Revista Brasilelra de Ffsica, Vol. 18, n? 4, 1988

Electrornagnetic Production of Lepton Pairs in Relativistic
Heavy lon Collisions

C.A. BERTULANI* and G. BAUR
Institut fdr Kernphyslk, Karnforschungsaniage Jllich, D-5170 Jllich, West Germany

Recebido em 7 de Julho de 1988

Abstract We evaluate the probabilities and cross sections for the production of
lepton pairs in relativistic heavy ion collisions in the first order time dependent
perturbation theory and using the Sommerfeld-Maue wave functions for the lepton
pair. We obtain useful analytical expressions for the production of low and highly
energetic pairs. We compare our results with those existent in the literature.
discuss new physical aspects, up to now unexplored. and make applications to
some heavy ion reactions.

1. INTRODUCTION

Soon after the discovery of the positron in 1932, many theoretical works
were performed which aimend to evaluate the cross sections for the production
of electron-positron pairs in collisions of light (or a fast charged particle) with a
nucleus. This was expected to be present in collisions originated by cosmic rays
reaching the earth's surface and this process would be an experimental check of
the validity of the positron theory of Dirac which had just been proposed. Most
of the earlier theoretical works on that subject were done at about the same
time. and in the special case of pair production in the collisions of relativistic
charged particles, there were works by Furry and Carlson?, Landau and Lifshitz2.
Bhabha®. Racah?® and Nishina, Tomonaga, and Kobayasi®. Except in the work
by Furry and Carlson where the final result was shown to be wrong by a missing
logarithmic factor?, all other works reproduced the same results as that of Landau
and Lifshitz? which studied ete™ production in a collision of two fast nuclei in
the Born approximation and treating the projectile motion semiclassically.

It was only recently, with the csnstruction of relativistic heavy ion accel-
erators. that a new interest in this field appeared (see e.g. refs. 6-12). The
cross sections for pair-production in a collision between two charged patrticles are
roughly proportional to Z222 and for heavy systems like 238U +2%8 U they will
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be very large, up to many kilobarns. This can be a cause of many difficulties in
the study of experiments with relativistic heavy ions (RHI). For example. in RHI
colliders they can lead to a beam loss due to the capture of slow electrons in an
inner orbit of one of the ions (see e.g. refs. 6 and 9); this could even be useful in
order to keep control of the beam luminosity. as was pointed out by Anholt and
Gould®.

Among the newest works on this subject?’~*2, the most exact approach is the
one followed by Becker. Grun and Scheid®? in the semiclassical approximation.
They expanded the interaction potential in multipoles and used Coulomb-Dirac
wavefunctions for the eiectron and the positron. In this way. they obtained the
impact parameter dependence. as well as the cross sections. for e* ¢~ production
for any energy of the pair and for RHI beams up to 100 GeV/nucleon. One of
the difficulties of the calculationis the evaluation of the multipole sums for beam
energies around 100 GeV /nucleon and greater, because it relies strongly on long
numerical computing. Another very useful approach is the so-called equivalent
photon method. which was used in refs. 7,11 and 12. Besides being very simple
to calculate, this method provides good quantitative derivation of the total cross
sections, although it lacks a more complete description of the process.

Although it seems to be an old subject. we feel that more work is necessary in
the ‘description of pair production in RHI collisions and that some physical aspects
of it are still unexplored. In this paper, we shall also use the semiclassical approach
(which is appropriate for RHI collisions) to deduce the lepton pair (also muon
and tau pairs) production probabilities and cross sections in RHI collisons. but
instead of using the Coulomb-Dirac wave functions we shall use the Sommerfeld-
Maue wavefunctions for the pair (see e.g. ref. 13 and references therein). These
wavefunctions are equal to the Coulomb-Dirac ones for the spatial region around
the nuclei which most contributes to the cross sections. In this way one can
avoid the multipole expansion_used by Becker, Grun. and Scheid (actually, this
had already been suggested by those authors in that paper). Since this process
is very similar to the production of pairs by a real photon, we can use many of
the integrals that were evaluated by Bethe, Maximon, Davies and Nordsiek!3.
Our principal aim is to deduce expressions that are as simple as possibie, and
to keep track of the physics of the process. They can'be very useful for a fast

526



Revista Braslielra de Fisica, Vol. 18, n® 4, 1988

estimate of the process in the regions where they are valid. We will show that
analytical expressions can be obtained only in special cases of the pair energy. If
we call these energies e+ and 1, we show that we can deduce analytically the
pair production probabilities and cross sections when (we use here natural units.
withh=1,andc=1)

elow paire
E- €4 M (1.1a)
fast paire
m << e-, e4 << ym (1.18)
and
ultra-fast paire
€y E4 2 YM (1.1c)
where
7 =1/(1-v?)/? (1.2)

in the relativistic Lorentz factor associated with the heavy ion beam.

The results of Landau and Lifshitz are valid when the condition eq.(1.1b)
is valid. Indeed. that is the energy region. which gives the greatest contribution
to the total cross section, integrated over the energy of the pair. We show that
for heavy ions there will be a correction to their results in a similar way as that
found for pair production by a real photon in the field of a large Z nucleus?®.
Analogous study has also been done by Nikishov and Pichkurov!® in the energy
region eq.(1.1b}. but slightly different final results were obtained. The energy
region inferred by the condition eq.(1.1¢c) is easily studied by means of a Lorentz
transformation of the results obtained in the energy region eq.(1.1a), and itis also
important since it can originate a cloud of pairs surrounding the projectile in RHI
colliders.

