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Abstract. We report on applications of the ab initio, no-core shell model with
the primary goal of achieving an accurate description of nuclear structure and
reactions from the fundamental inter-nucleon interactions. We show that real-
istic two-nucleon interactions are inadequate to describe the low-lying structure
of 10B, and that realistic three-nucleon interactions are essential. We report
preliminary attempts to compute astrophysical S-factors
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1. Introduction

A long-standing goal in nuclear physics is to arrive at a complete and fundamen-
tal understanding of nuclear phenomena, in particular, their structure and their
reactions. Our principal goal is to determine if our knowledge of the fundamental
interaction between pairs of nucleons is sufficient to describe the rich and complex
structure observed in nuclei. This is an extremely difficult enterprise, and substan-
tial progress towards this end has been accomplished in the last five years or so.
In general, the lightest nuclei, with four or fewer nucleons, are amenable to exact
methods based on Faddeev-like [1,2] approaches. The hyperspherical formalism [3,4]
has also been applied to three- and four-body systems, with convergence towards
exact results being achievable. For heavier nuclei, two methods have proven to be
successful so far. Perhaps, the gold standard is Green’s Function Monte Carlo [5,6],
which has been extensively applied to systems up to ten nucleons [7], and recently
12C. The second method, which we will focus on here, is the ab initio, No-core
Shell Model (NCSM) [8, 9]. The NCSM is a basis-state expansion approach where
the interaction between the many-body basis states is derived from fundamental

1219-7580/ $ 20.00
c⃝ 2006 Akadémiai Kiadó, Budapest
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inter-nucleon interactions using effective interaction theory. Here, we outline efforts
underway at Livermore to apply the No-core Shell Model to the nuclear many-body
problem.

2. Effective Interactions and the Shell Model

The basic task at hand is to obtain solutions to the standard eigenvalue problem

(Ĥ − Eν)Ψν = 0 , (1)

where Eν is the desired eigenvalue, Ĥ is the Hamiltonian, and Ψν is the eigen-
function. One starting point for solving Eq. (1) is the interacting shell model [10],
where we introduce a set of orthogonal basis states φi to construct the exact solu-
tion, i.e. Ψν =

∑

i cνiφi. Solutions to Eq. (1) can then be obtained from a set of
coupled equations that can be solved using matrix diagonalization techniques. The
primary difficulty encountered is that because of the short-range repulsion in the
nucleon–nucleon interaction, a basis of infinite dimension is required.

This infinite basis problem can, in principle, be circumvented by the use of
effective-interaction theory. First, one chooses manageable subset of the original
basis states, which is defined by the operator P̂ , leading to the slightly different
eigenvalue problem

(Ĥeff − Eν)P̂Ψν = 0 , (2)

where P̂Ψν is the projection of the exact solution onto the chosen model space, Eν

is again the eigenvalue, and Ĥeff is an effective Hamiltonian that yields the exact
solution of Eq. (1). The excluded space is then usually defined by the operator Q̂,
with P̂ + Q̂ = 1, P̂ 2 = P̂ , Q̂2 = Q̂, and P̂ Q̂ = Q̂P̂ = 0.

An important feature of Ĥeff is that it is composed of two-, three-, . . . , A-
body components even if the fundamental interaction is only pair-wise. The power
of Heff is that it may provide a mechanism to carry out computationally tractable
calculations while including the relevant physics. For most potentials, the dominant
correlations in the effective interactions are at the two-body level, but for smaller
P -space, the higher-body correlations are essential for a correct result.

Here, we utilized a unitary transformation due to Lee and Suzuki [11] to derive
the effective interaction. This formalism is the foundation for the highly successful
no-core shell model (NCSM) [8, 9]. The procedure is based on finding the trans-
formation, eS , to the Hamiltonian so that the P - and Q-spaces for the many-body
problem are decoupled, i.e.

Q̂e−SĤeSP̂ = 0 . (3)

Strictly speaking, in this form, Ĥeff is not unitary, but can be made so. Explicit
formulae for the n-body matrix elements are given by Eqs. (9) and (10) in Ref. [9].

