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Abstract. Kawai, Kerman, and McVoy have shown that a statistical treatment of many
open channels that are coupled by direct reactions leads to modifications of the Hauser-
Feshbach expression for energy-averaged cross section [Ann. of Phys. 75, 156 (1973)].
The energy averaging interval for this cross section is on the order of the width of sin-
gle particle resonances, ≈ 1 MeV, revealing only a gross structure in the cross section.
When the energy-averaging interval is decreased down to a width of a doorway state,
≈ 0.1 MeV, a so-called intermediate structure may be observed in cross sections. We
extend the Kawai-Kerman-McVoy theory into the intermediate structure by leveraging a
theory of doorway states developed by Feshbach, Kerman, and Lemmer [Ann. of Phys.
41, 230 (1967)]. As a by-product of the extension, an alternative derivation of the central
result of the Kawai-Kerman-McVoy theory is suggested. We quantify the effect of the ap-
proximations used in derivation by performing numerical computations for a large set of
compound nuclear states.

1 Introduction

One way of analyzing low-energy nuclear cross sections is by varying the experimental energy resolu-
tion, or alternatively, by numerical energy-averaging of high-resolution data. It is known that different
energy resolutions may reveal different features in the cross section. Such features may provide insight
into the dominant processes contributing to the cross section.

Extremely high energy resolution, on the order of fraction of an eV, reveals compound nuclear
resonances, often referred to as fine structure. In the other extreme, when the energy resolution is on the
order of MeV’s, single-particle resonances may remain the only visible feature of what is commonly
referred to a gross structure [1]. For an intermediate energy resolution, on the order of 100 keV, a
so-called intermediate structure emerges, for which a theory of doorway states was developed in [2].
Doorway state concept was used to construct a non-local optical potential in [6].

In this work we will consider the intermediate and the gross structures of low-energy cross sections.
The latter is the realm of the optical potentials and statistical theories of nuclear reactions, of which we
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will focus on the Kawai-Kerman-McVoy (KKM) theory [1], which will be outlined in Sect. 2. We will
leverage some of the formal expressions derived in [2] to extend the KKM theory into the realm of the
intermediate structure in Sect. 3. We will test the validity of some approximations used in derivation
of KKM results using a simple numerical model in Sect. 4.

2 Gross Structure

In this section we outline some key ingredients of the KKM theory [1]. Alternative expositions of the
KKM theory can be found in [7] and [5]. The theory uses the Feshbach’s projection operator formalism
to divide the Hilbert space into continuum (P) and the compound (Q) subspaces:

P + Q = 1 (1)

where P and Q are unitary Hermitian projection operators. Projecting the Schrodinger equation HΨ =
EΨ into the two subspaces, and using a two-potential formula to find the T -matrix, yields a background-
plus-resonant expression1:

T = TP + TQ, (2)

where TP is the T -matrix of the PHP ≡ HPP, and

TQ = HPQ
1

E − HQQ −WQQ
HQP, (3)

where the operator

WQQ = HQP
1

E(+)
− HPP

HPQ (4)

describes coupling of compound states to the continuum which gives compound states finite widths.
Expanding the TQ in terms of energy-dependent bi-orthogonal eigenvectors and (complex) eigenvalues

[HQQ −WQQ]|q̂〉 = Êq|q̂〉 (5)

yields

TQ,cc′ =
1

2π

∑
q

ĝqcĝqc′

E − Êq
, (6)

where partial width amplitudes ĝqc are given by

ĝqc ≡ 〈c(−)|HPQ|q̂〉 (7)

where |c(−)〉 is an eigenfunction of HPP in channel c with incoming boundary condition. A disadvantage
of the background-plus-resonant separation in Eq. (2) is that computation of its energy-averaged cross
section will contain a non-vanishing energy-average of the product TPTQ. The KKM theory solves this
problem by deriving an alternative separation of the T -matrix into its optical (i.e., energy-averaged)
and fluctuating parts:

T ≈ T opt + T fluct, (8)

where T opt is the T -matrix of the optical Hamiltonian Hopt and

Hopt = HPP + HPQ
1

E − HQQ + iI
HQP, (9)

where I is the energy-averaging interval that is on the order of 1 MeV for optical potentials. The KKM
expression for T fluct is:

T fluct = VPQ
1

E − HQQ −Wopt
QQ

VQP, (10)

1 To simplify the notation, energy dependence of the T -matrix will not be displayed in this paper.



Third Int’l. Workshop on Compound Nuclear Reactions and Related Topics, 9/19-23/ 2011, Prague

where Wopt
QQ is obtained by substituting HPP → Hopt

PP and HPQ → VPQ in Eq. (4), and where

VPQ ≡ HPQ

√
iI/2

E − HQQ + iI/2
. (11)

Expanding the T fluct in terms of energy-dependent bi-orthogonal eigenvectors and (complex)
eigenvalues,

[HQQ −Wopt
QQ]|q〉 = Eq|q〉 (12)

yields

T fluct
cc′ =

1
2π

∑
q

gqcgqc′

E − Eq
, (13)

where partial width amplitudes gqc are given by

gqc ≡ 〈c
(−)
opt |VPQ|q〉 (14)

and where |c(−)
opt〉 is an optical wave-function in channel c with incoming boundary condition. The

advantage of this expression is that the energy-average of the fluctuating term is approximately zero
because by construction the optical T opt is the energy-average of the T -matrix:

T opt ≈ 〈T 〉I . (15)

Computation of energy-averaged cross section, being proportional to |T |2, is therefore simplified be-
cause the energy-average of the cross term is negligible. Using this feature, the KKM derived an
expression for the energy-averaged cross section:

〈σfluct
cc′ 〉I ≈ (2l + 1)πo2

c
PccPc′c′ + Pcc′Pc′c

Tr(P)
, (16)

where the Satchler’s penetrability matrix P is computed for Hopt. The same feature was also used in
derivation of the Kerman-McVoy energy-averaged cross section for two-step (direct-plus-compound)
reactions [3], and also in derivation of the Feshbach-Kerman-McVoy statistical theory of multistep
pre-equilibrium reactions [4].

3 Intermediate Structure

We set out to express the T -matrix of intermediate structure as a sum of its average and fluctuating
parts, analogous to Eq. (8) of the gross structure. We leverage the separation of the T -matrix into its
background-plus-resonant parts, which was derived using Feshbach projection operators formalism in
[2]. The Hilbert space is projected into continuum (P), doorway (D), and compound (F) subspaces:

P + D + F = 1, (17)

where D+F = Q of Sect. 2. Projecting the Schrodinger equation HΨ = EΨ into these three subspaces,
and allowing compound subspace to couple to doorways only (PHD ≡ HPD , 0, HDF , 0, and
HPF = 0), it was shown in [2] that a T -matrix can be formally written as

T = TP + TD + TF , (18)

which is the intermediate structure analogue of the background-plus-resonant T -matrix in Eq. (2). Of
the three terms, the most rapid energy dependence occurs in TF because it contains the effect of the
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compound resonant states. For completeness we copy the expressions for TD and TF from Eq. (2.40)
of [2]:

TD = HPD
1

E − HDD −WDD
HDP (19)

TF = HPD
1

E − HDD −WDD
HDF

1
E − HFF − HFD

1
E−HDD−WDD

HDF
HDF

1
E − HDD −WDD

HDP, (20)

where
WDD = HDP

1
E(+)
− HPP

HPD. (21)