In section 2 we evaluate the differential probabilities and cross sections for
lepton pair production. and we apply itin section 2.1to the case of slow and ultra-
fast lepton pairs, and in section 2.3 fast lepton pairs, which is the most important
case for ete™ pairs. In section 24 we extend the calculations to include the case
for which the target (or the projectile) is not completely naked but stil has a part
(or alf) of its atomic electrons.
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Since their masses are much higher, the production of u*u~ and 7+~ pairs
depends much more on the energy of the heavy ion beams, as we show in section
3. There we show that if the heavy ion beam energy is not very high (v >> 16 for
wtu~ production, and 7 >> 270 for #+7~ production), there is a big difference
from the resuits for e*¢~ production. In section 4 we present our conclusions.

2. LEPTON PAIR PRODUCTION IN RHI COLLISIONS
2.1 - Probability amplitudes

In the following we shall calculate the electromagnetic production amplitude
of lepton pairs in the field of a target nucleus with mass and charge number A
and Z,, respectively. by means of a relativistic projectile with velocity v, impact
parameter b. and mass and charge number A; and Z;. The calculation is valid for
impact parameters such that b > R = R; + R, and R; and Rz are the respective
nuclear radii. We shall consider the target nucleus as fixed, neglecting its recoil,
and we place the origin of our coordinate system atits center of mass.

In the semiclassical approach the projectile is assumed to movein a straight-
line and will generate a time-dependent electromagnetic field which will lead to
the production of pairs in the field of the target. Since the probability amplitude
for pair production is, generally. smaller than unity. we can calculate it in the first
order time-dependent perturbation theory (as soon as we take into account the
distortion of the wavefunctions of the pair due to the field of the target nucleus).
It is given by

Gpte- = %/00 dtet < W, |V (r,t)| Ve > (2.1.1)
- 00
where
w=c tc (2.1.2)

and W+ (¥,-} is the wavefunction of the positive (negative) lepton. The interac-
. . S *
tion potential V (r, t) is given by

* Here we use the notation A = (Ao, A), and the surn convention A, B, =
AoB, - AB
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Virt) = / ErAy(r,0)5.(r) (2.1.3)

where 3, = (p,]) is the transition four current and A = (1,v)¢ where ¢(r,t) is
the Lienard-Wiechert potential (see e.g. ref. 14, p.654)

VA |
[(z - b2)2F (y - )2 F92(2 - wt)?] /2
for a charged particle moving in a straight line with an impact parameter b =
\/ b2 *bﬁ. The z-axis is taken along the beam direction and we use for the

coordinate of the pair the notation r = (z,y, z). We can also write eq.(2.1.4) in
the integral form

(2.1.4)

¢(I‘, t) =

Ziey s P {8-8'(¢)}
¢(l‘,t) = —2;5—/11 p-—T (2.1.5)

where
S = (z,y,72), S' = (b, by, yvt) (2.1.6)

Inserting this in eq.(2.1.1), the integral in t yields

27

:1;5(& —w/v) (2.1.7)
and we obtain
Zle/ 2 H(p') ipr-b
- = | d®pp e 'PT 2.1.8
fere = Tre pr% + (w/'yv)ze (2:1.8)
where
p' = (pr,w/v) (2.1.9)
and
H(p') = / Br < Wo- |vugi ()€™ " | W e > (21.10)

with v, = (1,v). The index T means an arbitrary direction, perpendicular to the
beam. Using the continuity equation for the transition current and eq.(2.1.9), we
can express the above matrix element in terms of the longitudinal and transversal
components of the transition current as
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H(p') = / d3r<wt_|[v{;‘2 + pTTjT] 77|01 ) (2.1.11)

For 7 >> 1 we can neglect the first term inside brackets in eq. (2.1.11). as
it is done quite generally in the equivalent photon approximation. Then eq.(2.1.8)
reduces to

Gpt g = ?1c2 -/.‘/dszdsrpT' < 'I;t- |Gr e F|W,s > jiprb (2.1.12)
L) P2+ (w/vv)?

where we used jr = ed@r, and &r is a Dirac matrix of component perpendicular

to the beam direction.

For ¥,+ we use the Sommerfeld-Maue wave functions which were also used
by Davies, Bethe. and Maximon® (see also ref. 15. p. 143) to calculate pair
production by means of a real photon (see ref. 13 for a complete discussion about
these wavefunctions), namely

\Il¢_=N_e“‘""[1—§:—& Vvliu - al,—ik_r—dk_-r) (2.1.13a)

and

Ty = N+e""“+"[1 + 2—2—& : v] wF(—iay,1, —ikyr +4ky 1) (2.1.13b)
+

where u and w are the Dirac spinors corresponding to the negative and positive
leptons with moments k_ and k.;., respectively, Fis the confluent hypergeometric
fuction and
Z,e2 TG4 }
ax =25 Ny=esp [:F —]1‘(1+mi) (2.1.13¢)
vy 2
with vy equal to the respective velocities of the created pair.
Inserting eqs.(2.1.13) in (2.1.12) we find

Z1 82
tTWwy

N.N_ Y woPGiat et (@ Ga) + (3 Gan)ot]w (2.1.14)
A=1,2
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where A =1, 2 represent the two orthogonal components transverse to the beam.
The tensors Gy, G2x and Ggy are given by

PT{II:I2)I3} £Prb
G = g Pr- 2.1.15
(612, Gar, @33 = [ dpr e e (2.1.15)
where
L= / ¢V F Fodlr (2.1.16a)
L / ¢OF PV Fydr (2.1.165)
2€+
I; = 5:—/c"q"F2VF1d3r (2.1.16¢)
with
=p' -k, —k_ (2.1.16d)
and

Fyr F(ia_,1,4k_rtik_-r)
Fy EF(—iay,1,ikyr Tiky 1) (2.1.16¢)

The integrals eq.(2.1.16) were calculated analytically by Nordsiek, Bethe. and
Maximon!3,

The differential probability for the production of lepton pairs is obtained from
eq.(2.1.14) as

dPpre- = Z [aete- |2Pf (2.1.17)
spine
where
Pr = (2 )6 €+€ de+de_d0+dﬂ_

is the density of final states of the pair.
Using the properties of the Dirac matrices we find
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Z162
WY

)2|N+N- ! >, { lere- = kysk_p +m?)|G1a

dP¢+¢~ = (
€4€_ X

+ [e4e- + kyokoy — m?][|G2r]® + |Gaal?