Our calculations begin with the two-body and three-body Hamiltonian for the
A-nucleon system, which depends on the intrinsic coordinates alone. We utilize
realistic interaction potentials that are derived from nucleon–nucleon scattering
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data. To facilitate our calculations, we introduce an A-nucleon harmonic-oscillator
Hamiltonian acting only on the center-of-mass, whose effect is subtracted from the
many-body calculation. The primary advantages of the harmonic oscillator are
that it acts as pseudo mean field providing a convenient basis for expanding the
many-body wave function and that the relative motion of the center-of-mass can
be separated from the intrinsic degrees of freedom exactly. Within the harmonic-
oscillator basis, we specify the P -space, designated by the maximum number, Nmax,
of oscillator quanta excitations, and construct the A-body basis. We then obtain
the eigenvalues, Eν , using a shell-model code. This amounts to diagonalizing a sym-
metric matrix, whose dimensions are given by the number of A-body basis states.
Although the dimensions can be quite large, efficient numerical techniques, such
as Lanczos [12], exist that yield the lowest eigenvalues. The parameters governing
convergence are: Nmax, defining the model space; n, the number of clusters in the
effective interaction; and b =

√

mΩ/h̄, the oscillator parameter setting the physical
scale. Ideally, once convergence is achieved, the NCSM solution is independent of
these parameters. In practice, the best solution is taken for the largest Nmax that is
computationally feasible and a value of the oscillator parameter where the binding
energy is least sensitive.

Generally, computational limitations impose a compromise in the choice of Nmax

and Ĥ(n)
eff . This is due to the fact that for each increment in Nmax or n the compu-

tational requirements increase dramatically. Furthermore, the effective interaction
itself becomes more difficult to evaluate with increasing n and/or Nmax. To illus-
trate the level complexity of the three-body calculations, for Nmax = 4, 39,523,066
3-particle interaction matrix elements are needed. In this space, the number of M -
scheme 10-body configurations for 10B with Jπ

z = 0+ is 581,740, and the resultant
matrix to be diagonalized has over 2.2 × 109 non-zero elements.

3. Nuclear Structure Calculations

Over the past several years, extensive studies have been performed with the NCSM
using realistic NN interactions such as the Argonne AV8′ potentials [6] and CD-
Bonn [13]. These include first the ab initio applications [14] for 12C, A = 6 nuclei
[15], an examination of the nature of excited states in 8Be, large-basis applications
for A = 10 nuclei [17], and a study of parity inversion in A = 11 nuclei [18]. The
study with A = 6 provides an excellent example of the convergence and the utility
of the no-core shell model [15]. In particular, in Fig. 1, we compare the NCSM
spectrum for 6Li (as a function of the model space Nmax) using the Argonne AV8′

potential with results obtained from the GFMC method. Overall, there is good
agreement between the two methods.

Higher-body clusters generally improve the overall convergence [19] of the NCSM.
Binding energies for 6Li, 8Be, and 10B are shown in Fig. 2. On the left side of the
figure the binding energies are plotted as a function of the oscillator parameter. The
figure shows parabolas for the various model spaces (denoted by the Nmax value)
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Fig. 1. Comparison of the NCSM and GFMC spectra obtained for the Argonne
AV8′ potential. The NCSM spectra are shown as a function of the model size
denoted by Nmaxh̄Ω

for two-body (V2eff – dotted lines) and three-body (V3eff – solid lines) effective in-
teractions. The behavior on the oscillator parameter is lessened (flatter parabola)
as either the model space size increases or when more clusters are included in the
effective interaction. Again, the “best” result for a given model space is chosen
in the region exhibiting the least dependence on the oscillator parameter. These
“best” values are plotted on the right side of the figure as a function of the model
space Nmax and compared with the results from the GFMC method (full solid lines
with a dotted line band denoting the GFMC uncertainty). For a given value of
Nmax, faster convergence is achieved with higher clusters in Heff . In addition, we
note that the NCSM calculation with the two-body effective interaction still differs
from the GFMC result by ≈1.8 MeV even for the largest model space. On the
other hand, the three-body effective interaction results are in better agreement for
smaller model spaces. Given that 8Be is actually an unbound alpha cluster, this
suggests that the three-body effective interactions includes more correlations. Over-
all, the results obtained with the three-body clusters in the effective interaction are
in agreement with the GFMC calculations to within 400 keV.

