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Abstract. Kawai, Kerman and McVoy (KKM) derived an optical background-plus-fluctuations representation of T -matrix,
T = T opt +T fluct, so that an energy average of T fluct over a single-particle resonance width is expected to be negligibly small
(Ann. of Phys. 75, 156 [1973]). We investigate this property numerically in a simple model with 1,600 compound nuclear
levels and 40 channels, coupled via a random interaction. We find that the energy average of the fluctuating term is much
smaller than the optical background, T opt, in support of the KKM result. A self-contained derivation of KKM T -matrix is
presented.
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INTRODUCTION

Kawai, Kerman, and McVoy [1] transformed a con-
ventional background-plus-resonant representation of T -
matrix

Tcc′ (E) = T (0)
cc′ (E)+

1
2π

∑
q

ĝqc(E)ĝqc′(E)

E− Êq(E)
, (1)

into a more convenient optical background-plus-
fluctuations representation 1

Tcc′ (E) = T opt
cc′ (E)+

1
2π

∑
q

gqc(E)gqc′(E)
E−Eq(E)

. (2)

where ĝqc(E) are the partial-width amplitudes, and
Êq(E) are the (complex) resonance energies, while
gqc(E) and Eq(E) are their KKM equivalents2. Since
〈Tcc′ (E)〉I ∼= T opt

cc′ (E) by definition, the energy average
of the fluctuating term ought to be negligibly small, rela-
tive to T opt

cc′ (E):〈
∑
q

gqc(E)gqc′(E)
E−Eq(E)

〉
I

� T opt
cc′ (E) , (3)

where the energy averaging interval, I, is on the order of
the width of a single particle resonance, ≈ 0.5 MeV. Due
to this property, the cross terms that appear in compu-
tation of energy averaged cross section, average to zero,

1 In KKM the S-matrix was used, but we find T -matrix more conve-
nient for derivation. The essential results of KKM are unaffected.
2 For a more detailed definitions see [1].

and the cross section separates into its optical and fluc-
tuation contributions. This is not the case in the original
representation in Eq. (1), because the energy average of
the resonant term does not vanish.

Our numerical model resembles that of an earlier nu-
merical study of KKM results [3] but with much larger
statistical samples. In verifying Eq. (3) numerically we
have ignored the energy dependence of Eq(E). The ef-
fect of the said energy dependence on energy averaged
quantities will be studied in a later work. Studies of more
elaborate statistical quantities appearing in KKM, or in a
later elaboration [4], are also planned.

FORMAL DERIVATION

Derivation of Eqs. (1–2) follows the steps of Refs. [1],
and [2], while spelling out the details needed for a nu-
merical implementation. A formal Schrödinger equation

HΨ = EΨ (4)

along with Feshbach’s [2] projection operators P and Q
(P+Q = 1) applied to Eq. (4) yields

(E−HPP)PΨ = HPQQΨ, (5)
(E−HQQ)QΨ = HQPPΨ. (6)

Solving Eq. (5) for PΨ yields

PΨ
(+) = Pχ

(+) +
1

E(+)−HPP
HPQQΨ, (7)

where χ is a homogenous solution of

(E−HPP)χ = 0, (8)

HPP = KPP +V (0)
PP . (9)



KPP is the kinetic energy. Inserting Eq. (7) into Eq. (5)
and solving for QΨ yields

QΨ =
1

E−HQQ−WQQ
HQPPχ

(+). (10)

where we defined

WQQ ≡ HQP
1

E(+)−HPP
HPQ = HQPGPHPQ. (11)

We apply the two-potential formula to Eq. (5):

T = T (0) +T (1) (12)

= 〈φ (−)|V (0)
PP |χ

(+)〉+ 〈χ(−)|HPQ|QΨ〉 (13)

Inserting QΨ into the expression for T (1) yields

T (1) = 〈χ(−)|HPQ
1

E−HQQ−WQQ
HQP|χ(+)〉 (14)

A spectral decomposition of Eq. (14) is performed by a
bi-orthogonal basis set {|q̂〉, | ˜̂q〉} of eigenfunctions of a
complex symmetric operator HQQ +WQQ:

[HQQ +WQQ] |q̂〉 = Êq|q̂〉, (15)

〈 ˜̂q| [HQQ +WQQ] = 〈 ˜̂q|Êq, (16)

where the slow energy dependence of eigenvalues, Êq =
Êq− iΓ̂q/2, via WQQ(E), has been neglected in this work.
Using the completeness and bi-orthogonality relations

1 = ∑
q
|q̂〉〈 ˜̂q|, 〈 ˜̂q|q̂′〉= δqq′ (17)

in the expression for T (1), with explicit channel labels
displayed, yields

T (1)
cc′ (E) =

1
2π

∑
q

ĝcq(E)ĝc′q(E)

E− Êq
, (18)

where partial width amplitudes are

ĝcq(E) =
√

2π〈χ(−)
c (E)|HPQ|q̂〉. (19)

In the last step we took advantage of a symmetric prop-
erty of HQQ + WQQ, which implies 〈Q j|q̂〉 = 〈 ˜̂q|Q j〉
for any eigenvector |Q j〉 of HQQ, and consequently
〈 ˜̂q|HQP|χ(+)

c′ 〉= 〈χ(−)
c′ |HPQ|q̂〉 for a Hermitean H. Insert-

ing Eq. (18) into Eq. (12) yields Eq. (1).
To derive KKM separation of T -matrix into optical

and fluctuating parts, stated in Eq. (2), a two-potential
formula in Eq. (13) will be used, with the pair of poten-
tials (V (0)

PP ,HPQ) replaced by (V opt
PP ,VPQ), to be given in

Eqs. (24) and (27), respectively. To derive a formal ex-
pression for V opt

PP , energy averaging will be performed.

Lorentzian averaging is chosen because of a convenient
analytical solution to averaging:

〈F(E)〉I =
I
π

∫
dE ′ F(E ′)

(E ′−E)2 + I2 = F(E + iI), (20)

where a contour integration in the upper half plane was
performed, and it is assumed that function F has no poles
in the upper half plane. Eliminating QΨ from Eqs. (5–6)
in favor of PΨ yields

[E−HPP−HPQGQ(E)HQP]PΨ = 0, (21)

where GQ(E) ≡ 1
E−HQQ

. The Lorentzian averaging for-
mula when applied to the T -matrix of the Schrödinger
equation above yields:

[E−HPP−HPQGQ(E + iI)HQP]PΨ = 0, (22)

where PΨ(E) ≡ 〈PΨ(E)〉I ∼= PΨ(E + iI) is the optical
wavefunction. We define optical Hamiltonian

Hopt
PP ≡ HPP +HPQGQ(E + iI)HQP, (23)

from which V opt can be determined using Eq. (9) as

V opt
PP ≡V (0)

PP +HPQGQ(E + iI)HQP. (24)

Hopt in Eq. (23) is used to rewrite Eq. (21) as{
E−Hopt

PP −HPQ [GQ(E)−GQ(E + iI)]HQP

}
PΨ = 0

(25)
Since GQ(E)−GQ(E + iI) = iIGQ(E)GQ(E + iI), the
above can be rewritten as:[

E−Hopt
PP −VPQGQ(E)VQP

]
PΨ = 0, (26)

where

VPQ = HPQ

√
iIGQ(E + iI) = HPQ

√
iI

E−HQQ + iI
.

(27)
Eq. (26) is equivalent to two coupled equations, analo-
gous to Eqs. (5–6):(

E−Hopt
PP

)
PΨ = VPQQΨ, (28)

(E−HQQ)QΨ = VQPPΨ. (29)

This observation allows us to leverage the entire deriva-
tion leading to Eqs. (18–19), by making these direct sub-
stitutions:

HPP →Hopt
PP , V (0)

PP →V opt
PP , HPQ →VPQ, χ →Ψ, (30)

WQQ →W opt
QQ ≡VQP

1
E−Hopt

PP

VPQ = VQPGopt
P VPQ. (31)



The above substituions necessiate that the bi-orthogonal
basis {|q̂〉, | ˜̂q〉} be replaced by the basis formed by the
eigenfunctions of HQQ + W opt