~2(G3)):(G2r)s] ~ 2(k- - G3,) (k] - G3))

+2(k7 - XT)[(G],)" - GL,] + 2(k- - G3,) [k+ - Gaa — k42(Can)s]
+2G;, [e< (k4 - Gar — k42(Gaa)s } + 4 {k= - Gap — k_(G2r). }]

+2k_2(G3)): [k+ - (Gsa — G2a)] T complez conjugate} (2.1.18)

In the approxirnations we are going to rnake. the integrals (G1, Ga2x, Gax) will
be zero for one of the cornponents. say A = 2 if we choose b along x-axis, and
the surn A reduces to only one terrn.

2.2 - Slow and ultra-fast electron-positron pairs
2.2.1 - Slow pairs

We now consider the production of low energetic lepton pairs okying the
condition eq.(1.1a). We use the analytic expressions for the integrals eq.(2.1.16)
as given by the equations (6.13) of the work of Maximon and Bethe!3® and keep
only the terms of lowest order in k4./m and k_/m. Since only values of pr up
to w/yv << m will contribute to the integrals eq.(2.1.15), we also put pr =0in
the nurnerators of those expressions. Inserting the obtained results for I, 12 and
Iz ineqg. (2.1.15). we find

Gm, Gzz, G32 =0 (2.2.10)
and
C k_,
G = -—3-[2(k_, — k) — iwZze? (kykys + k) ]M(b,wn) (2.2.10)
w k+k_
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__Cl iy alkiki,8—P/2)
Ggl = —;; [z + ‘lch T] M(b,w, '1) (2216)
Goy= [s ~iZe (""k"—’—ip—/z] M(b,u,7) (2.2.1d)
kipk_
with

P=k k4 — ki k_ (2.2.2)
and where £ is a unit vector in the RHI beam direction. The function M(b,w,7)

is given by

pr cos aeip-pbcoaﬂ

M(b;w) '7) = W/d2pT [P% + (w/,yu)zl[p% +w2]

- Y——i%%? [;—vil (‘;’z) Ky (wt)] (2.2.3)

where K; is the modified Bessel function of first order. Inserting eq.(2.2.1) in
(2.1.8) and keeping only the lowest order terms in k4 /m and k- /m, we find

APer-(0) = ros B 2R SEE N N PP M (b,0,7)

(2= )8
x {[k2 sin® 61 + k2 sin®0_][1 ~ (Z2¢%)?]

+ 2646 (Z26%)? }d0 dO_deyde_ (2.2.4)

The impact parameter dependence of eq.(2.2.4) is embedded in the function
M(b,w,v). which we plot in fig.1 as a function of wb and 7 = 100. We ob-
serve that M tends rapidly to its asymptotic value for w2 1. This asymptotic
value is obtained by neglecting the second term inside brackets in the numerator,
and the second term in the denominator of eq.(2.2.3). i.e. we can set

2n

M~—K1(-—), for b2 (2.2.5)

1
m
where we used the approximation w =~ 2m.
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Fig.1 - Impact parameter dependence of the production probability of
slow electron-positron pairs in RHI collisions expressed in terms of the
adimensional function M (b) as given by eq.(2.2.3). The dashed line
corresponds to its asymptotic limit. as given by eq.(2.2.5).

Since the Compton wavelength of the muon (or tau) is much smaller than the
nuclear dimensions. this approximation is very good for describing the impact pa-
rameter dependence of u*u™ and r + —pair production. Nonetheless, in the case
of et e~ it will only be appropriate for impact parameters larger than the Compton
wavelength of the electron. which is much larger than the nuclear dimensions. As
we will soon see, this will have as a consequence that the total cross section,
integrated over all impact parameters will depend on the nuclear dimensions in
the case of muon and tau pair production, but not in the case of electron pair
production. This will lead to very different behaviour of the cross sections in the
two cases. Let us therefore study first the case of e*e~ production and postpone
the study of u*u~ and r++~ production to the section 3.

In the case of et e~ production one can haveimpact parameters much smaller
than the Compton wavelength, for which we see in figure 1 that M -+ 0, which
seems to be an unrealistic behaviour. In fact, the probability to produce an
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electron-positron pair should go to a constant value as b + 0, which was in-
deed shown in the calculations of Becker. Grun and Scheid®. We would obtain
the same in our calculations if we had not neglected the first term inside bracket
in eq.(2.1.11) which although not contributing appreciably to the cross section,
has a finite. non-zero contribution for the differential probability as b — 0. But
for w 2 1 the impact parameter dependences is very well reproduced by using
the approximation eq.(2.2.5). Moreover. the differential probability decreases very
stowly until impact parameters much larger than the Compton wavelength of the
electron and the uncertainty about the impact parameter dependence forb H 1/m
is not very important for the total cross section. specially for RHI collisions.

