E2 contributions [3, 34, 35] in the
reaction 7Be(p, γ)8B) and the coupling to high-lying states has also to be
investigated carefully. Moreover, it has been shown that the influence of
giant resonance states is small [36].

Knock-out reactions — The early interest in knockout reactions came
from studies of nuclear halo states, for which the narrow momentum distri-
butions of the core fragments in a qualitative way revealed the large spatial
extension of the halo wave function. It was shown [37] that the longitudinal
component of the momentum (taken along the beam or z direction) gave the
most accurate information on the intrinsic properties of the halo and that it
was insensitive to details of the collision and the size of the target. In contrast
to this, the transverse distributions of the core are significantly broadened
by diffractive effects and by Coulomb scattering. For experiments that ob-
serve the nucleon produced in elastic breakup, the transverse momentum is
entirely dominated by diffractive effects, as illustrated [38] by the angular
distribution of the neutrons from the reaction 9Be(11Be,10Be+n)X. In this
case, the width of the transverse momentum distribution reflects essentially
the size of the target [39].
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To test the influence of the medium effects in nucleon knockout reac-
tions, we consider the removal of the l = 0 halo neutron of 15C, bound by
1.218 MeV. The reaction studied is 9Be(15C,14Cgs). The total cross sections
as a function of the bombarding energy are shown in Fig. 2. The solid curve
is obtained with the use of free nucleon–nucleon cross sections. The dashed
curve includes the geometrical effects of Pauli blocking. The dashed-dotted
curve is the result using the Brueckner theory, and the dotted curve is the
phenomenological parametrization of the free cross section.

Fig. 2. Total knockout cross sections for removing the l = 0 halo neutron of 15C,
bound by 1.218 MeV, in the reaction 9Be(15C,14Cgs). The solid curve is obtained
with the use of free nucleon–nucleon cross sections. The dashed curve includes the
geometrical effects of Pauli blocking. The dashed-dotted curve is the result using
the Brueckner theory, and the dotted curve is a phenomenological parametrization.

In Fig. 3 we plot the longitudinal momentum distributions for the re-
action 9Be(11Be,10Be), at 250 MeV/nucleon [40]. The dashed curve is the
cross section calculated using the NN cross section from the Brueckner the-
ory and the solid curve is obtained the free cross section. One sees that the
momentum distributions are reduced by 10%, about the same as the total
cross sections, but the shape remains basically unaltered. If one rescales the
dashed curve to match the solid one, the differences in the width are not
visible [41].
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Fig. 3. Longitudinal momentum distribution for the residue in the 9Be(11Be,10Be),
reaction at 250 MeV/nucleon. The dashed curve is the cross section calculated using
the NN cross section from the Brueckner theory and the solid curve is obtained
the free cross section.

3. Conclusions

There were many questions not addressed in this review, such as the
role of central nucleus–nucleus collisions in determining phase transition,
equation of state, and a quark-gluon plasma, all topics or relevance in as-
trophysics. The review was more focused on the role of short-lived, exotic
nuclei. There are many important scientific questions to be addressed both
experimentally and theoretically in nuclear physics of exotic nuclei with
relevance for astrophysics. These questions provide extreme challenges for
experiments and theory. On the experimental side, producing the beams of
radioactive nuclei needed to address the scientific questions has been an enor-
mous challenge. Pioneering experiments have established the techniques and
present-generation facilities have produced first exciting science results, but
the field is still at the beginning of an era of discovery and exploration that
will be fully underway once the range of next-generation facilities becomes
operational. The theoretical challenges relate to wide variations in nuclear
composition and rearrangements of the bound and continuum structure,
sometimes involving near-degeneracy of the bound and continuum states.
The extraction of reliable information from experiments requires a solid
understanding of the reaction process, in addition to the structure of the
nucleus. In astrophysics, new observations, for example the expected on-
set of data on stellar abundances, will require rare-isotope science for their
interpretation.
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