The identities used in the KKM to cast the T -matrix into a sum of its average and fluctuating parts in
Eq. (8) cannot be used when doorway space D is treated explicitly. A desired separation of the T -matrix
into its average and fluctuating parts is accomplished below by expressing the T -matrix completely in
terms of scalar matrix elements. Despite this departure from the KKM, the approximations used in the
derivation below are consistent with those of the KKM, so that the results below ought to be consistent
with those of the KKM. To proceed, we expand the TF in terms of bi-orthogonal eigenvectors2 and
(complex) eigenvalues of the operator expressions appearing in TF :

(HDD −WDD)|d〉 = Ed |d〉 (22)

(HFF − HFD
1

E − HDD −WDD
HDF)|λ〉 = Eλ|λ〉. (23)

The expansion yields

TF,cc′ =
1

2π

∑
λ

GcλGλc′

E − Eλ
, (24)

where the composite partial widths Gcλ,

Gcλ =
∑

d

γcdγdλ

E − Ed
, (25)

are defined in terms of partial widths

γcd = 〈c(−)|HPD|d〉 (26)
γdλ = 〈d̃|HDF |λ〉, (27)

where 〈d̃| is the left adjoint of eigenvector |d〉. Next, we energy-average the TF,cc′ in Eq. (24) over an
intermediate energy-averaging interval, Iint, that is smaller than a doorway state width Γd (in order to
preserve intermediate structure) but is much larger than the width of fine compound resonances Γλ (in
order to smooth out the fine structure), or

Γλ � Iint < Γd � I. (28)

Since TP and TD in Eq. (18) are assumed not to vary appreciably over the energy-averaging interval Iint,
the effect of this energy-averaging on these terms is neglected. Similarly, the effect of energy-averaging
the composite partial widths Gcλ over the same energy-averaging interval Iint is assumed to be small.
Therefore, only the narrow compound resonance poles, Eλ, of Eq. (24) need to be energy-averaged.
Energy-averaging with a Lorentzian weight of width Iint can be performed by contour integration3 that,
for a function T (E) that is regular in the upper half-plane, yields

〈T (E)〉Iint = T (E + iIint/2). (29)

2 These eigenvectors and their corresponding (complex) eigenvalues are energy-dependent because the operator
expressions are explicitly energy-dependent. The imaginary parts of the complex eigenvalues Im(Ed) = Γd/2 and
Im(Eλ) = Γλ/2 give the resonant widths of doorway and compound states, respectively.

3 See for example Eq. (2.19) of [2] for more details.
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Application of this analytical result to Eq. (24), along with the approximations just described, yields

〈TF,cc′〉Iint ≈
1

2π

∑
λ

GcλGλc′

E − Eλ + iIint/2
. (30)

An expression for the fluctuating part of the T -matrix can now be determined from its definition:

T fluct
F ≡ T − 〈T 〉Iint (31)
≈ TF − 〈TF〉Iint . (32)

Inserting Eqs. (24) and (30) into Eq. (32), and displaying the channel indices, yields

T fluct
F,cc′ ≈

1
2π

∑
λ

GλcGλc′

E − Eλ
, (33)

where

Gcλ = Gcλ

√
iIint/2

E − Eλ + iIint/2
. (34)

Now that we derived an expression for the fluctuating part, T fluct
F , we turn our attention to the interme-

diate energy-averaged T -matrix. For the purposes of this work, it suffices to state a formal expression
for the intermediate structure Hamiltonian, given in Eq (2.89) of [2], which for energy-averaging with
a Lorentzian weight of width Iint, becomes

Hint = HPP + HPD
1

E − HDD − HDF
1

E−HFF+iIint
HFD

HDP. (35)

Since this Hint is constructed so that its T -matrix is approximately equal to the intermediate energy-
average of the total T -matrix, namely,

T int ≈ 〈T 〉Iint , (36)

we arrive at a desired separation of the T -matrix:

T ≈ T int + T fluct
F . (37)

This separation of the T -matrix into its intermediate energy-average plus a fluctuating part is analogous
to the KKM separation into optical plus its fluctuating part. It is this separation that makes it possible
to retrace the steps in the derivation of the KKM cross section. Doing so yields an expression for the
intermediate-structure cross section arising from intermediate energy-averaging of |T fluct

F |2 in Eq. (33):

〈σfluct
F,cc′〉Iint ≈ (2l + 1)πo2

c
PccPc′c′ + Pcc′Pc′c

Tr(P)
. (38)

This expression is identical in form to the KKM expression in Eq. (16), the only difference being that
Satchler’s penetrability matrix P is computed for Hint instead of Hopt.