The modified Bessel function of first order has the following property

1 or w <1
(%)Kl(%) = 0’ ,:or w51 " (2.2'6)
) v
This implies that the pair production probability decays like 1/b2 forimpact param-
eter b larger than the Compton wavelength, i.e. for b > 1/m, up to a cutoff limit
given by b = qv/w. Above this cutoff limit it will decay exponentially, which will
guarantee the convergence of the cross section. Indeed, with these simplifications

the differential cross section can be easily obtained by using

g(§)=2ﬂ'/1°° (=)’ 1(:b)db—1rg [ ;KoKl]

/m MY

o~ 27rln(;) for ¢<<1 (2.2.7a)
where the Bessel functions K are functions of the parameter

w

and 6 = 0.681... is a number related to the Euler's constant. We can write the

result as (putting v = 1)

5§35



Revlsta Brasileira de Fisica, Vol. 18, n? 4, 1988

2 kik_ aya_ ('16m)
(621ra+ _ 1)(1 — C—Zmz...)

d0’¢+¢— = %(Z1Z2r,a

x {[k2 sin® 0, + k2 sin®0_][1 — (Z;0)?]

+ 2646 (Z20)%}d0, dl_dede_ (2.2.8)

where r, =¢?/mc? = 2.817...frnis the classical electron radius. a = & ~ 1/137
is the fine structure constant. and we used

4(27)*a?aa_
( 21a4 1)(1 - 6—2""")

which can be inferred from the definitions eq.(2.1.13c). From eq.(2.2.8) one can
calculate the invariant mass of the e*e™ pairs for a given experimental setup. We

INyN-CJ? = (2.2.9)

observe that the angular distribution of the slow pairs is symmetric around 90°
degrees due to the presence of the sine functions inside brackets of the eq.(2.2.8),
i.e. slow pairs are created preferentially with respective velocities perpendicular
to the beam direction.

The angular integrations can be carried out easily and we get

d%o 1281r G a_ € —m)(e- —m
ete~ (ZIZZfe ) > <+ —— \/( + 2( )
dejde- (e?ma+ —1)(1—~¢ ) w
- 2 vém
X [(w 2m) t (Z;a) ( m-—w)]in ( — ) (2.2.10)
For heavy ions, and for pair energies such that (ex — m) << m, we have in most
cases
m
= — 2.2.11
ay = Zra s =) >>1 ( )
Then eq.(2.2.10) simplifies to
Focre _ 321r2226a6r2—l ('yﬁm) ~2nas (2.2.12)
deyde_. ! w
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In figure 2 we plot the adimensional function (m/r.)?d?c/dede_ obtained from
q.(2.2.10) as a function of (e- —m)/m for (e4 —m)/m = 0.01. and as a function
of (e — m)/m for - — m)/m = 0.01. The dashed lines correspond to the
approximation eq.{2.2.12). We observe that while it increases rapidly as a function
of e4, it is approximately constant as a function of e-. This is a consequence
of the different behaviour of the electron and the positron wavefunctions in the
Coulomb field of the target. The positrons are very unlikely to be produced with
small kinetic energies due to the Coulomb repulsion in the field of the target
nucleus. For targets with small charge this effect diminishes because a+ gets
smaller and the energy distribution for positrons and electrons tends to be a
symmetric function of e4 and e— (see eq.2.2.15).

For very low energies. the electrons can be even caught in an orbit around
the nucleus and we expect that do/de_ must go to a constant for e — m which
could be extrapolated to e < m in order to find and approximate value of the
cross section for pair production with capture of the electron in an orbit around
the target. An approximate value for this constant can be found by integrating
€q.{2.1.12) from ¢, = m to 2m, up to which we expect it may be a reasonable
approximation. We obtain

dOe+c-

¥6
2L o (2n)° 22 2ot an S W s (am) I (L) 7o/

~ 2V2 22 Z8abr2 L ~In ( : ) ~VarZia (2.2.13)

where W, , is the Whittaker function (see ref. 16, p. 1059). and a, = V2rZ:a.
If we now assume that this constant behaviour of do/de_ will continue fore- < m.
we can make a rough estimate of the cross section for pair production in which
the electron is captured in an orbit around the target by

P 222 Z2Z5a5r2—ln f "5\ ~VirZa (2.2.14)
where | is a quantity of order of the ionization energy of the K-shell electron.
By using this rough approximation. and putting | &~ m to simplify. we find that

the cross section for electron-positron pair production with capture of the elec-
tron by the target ion in a uranium-uranium collision with projectile energy equal
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Flg.2 - The double differential cross section d?¢/desde— in units of
r2/m?, for Z;, = Z, = 92, and as a function of & — m)/m for @ —
m)/m = 0.0L (increasing curve). Also shown is the dependence of this
function with respect to e- —m)/m for @+ —m)/m =0.0L (flat curve).
This curve is multiplied by 108 in order to be shown in the same figure.
The dashed lines correspond to the approximation eq.(2.2.12).

to 100 Gev/nucleon is about 47 bamns. Becker. Grun and Scheid found the
value of 68 barns for the same reaction. That this approximate agreement is not
accidental can be easily verified by comparing the values inferred from figure 4
of that reference with the estimates based on eq.(2.2.14). Nonetheless, besides
the approximations made on the integrations from eqs.(2.2.10) to (2.2.14), when
the condition eq.{2.2.11} is attained there must be corrections to the Sommerfeld-
Maue wave functions (2.1.13). and the use of exact Coulomb-Dirac wavefunctions
for the final state of a free positron and a bound electron will be important. The
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cross sections for annihilation of a positron with a bound( K,L,...) electron are
well known (see, e.g. ref. 15, p. 463). Since this proces. by detailed balance, is
related to the inverse one. i.e. 7+ Z — e+ + (Z + ¢”)k,L,.... one can perform
a more exact derivation of the above mentioned process. by using the equivalent
photon method*! Work in this direction is in progress

T v
1074}
™
w0 SRaas
5, *
s L7 ——— 4
g ______
&E 10—5 ....................................... §
o~ o 3
"0 j
S K (2 ~m)/m=0.1(0.01) 4
& + q
D 2, (‘8_—m)/m=0.1>(0.01) 1
10_8 " [ e L [
0 : 0.1 0.2 0.3

(e —m)/m
+

Fig.3 - The double differential cross section d2o/desde_ in units of
r2/m? and as a function of (¢4 — m)/m for €- — m)/m = 0:1) (upper
dashed curve). and 0.01 (lower dashed curve) for Zy = 2, = 2. Also
shown is the dependence of this function with respect tp - — m)/m
for (e4 — m)/m = 0.0L (upper dotted curve). and 0.01 (lower dotted
curve). The solid curves correspond to the approximation eq.(2.2.15).