QQ , namely, {|q〉, |q̃〉} with
eigenvalues Eq = Eq− iΓq/2. Putting all of this together
yields 3:

Tcc′(E) = T opt
cc′ (E)+

1
2π

∑
q

gqc(E)gqc′(E)
E−Eq

, (32)

where KKM partial-width amplitudes are

gcq(E) =
√

2π〈Ψ(−)
c (E)|VPQ(E)|q〉. (33)

NUMERICAL METHOD

First, we define projection operators P and Q :

P =
Nc

∑
c

∫
r
|r;c〉〈r;c| ≡ 1−Q, (34)

Q =
NQ

∑
j
|Q j〉〈Q j|, HQQ|Q j〉= E(Q)

j |Q j〉, (35)

where a shorthand notation
∫

r ≡
∫

r2dr was used. P is in
a spatial representation, as in Ref. [5], and the normaliza-
tion of |r;c〉 ensures that P2 = P. {|Q j〉} consists of NQ

equidistant levels 4. Their energies, E(Q)
j , are input pa-

rameters to numerical computation chosen to cover the
averaging energy region around the total energy E. The
number of levels NQ, the number of channels Nc, their
threshold energies, Ec, and number of interaction points
NR are all model parameters. With these definitions we
are able to evaluate ĝcq in Eq. (19)

ĝcq(E) =
√

2π

Nc

∑
c′

NQ

∑
j

∫
r
〈χ(−)

c (E)|r;c′〉〈r;c′|H|Q j〉〈Q j|q̂〉.

(36)
(Note that χ

(−)
cc′ (E;r) ≡ 〈χ(−)

c (E)|r;c′〉.) The coupling
between P and Q spaces is modeled numerically via
〈r;c|H|Q j〉

Hc j(r)≡ 〈r;c|H|Q j〉=
NR

∑
k

hc jk
δ (r− rk)

rrk
, (37)

where hc jk are real random numbers taken from a Gaus-
sian distribution with a zero mean [6], and the {rk} are
chosen as NR equidistant radial points in the nuclear inte-
rior. The width of the Gaussian distribution controls the
strength of the coupling between P and Q spaces, and

3 We neglect the energy dependance of Eq, as was done in Eq. (18).
4 Wigner distribution will be considered in a later work.

since the coupling gives widths to the resonances, a de-
gree of overlapping among resonances. The results pre-
sented are relevant in the overlapping resonance regime.
Resonance energies and widths are given by the eigen-
values Êq = Êq− iΓ̂q/2 of operator (HQQ +WQQ), which
in {|Q j〉} basis reads:

〈Q j|HQQ +WQQ|Qk〉= E(Q)
j δ jk +Wjk(E), (38)

where Wjk(E) is found by inserting Eqs. (34) and (37)
into (11):

Wjk(E) =
Nc

∑
cc′

∫
r

∫
r′
〈Q j|H|r;c〉〈r;c|G|r′;c′〉〈r′;c′|H|Qk〉,

=
Nc

∑
cc′

NR

∑
ll′

hc jlGcc′(E;rl ,rl′)hc′kl′ , (39)

where Gcc′(E;r,r′) ≡ 〈r;c|G|r′;c′〉. For simplicity, V (0)
PP

was set to zero, so that T (0) = 0, χ is a free particle
wave function, and Gcc′(E;r,r′) is a free-particle Green
function. For simplicity, we consider s-wave channel
only, for which χ = j0, a zero-order Bessel function, and

Gcc′(E;r,r′) =− k3
cδcc′

E−Ec

[
sin(kcr<)

kcr<

exp(ikcr>)
kcr>

]
,

(40)
where r< (r>) is the smaller (larger) of {r,r′}, and kc =√

2m(E−Ec)/h̄, where Ec is a threshold of channel c.
The eigenvalues and eigenvectors 5 of (HQQ +WQQ) are
computed by ZGEEV subroutine of Lapack library [7]:

|q̂〉= ∑
j

Ĉ jq|Q j〉 ≡∑
j
|Q j〉〈Q j|q̂〉 (41)

by returning coefficients Ĉ jq. Inserting Eqs. (37) and (41)
into (36) gives

ĝcq(E) =
√

2π ∑
j

Ĥc j(E)Ĉ jq, (42)

where
Ĥc j(E)≡∑

c′

∫
r
χ

(−)
cc′ (E;r)Hc′ j(r), (43)

for an s-wave free particle Ĥc j(E) → ∑k j0(kcrk)hc jk.
All quantities needed to model Eq. (1) have thus been
expressed in terms of input parameters.