With confidence in convergence, we now turn to a study of the structure of light
nuclei. A particularly salient example is 10B. The spectrum obtained with the AV8′

is shown in Fig. 3 (using a three-body effective interaction, V3eff) in comparison
with experiment. We note that the ground state (3+) and the first excited state
(1+) are reversed in order. This behavior is a feature that is common to all the
realistic nucleon–nucleon forces, and is the first direct evidence that, in addition
to providing extra binding, the three-nucleon forces is important for determining
nuclear structure.
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Fig. 2. Calculated ground-state energy of 6Li (upper panel), 8Be (middle panel)
and 10B (lower panel) using the AV8′

NN potential with Coulomb. Results using
the two-body effective interaction and the three-body effective interaction in basis
spaces up to 6h̄Ω in the range of HO frequencies of h̄Ω = 8–28 MeV are shown
and compared to the GFMC results from Ref. [6]. On the rhs, the energies at the
HO frequency minima as a function of Nmax are plotted

We conclude that we must now include “true” three-nucleon forces. These are
different from the three-body clusters in the effective interaction, which are induced
because of the effect of the finite model space. We have carried out calculations
including the Tucson–Melbourne three-nucleon force [20] for 10B, and the results are
shown in Fig. 3, where better agreement with the experimental spectrum is obtained,
In particular, the ordering of the first two states is now correct. Overall, one finds
that the three-nucleon interaction has spin-orbit components that play an important
role in determining the structure of light p-shell nuclei. We have also demonstrated
that certain transition operators, such as Gamow–Teller and M1, are also strongly
affected by the three-nucleon interaction. This is due to the presence of strong spin-
orbit components in the three-nucleon interaction. A simple explanation is that
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Fig. 3. Comparison of low-lying
spectrum of 10B obtained with the
AV8′ two-nucleon interaction alone
(left side) and with the Tucson–
Melbourne three-nucleon force (right
side) with experiment

without a strong spin-orbit component the nuclear Hamiltonian is nearly invariant
to the group SU(4). Given that the Gamow–Teller transition operator is a generator
of SU(4), it cannot mediate transitions between different SU(4) irreps, which would
lead to a significant suppression of Gamow–Teller transition amplitudes. The spin-
orbit components in the three-nucleon force, however, break SU(4) symmetry, and,
hence, lead to much larger Gamow–Teller and M1 matrix elements. All this points to
the fact that we must include realistic three-nucleon forces for a proper description
of the properties of nuclei.

4. Reactions

In addition to an ab initio description of structure, we would also like to have a
theoretical description of reactions that is based on the fundamental inter-nucleon
interactions. Of particular interest are the light-ion fusion reactions that character-
ize stellar evolution. We are in the process of extending the No-core Shell Model
into a formalism to describe reactions with binary entrance and exit channels.

The starting point for our formalism is the ab initio solution to the composite
nucleus with A nucleons, and the projectile and target with a and A − a nucleons,
respectively. Naturally, we also require solutions for binary exit clusters as well. In
the asymptotic region, the A-nucleon wave function is given by the product of the
binary intrinsic wave functions coupled to asymptotic channel quantum numbers
and a radial wave function representing their relative motion

|ΦJM
A−aαI1,aβI2,sl; g⟩ =

∑

(I1M1I2M2|sms)|A − a,αI1M1⟩|a,βI2M2⟩
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(smslml|JM)Ylml
(r̂)gJ

A−aαI1,aβI2,sl(r) , (4)

where |A−a,αI1M1⟩ and |a,βI2M2⟩ are eigenstates of ĤA−a
eff and Ĥa

eff , respectively,
and describe the internal states of the two clusters. Here, the intrinsic angular
momenta I1 and I2 are coupled to the channel spin s, which in turn is coupled
to the channel orbital angular momentum l to the total angular momentum J .
The relative coordinate r⃗ measures the separation of the center-of-mass of the two
clusters. The radial wave function g describes the relative motion of the clusters.
The asymptotic behavior of the radial wave functions determines the reaction cross
sections. A key ingredient for the formalism is the radial cluster form factor, given
by the overlap

⟨AλJ |AΦJM
A−aαI1,aβI2,sl; δ(r)⟩, (5)

which measures the overlap of the composite A-body system with the a- and (A−a)-
body clusters as a function of their separation r. Here A denotes the antisym-
metrization operation.