In the collisions of fightly charged (like e.g. a — a collisions) and for pair
energies such that ay << 1, eq. (2.2.10) becomes

539



Revista Brasllelra de Fisica, Vol. 18, n® 4,1988

d20'€+e—

dere. '33—:(Z1227'¢a)2\/(6+ — m)(e- —m) ( w42m) In ('1im) (2.2.15)
which is symmetric in €4 and e—. In fig.3 we plot the same functions as in
fig.2, but for Z; = Z; = 2. The solid curves correspond to the approximation
eq.(2.2.15) for (e —m)/m = 0.1 (upper curve). and 0.01 (lower curve). The other
curves are obtained from eq.(2.1.10) for e; = constant (dotted curves). and for
c- = constant (dashed curves), and show the deviations from the approximations
eq.(2.2.15).

As alast remark. we observe that when the relative velocity v. of the created
pair is very small, i.e. when

v, 2a=1/137 (2.2.16)

then one must take into account the Coulomb interaction between these particles.
This was considered by Sacharov!7 in connection with the formation of a bound
state of the electron-positron system (positronium). Since the main effect of con-
sidering the distortion of the Coulomb field is the presence of the terms containing
ax in €q.(2.2.8), we can also make a correction to include the case eq.(2.2.16) by
multiplying eq.(2.2.8) by the factor

27a /v,
Qe (2.2.17)
This correction will have as a consequence that the momentum of the electron and
of the positron will be strongly correlated and that the cross section eq.{2.2.8)
will have a sharp maximum when they are approximately equal in magnitude and

in direction, i.e. for ky ~k_ (see also ref. 18. p. 387).

2.2.2 - Ultra-fast pairs

The calculations of the last section can also be used to determine the proba-
bilities and cross sections to produce slow pairs in the frame of reference of the pro-
jectile as soon as we make the exchange Z; «— Z; and evaluate the pair momenta
and energies in that frame. However. in the laboratory frame of reference (target
frame) these pairs will be very fast, with energies in the region given by eq.(1.1c).
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Since the pairs are seen in the projectile frame moving approximately perpendic-
ular to the beam direction, they will be observed in the laboratory frame moving
very forwardly up to a maximum spreading angle of about m/ex ~ 1/y << 1
(here we use the notation €l etc. in the projectile frame. and e, etc. in the
laboratory frame).

We can deduce the cross section for the production of ultra-fast pairs by mak-
ing a Lorentz transformation of the expression (2.2.8) to the laboratory system.
We use that k4 k-.dQ4dfl_deyde_ is a Lorentz invariant quantity. and that for
7 >> 1and § << 1we have ¢, =~ (ex/27)(1+ 4%6%). We also use ky = ey,
and since the average value of ¥262 is of order of unity. we set €/, = e /v where
possible. Then the angular integration can be performed easily and we obtain

d%0.+- 64m 2 aTaT €p€
depe- _5"(Z1Z:zrca) (eg,ra: “)(1= e‘zﬂ’af) w6
2 2 2 2 A26m
x {(2 +€%)[1 - (Z10)%] T 2¢ie_(Z1a)?} in( —)
(2.2.18)
where 7
T_ 492
G=F (2.2.19)

with vI equai to the transverse velocity of the pair. When a£ << 1leq. (2.2.18)

simplifies to .
d%0 4 - 16 €€ 16m
—— = —(Z,Z 22472 (2 2 _ 2.2.20
Pl L2 Ml +e2)in(—=) (2.2.20)

Although this formula is only valid for pair energies e+ =~ 4m, it shows
a close resemblance to the results for fast-pairs which we calculate in the next
section. Nonetheless, since the energy region where the above equation can be
applied is very restricted, most of the pairs will be created with energies obeying
the condition eq.(1.1b), as we shall see in the next section.

Fast electron-positron pairs
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We now consider the production of energetic lepton pairs obeying the condi-
tion eq.(1.1b). We use again the expressions (6.13) givenin the work of Maximon
and Bethe!® and disregard terms of order (m/e+)? and higher. We also put
pr = 0in the numerators of that expressions. We find

e+€_ 1
b T+ (o — X[ + (e — ¥
(k%)% ~ (kT)? (Zz ) 2 2
x {vi(z) AR ARG L )
(2.3.1a)
: €. 1
b= e+ (o —XE)7] .
(k% +k7) (Zza) 2 3
x {Va(z) -~ ?ki RETTLAA W (z)[k+(kT) +m kT]}
(2.3.18)
s !
e T o —x0)7)
(k% +k7) (Zya) 2 ril.
x { = Va(a) -~ Elg e e Wala) ks OT) + mx7]}
(2.3.1¢}
Where
Vi(z) =F(-ia+,ta-;1; z) (2.3.2a)
Wi(z) = F(1 —da4,1+14a_;2;2) (2.3.28)
d
" o BT+ (ke — k)Y (2.5.20)

4w?(ey — kyy)(e- — k—y)
Substituting these equations in the integrals (2.1.15) we will find that they
are much more complicated than the ones in the section 2.2 due to the fact that
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the denominators contain the quantities k£ and kT which are not negligible in
comparison with m. Indeed. for fast pairs the angular distribution is very forward
peaked and their transverse momenta will be of order

K kT am (2.3.3)

But this implies that. again for b 2 |/m we can take those denominators outside
of the integrals over pr by putting pr = 0in them. This simplifies the calculation
enormously. since now we can calculate the integral in pr analytically as in the
case of slow pairs. and we obtain

€4€ w_b 1
Gy = 4rC o Kl(ryv) [m? + (k3)?] [m? + (&1)?]