Next we express quantites entering Eq. (2) in terms
of the same input parameters. The optical wave function
PΨ is obtained by Lorentzian averaging of Eq. (7):

PΨ = χ +
1

E(+)−HPP
HPQ

1
E−HQQ−WQQ + iI

HQPχ,

(44)

5 The energy dependence of eigenvectors Ĉ jq is neglected; these are
computed once at E and used throughout the averaging interval.



where it is assumed that 1/(E −HPP) does not vary ap-
preciably over the averaging interval. The same method
yields the optical Green’s function:

Gopt
P = GP +GPHPQ

1
E−HQQ−WQQ + iI

HQPGP. (45)

We can now express W opt
jk ≡ 〈Q j|VQPGoptVPQ|Qk〉 as

W opt
jk (E) =

√
iI

E−E(Q)
j + iI

√
iI

E−E(Q)
k + iI

×

{
Wjk + ∑

q j′k′
Wj j′Ĉ j′q

1

E− Êq + iI
Ĉk′qWk′k

}
(46)

and then solve for eigenvectors of (E(Q)
j δ jk +W opt

jk ), as in
Eq. (41),

|q〉= ∑
j

C jq|Q j〉. (47)

Similarly, Eq. (44) is used to write Eq. (33) as

gcq(E) =
√

2π ∑
j

C jqV̂c j(E), (48)

where

V̂c j(E) =
√

iI

E−E(Q)
j + iI

×

{
Ĥc j + ∑

k j′q
Ĥc j′Ĉ j′q

1

E− Êq + iI
ĈkqWk j

}
. (49)

Note that Wjk and Ĉ jq above are those given in Eqs. (39)
and (41), respectively; hence, these matrices are com-
puted only once. This ensures a self-consistent compu-
tation of optical and non optical quantities.

RESULTS

The model parameters listed below were chosen to
mimic the overlapping resonance regime. The energy
density of Q-levels is a key parameter influencing the
accuracy of the computation of Eq. (3). The largest run
contained NQ = 1,600 equidistant levels spanning 10 –
30 MeV, sufficient for a strong overlap 〈Γ〉/〈D〉= 23.5 .

T fluct
cc′ was energy averaged with a Lorentzian weight

around the total energy E = 20 MeV, and a half-width 6

I = 0.25 MeV. The Lorentzian energy average was per-
formed over 100 equidistant points between 18 and

6 Note that I, as used in Eq. (20), corresponds to one half of the FWHM
of the Lorentzian. Hence, I = 0.25 MeV amounts to an averaging
interval of 0.5 MeV, tantamount to a single particle resonance width.
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FIGURE 1. Histogram of 〈T fluct
cc′ 〉I/T opt

cc′ for 40×40 channel
pairs. The average value of the ratio is 0.0025 with a standard
deviation of 0.0037. 〈Γ〉/〈D〉= 23.5 in the averaging region.

22 MeV for each pair of channel indices (c,c′), where
c = 1,2, . . . ,Nc; Nc = 40 channels, and Ec = (c− 1)×
0.1 MeV. The random interaction, hc jk, was defined on
NR = 20 equidistant radial points between the origin and
7 fm. The coupling strength was set to 〈h2

c jk〉1/2 = 0.5

MeV fm3/2. For simplicity, we set V (0)
PP = 0, so that

T opt
cc′ could be computed as T opt

cc′
∼= 〈T (1)

cc′ 〉I . For s-wave
resonances, the average of 〈T fluct

cc′ 〉I/T opt
cc′ over all chan-

nels was found to be 0.0024 with a standard deviation
of 0.0037 (see Fig. 1) in support of the KKM result in
Eq. (3).
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