With the calculated radial-cluster form factors, proper antisymmetrization, a
suitable renormalization of the radial wave function overlaps, and considerable al-
gebra, we arrive at a set of coupled integro-differential equations for u(r) = g(r)/r,
which embody much of the physics of formalism, and determine the reaction cross
section. Specifically,

[

−
h̄2

2Mred

d2

dr2
A−a

+
h̄2

2Mred

l(l + 1)

r2
A−a

+ VFold(r) + EA−a
α,I1

+ Ea
β,I2

− E

]

uJ
Γ(Γi)

(rA−a)

+
∑

Γ′nn′

∫

∞

0
dr′A−aRnl(rA−a)HJ

Γn,Γ′n′Rn′l′(r
′

A−a)uJ
Γ′(Γi)

(r′A−a) = 0 ,

where VFold is an optical model-like potential derived from the effective Hamilto-
nian and includes the Coulomb potential. Other quantities in Eq. (6) are: rA−a the
relative coordinate for the channel with A−a and a clusters, Mred = Mn(A−a) a/A
(Mn is the nucleon mass), EA−a

α,I1
and Ea

β,I2
are the energies of the intrinsic states

for the clusters (i.e. eigenstates of ĤA−a(a)
eff ), respectively, E is the total energy

of the A-body system. The labels Γ are short-hand for the channel state labels
(A − a)αI1, aβI2, sl, with Γi referring to the entrance channel for the reaction.
The sum over Γ denotes an explicit sum over all final channels, including different
(A− a, a) combinations. The matrix elements HΓn,Γ′n′ are calculated using the ef-
fective Hamiltonian and the asymptotic wave functions for each channel as defined
in Eq. (4) (with g replaced by the radial HO wave function Rnl), and, thus are
explicit functions of the radial-cluster form factor. The asymptotic boundary con-
dition is obtained by matching the radial wave functions g to the correct asymptotic
behavior. The reaction cross section for each channel is then determined from the
amplitudes of the asymptotic components of the channel relative wave functions.

At present much work is still left to formally solve the equation of motion,
and hence obtain the cross section. We have developed codes to compute the
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Fig. 4. Computed radial-cluster form factor, rg(r), for the ground state of 7Be
plus proton with the ground state of 8B. The solid line represents the NCSM
result, while the dashed line represents a renormalized overlap obtained from a
Woods–Saxon potential whose parameters were fit to the compute overlap up
to 3.5 fm and constraining the energy to reproduce the experimental separation
energy

radial-cluster form factor and have preliminary evaluations of the S-factor for the
7Be(p,γ)8B reaction. Shown in Fig. 4 is the calculated cluster form factor 7Be+p

Fig. 5. Preliminary calculation of the 7Be(p,γ)8B S-factor using renormalized
cluster form factors as shown in Fig. 4. The dashed and dashed–dotted lines show
the contribution due to the l = 1, j = 3/2 and j = 1/2 states, respectively
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(black line). Note that the integral of the squared overlap is the spectroscopic factor.
The first feature to note is that because we utilize a harmonic-oscillator basis, the
radial wave function has the wrong asymptotic behavior, as it decays as a Gaussian.
This can be corrected considerably with effective operators, and is under develop-
ment. We can obtain a quick solution to this problem by using a wave function
obtained with a Woods–Saxon potential. Here we fit a Woods–Saxon potential to
the computed overlap up to 3.5 fm or so, and require that energy of the state repro-
duce the experimental separation energy. This is denoted by the red line in Fig. 4.
We then renormalize the magnitude of the overlap to preserve the spectroscopic
factor. Using these radial-cluster form factors, we then preliminarily compute the
S-factor for 7Be(p,γ)8B with the radiative capture model of Bertulani [21], which
is shown in Fig. 5. Overall, good agreement with the current experimental data is
achieved, suggesting that our full formalism has the potential to provide the capa-
bility to yield an exact computation of reactions, including astrophysical S-factors,
with the fundamental interactions between nucleons.

5. Conclusions

Substantial progress has been made towards an exact description of nuclear struc-
ture. In this work, we describe the ab initio, No-core Shell Model and recent results.
In particular, we find that realistic NN interactions by themselves are inadequate
and that three-nucleon forces play an important role in determining nuclear prop-
erties. We are also in the process of extending the No-core Shell Model into a
formalism capable of providing an exact description of nuclear reactions. Overall,
the prospects are bright that exact results for both structure and reactions for nuclei
up to Oxygen utilizing the fundamental forces between nucleons can be achieved in
the near future.
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2. H. Kamada and W. Glöckle, Nucl. Phys. A 548 (1992) 205; J.L. Friar,
G.L. Payne, V.G.J. Stoks and J.J. de Swart, Phys. Lett. B 311 (1993) 4;



196 W.E. Ormand et al.
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