2 _ T2
< {rata B

+i8%w, () [m? 4 (57 + (7))

(2.3.4a)

1

o= 2O K ) s ]

k% + kT
x{Vala) (g:f v, ))2

+i%2y (), ()2 - ma] )

(2.3.45)

wb
G31 = 27|'C 1( )T;z—:lrk—T—)?z—]-

kT k’_‘ 20
X { - Vi(z) ((kf-:kZ))"’ (Z )

W (a) - ()7 - kT |
(2.3.4¢)
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Inserting this result in eq.(2.1.18) we will find a complicated angular structure
for the differential probability. But, this angular distribution is of the same form
as that found by Bethe and Maximon!3 for ete~-production by a real photon.
Therefore. using the same steps as they used for the evaluation of the angular
integration, it is straightforward to show that the differential probability for the
production of fast pairs is given by

—————-42})‘“_‘4 21l qwby 1.5 5 2
de.:de_ = F(ZIZ2C!TC) "7‘2'K1 (7);5[&,_ +€e2 + -§e+e_]
2€+€_ 1
x [in (",E“) 2" 1)) (2.3.5)
where : :
= 1
=2 ) 2.3.6
f(Z2) = Z%a ,,Z=:1 n(n? + 22a?) ( )

Here we alread)f find a crucial physicai difficulty within this approach. Since
the pairs with energies in the range given by eq. (1.1b) obey the same conditions
in the projectile frame of reference, this expression should have the same structure
if it were calculated in that frame of reference. But it is not so, because if we had
calculated it in the frame of reference of the projectile, it would mean a simple
exchange Z; « Z; in eq.{2.3.5), which would lead to a'different result due to
the presence of the functions f(Z;) in eq. (2.3.5). This difficulty arises because
our approach is not symmetric in the nuclear charges from the very beginning.
For example. the wave functions for the electron and positron are determined in
the frame of reference of the nucleus at rest. neglecting the influence of the other
nucleus on them. A solution to this problem by using a Lorentz covariant theory
with Lorentz distorted wave functions for the electron-positron pair is, in no way
simple, and to restore the required symmetry in the nuclear charges we postulate
an average of the expressions obtained in the projectile and in the target system of
reference as a reasonable result. This amounts to the replacement of the function
f(Z,) by the averaged one

721, 2) = 7o S1221(2) + Z2f(2)] (2.3.7)

(Z, + Z,
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When Z; << Zz (or 2, << Z). this modification is not relevant. since in

eq.(2.3.5) only f(Zg) will appear. where Zg is the greater from (£, Z2). But,

when Z; =~ Z, the approximation eq.(2.3.7) is rather speculative. because we do

not know hkow the influence of both nuclear charges on the electron-positron wave

functions will be. This point may be a source for future investigations.
Integrating eq.(2.3.5} over e we find

Bl A2 e 52 (1) s [0 () - § - 2]

(2.3.8)
The same result can be obtained for d P,+.- /de_ by exchanging the indice - and +
in eq.(2.3.8). The respective expressions for the differential cross sections can be
deduced from eqs.(2.3.5) and (2.3.8) by using the integral eq.{2.2.7). For example.
the differential cross section do/de is equal to

dog+.- 56 ! ey 1 76
d0ete- _ Lon(e)-2o ﬂ 3.9
L = E(Bier) - n () - T - T4, Al (3 39

In figure 4 we plot the differential cross section do.+.- /de4 for production
of e*e™ pairs in uranium-uranium collisions and calcium-calcium coliisions as a
function of the positron energy .. and for y = 100 and 1000. Already here we see
that the creation of positrons (and electrons) with small energiesis strongly sup-
pressed in comparison with the ones with higher energies. and when ~ increases
more and more positrons (and electrons) with higher energies are produced. In-
deed. in this figure we see that the dashed curves (y = 100) decrease faster with
increasing energy of the positrons than the full curve (y = 1000).

Mow we integrate eq.(2.3.8) over e+ and use the approximation eq.(2.2.6).
in order to obtain the probability to create a ete™ pair in a RHI collision as a
function of the impact parameter

Feren ()= (ZIZZM‘) 2] [1"2 (%) [1+2(21,2,)] In (2251;)]
(2.3.10)

valid fory§/m 2 b2 1/m.

545



R S

Revista Brasllelra de Fisica, Vol. 18, n? 4, 1988

4
10 T =T T Y L4 T T LA T Y T A E
- 4=1000 ]
L_ -
/-\+ 3\. ’___~§_-\
XY
B F v ]
= - v=1000 -
N o 2 —
'S 107} /- ~—a_ i
: =
- L+ Ca+Ca T~ -~7"'1°° ]
: ~~‘~\~J
1 1 4 A
10 i " i ) N S S | n 1 A " i " i
5 10 15 20
E /m
+

Fig.4 = The differential cross section do,+.~/de+ for production of ete~
pairs in uranium-uranium collisions (upper curves) and calcium-calciurn
collisions (lower curves) as a function of the positron energy €. and for
~= 100 and 1000.