3.1 KKM Revisited

The derivation of the fluctuating T -matrix for the intermediate structure in Sect. 3 could be used to
derive an alternative to Eq. (13). Writing the fluctuating T -matrix as in Eq. (31) but using the energy-
averaging interval of the gross structure, I, yields

T fluct
Q ≡ T − 〈T 〉I (39)
≈ TQ − 〈TQ〉I . (40)
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Energy-averaging of T Q
cc′ in Eq. (6) using a Lorentzian weight of width I, and performing the subtrac-

tion above, yields

T fluct
Q,cc′ =

1
2π

∑
q

ḡqcḡqc′

E − Êq
, (41)

where

ḡcq = ĝcq

√
iI/2

E − Êq + iI/2
. (42)

This expression is simpler than the one in Eq. (13) because it bypasses computation of eigenvectors |q〉
and eigenvalues Eq in Eq. (12). The expression for T fluct

Q above is very similar to that in Eq. (23) of [1]
where it was used to argue that its energy average ought to vanish. This suggests that the expression
for T fluct

Q obtained in a simplified derivation could be used to derive the KKM expression for cross
section in Eq. (16).

4 Model and Results

A computer model for studying the validity of approximations used in the KKM derivation was con-
structed in [5] in order to verify numerically that 〈T fluct

cc′ 〉I/T
opt
cc′ � 1. Eigenvalues and eigenvectors in

Eqs. (5) and (12) were assumed not to vary appreciably over the energy-averaging range in computa-
tion of 〈T fluct

cc′ 〉I . We remove this assumption in order to quantify the effect of the energy dependence
of eigenvectors and eigenvalues over the energy-averaging interval.

Input parameters for this computation were otherwise mostly identical to those in [5]. T fluct
cc′ was

energy-averaged with a Lorentzian weight of half-width 0.5 MeV at an incoming energy E = 20 MeV.
The Lorentzian energy average was performed over 100 equidistant points between 18 and 22 MeV.
The eigenvalue Eqs. (5) and (12) were solved at each of 100 energy points spanning the energy-
averaging region.

Forty s-wave channels and 1,600 compound levels were used in this computation. The random
interaction was defined on NR = 20 equidistant radial points between the origin and 7 fm. The variance
of the coupling strength was set to 0.5 MeV fm3/2. For simplicity, we set HPP to be kinetic energy, so
that TP = 0, and therefore T opt

cc′ could be computed as T opt
cc′ ≈ 〈TQ,cc′〉I .

A histogram of 〈T fluct
cc′ 〉I/T

opt
cc′ for 40 × 40 channel pairs, with and without using energy dependent

eigenvectors and eigenvalues, is shown in Figure 1. The average values and square-root variances
of the two histograms are displayed in Table 1. A closeness of the two results indicates that energy
dependence of eigenvectors and eigenvalues may be neglected without a significant loss in accuracy.

Table 1. The average value and the square-root-variance for the two histograms plotted in Fig. 1. We observe a
slightly larger average of the histogram for E-dependent eigenvectors and eigenvalues.

Average Ratio SQRT(Variance)

E-independent 0.0037 0.0053
E-dependent 0.0042 0.0049
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Fig. 1. A histogram of ratios 〈T fluct
cc′ (E)〉I/T

opt
cc′ (E), computed with and without accounting for explicit energy

dependence of eigenvalues and eigenvectors. Similarity of the two histograms suggests that the effect of this
energy dependence does not appear to be appreciable.
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