In figure 5 we plot the probability to create a e*e™ pair in uranium-uranium
and calcium-calcium collisions as a function of the Lorentz factor -y, and for irnpact
parameter equal to the Compton waveiength b = 1/m. We note that for calcium-
calcium collisions P,+,.~ << 1, even for very large values of 4, which justifies the
use of first order pertubation theory. Nonetheless. for uranium-uranium collision
P, - > 1for 7 2 500, which violates the unitarity condition. This means that
for extremely high energies, greater than several hundreds of GeV/nucleon, and
for very heavy ions. it will be necessary to account for higher order terms in the
perturbation theory. In other words; one must consider the probability of creating
two or more pairs in a single collision above those energies.

As we mentioned before P,+.- (h) goes to a constant, finite value forb 2 1/m,
and diminishes very slowly (like 1/42) as a function of b. up to a limit v/m after
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Fig.5 - The probability P,+.- for production of e*e~ pairs in uranium-
uranium collisions and calciurn-calcium collisions as a function of the
relativistic Lorentz factor ~, and for impact parameter b = 1/m. (b
serve that for uranium-uranium collisions it becomes greater than one
for 7 Z 500.

which it decays exponentially. and this is the reason why the cross sections for
pair production will be very large. In fact. integrating eq.{2.3.10) fromb = I/m
to b = ~/m we find

. s
Oete- = §g7§7;(zlz;).cure)2 [ln3 (75) - %(1 +27) in® ("7)] (2.3.11)

Since the integration of eq.(2.3.5) over b can be done analytically by using
eq.(2.2.7). abetter result can be also found by integrating numerically d?c/de 4 de
over e+ and e-. But, for 7 2 100 the eq.(2.3.11} agrees very well with the nu-
merical calculations. Except for the second term inside brackets and an irrelevant
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factor in the logarithm which is not important for 7 >> 1, the above expres-
sions agrees with the result found by Landau and Lifshitz? in the Born approxi-
matin. The second term inside brackets is a correction due to the distortion of
the electron-positron wavefunctions in the field of the nuclei.

In figure 6 we plot the cross section for production of e*¢™ pairs in relativistic
uranium-uranium collisions and calcium-calcium collisions as a function of the
Lorentz factor v, based on eq.(2.3.11). These cross sections are about one to
two orders of magnitude smaller than the ones calculated in ref.11 where the
equivalent photon method was used. This occurs because there the equivalent
photon numbers were integrated from a minimum impact parameter equal to R
(sum of the nuclear radii). As we saw, the minimum impact parameter that
should be used is equal to the Compton wavelength, below which the contribution
to the total cross section for pair production is negligible. That error makes the
cross section in ref. 11 much bigger than it should be. But the results agree
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quite well with the ones obtained here if we make the substitution R — 1/m
in that calculation. In view of our previous discussion about the pair production
probability. there must exist some corrections to eg. (2.3.11) for uranium-uranium
collisions with 7 2 500. There one must take also into account the probability
of creating two or more pairs in a single RHI collision. This may change the
dependence of the cross section on 7.

From the previous results one observes that the probability for the production
of fast eTe™ pairs in the collision of two fast nuclei in comparison with slow (or
ultra-fast) ones scales like

Pej«:m 2(7 o
P’i‘fw = In® (o (2.3.12q)
eve

and the ratio between the cross sections scales like

o_f ast

tem 1,2
;f,—o?w—— =~ In® 5 (2.3.12b)
ete-

which means that for 7 >> 1, most of the ete™ pairs will be fast ones. i.e. will
have energies in the range given by eq.(1.1.b). Therefore. we can say that the total
probability or cross section for producing ete™ pairs in RHI are given accurately
enough by egs. (2.3.10) and (2.3.11). or by the respective numerical integration
of eq. (2.3.5).

2.4 - Effects of screening

The above cross sections were evaluated under the assumption that the RHI
were naked, without their electron cloud. Let us, for simplicity. assume that only
one of the ions is screened by the atomic electrons. say the target. Then. the
correction to the previous results can be performed in a completely analogous way
as in the case of pair production by a real photon!®. Therefore. we only present
the final results. which for partial screening are (7 2 100)

Ao+ .- 2 1m
—— = 5-(Z1Zz0r ) — [GQI(X) +®2(x) - —‘" 2 - 28] ] n (3 2 )

(2.4.1)

d€+
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where ®; and ®, are the Bethe functions for atomic screening® as function of
the parameter x = (2rrw;/e+a)Z;1/3 (see also ref.15, p. 39%5).

In case of complete screening. i.e. when ex >> m/(Z; "“a). then we
can use ®;(0) = 4In183 and ®¥,(0) = 41n 183 — 2/3 and eq.(2.4.1) reduces to
(v 2 100)

1/3

dzc:— _ g_g (ZaZaar P - 1 [ n (1533) 12 ~7]n (12%"_) (24.2)

The total cross sections for et e~-pair production in RHI when one of the ions
is completely screened is obtained by integrating eq.(2.4.2) from e4 = m/(Z.:/:’a)

to ym, i.e. (7 2 100)

Oete- = g%(zlzgare)ze—i— [ln (}12—?—/%) - 215 - }] [ln2 (@) —in? (%)]

(2.4.3)
In the case of partial screening a numerical integration of eq.(2.4.1) will be nec-
essary.

In figure 7 we show the cross section for pair production in oxygen-calcium
and oxygen-uranium collisions as a function of the Lorentz factor 4. The solid
lines correspond to the case of no-screening of the target and of the projectile, as
it could be the situation in a RHI collider. The dashed lines correspond to the case
of complete screening of the target. When screeningis present the cross sections
will always be smaller by at less a factor 2-4, also for very high beam energies.

3. PRODUCTION OF HEAVY LEPTONS

The same previous calcolations can be applied for u*u~ and 7+~ -pair pro-
duction in RHI. but care must be taken with the fcllowing facts. First, since the
Compton wavelength of these leptons satisfies the condition
k

— << R= Rl + R2 (3.1(1)
mc

where

R1 2 1. 2A1/3 (31b)
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Fig.7 - The cross section o,+,.- for production of e*e™ pairs in oxygen-
calcium collisions as a function of the relativistic Lorentz factor 4. The
solid lines refer to completely naked projectile and target and the dashed
lines refer to completely naked projectile. but completely screened target.

are the nuclear radii of the ions, the impact parameter dependence of the pair
production probabilities is accurately enough described by expressions given in
section 2, but in the cross sections one must replace the variable ¢ as given in eq.
(2.2.7b) by another one given by

R (3.2)
YV
This means that for
v >> 16, for utu™ pair production (3.3a)
and
5 >> 270, for r+r~ pair production (3.38)
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we can replace

bm ~v6
in (15—) by In (;}—2) (3.4)
in the equations for the cross sections given in section 2 to obtain the respective
cross sections for utu~ and ++r~ production.

The conditions eq.(3.3) are quite severe and only for RHI accelerators working
at extremely large energies they will be useful, specially for =+~ production.
Therefore, we consider the opposite case, i.e. when ~ 2 16 for u* = and 4 2 270
for #*7= production. Then the function in eq.(2.2.7a) becomes

g(§) = w2e™ % (3.5)
The expressions (2.2.8) and (2.2.10) will be correct if we replace
¥ém T _2uR
ln( - ) by ¢ " (3.6)

This means that the double differential cross section for utu~ and 7+~ produc-
tion with beam energies satisfying the above condition is

d%0p+q- _ 64n2 9 G4a_ Vs —m){e- —m)
deyde- 3 (Z12zre0) (e2ma+ — 1)(1 — ¢ 2me-) wt
X [(w— 2m)+(Zga)2(gm—w)]e'h}r& (3.7)

where the subscript £+£~ is used in this section for muon or tau pairs.

We could also make a rough estimate of the cross section for muon (or tau)
production in which the negative muon (or tau) is captured in an orbit around the
target by making the exchange eq.(3.6) in eq.(2.2.14). But. by using the resulting
expression to calculate the cross section for muon pair production with capture
of the negative muon in a uranium-uranium collision with projectile energy equal
to 10 GeV/nucleon, we find a value about a thousand times bigger than the one
obtained by Momberger et al.2° for the same reaction. which is 29 x 10~ "mb.
This occurs because. besides the approximation made to obtain the estimate
eq.{2.2.14), the Compton wavelength of the muon captured in an orbit around
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a heavy nucleus is smaller than the nuclear radius and its wavefunction will be
strongly influenced by the charge distribution inside the nucleus. This makes
unrealistic the above treatment based on a point center of charge, and gives a

higher value than that obtained by Momberger et al. because in this approximation
the muon wavefunction extends farther away from the nucleus than it should,
giving a bigger contribution to the matrix element eq.(2.1.1). These effects were
considered by those authors in that paper. Speculations about tau-atomic orbits
in RHI collisions were recently made by Weiss2!, where such finite size effects are

very decisive.
1
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Fig.8 - The cross section o,+,- for production of u*u~ and r+r-
pairs in oxygen-oxygen collisions as a function of the Lorentz factor
4. The solid lines correspond to the eq.{3.9) and the dashed ones to its
asymptotic limit.

553



Revista Brasllelra de Fisica, Vol. 18, n 4, 1988

When the charges of the ions are small, such that the approximation a3 << 1
can be used, we can integrate eq.(3.7) from ex = mto 2mand obtain

éadi;:—‘ = %(Z1Z2ar¢)2%(_2_rz_§)3/2(€’_:_ _ 1)3/2

[ 3 ) p(3 Z?R)]e-2(€++mm/7

1 3/2 3/2 o am
gf (21 Zaars)? —(5;;"—R) (%-1) =2+ +mIR/T (3 8)

where T'(}; y) is the incomplete gamma function (see ref. 16. p.940), and the last
equality corresponds to the asymptotic limit mR/y >> 1

We integrate eq.(3.8) over e in order to find the total cross section for muon
(or tau) production under the condition that mR /v 2 1, namely

e = (29 BLE) (2]
% [F@') —F(g;z—r:g)]e-”%“‘

(% Zar )2(;%)43-“2“ (3.9)

This result is in good agreement with that of ref.12, where the cross section
was calculated by using the equivalent photon method. There the cross section
was given in terms of the exponential integral function E;(z) (see ref.16, p.312)
and the asymptotic limit for mR/y >> 1is exactly the same as the one ob-
tained above (see eq. 10 of that reference). In RHI collisions. for which the

|l

above approximations are not valid. a numerical integration of eq. (3.7) has to be
performed.

Numerical values are plotted in figure 8 for o¢+¢- in the collision 160 +180 as
a function of the Lorentz factor 7. The cross sections are much smaller than that
for ete™ production in the same energy regime. This is due to the severe limitation
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imposed by the adiabatic cutoff in the cross section for projectile energies such
that mR/~y 2 1,which strongly inhibits the creation of very massive particles when
this condition is attained. When the projectile energy is very high. such that the
conditions eq.(3.3) are valid than we can use eq.{2.3.11) also for p* p~ and r*r~
production. But even in that case the cross sections will be smaller by a factor
(me/m¢)? (ie.. approximately 10~* for u* ™~ production. and aproximately 10~7
for r++~ production) in comparison with that for et e~ production.

4. CONCLUSIONS

The construction of bigger and bigger accelerators seems to be a common
trend in nuclear and particle physics (see e.g. refs. 6 and 22). Certainly. one of the
most important purposes of these machines is the study of nuclear matter under
extreme conditions. In central nucleus-nucleus collisions one hopes to observe new
forms of nuclear matter. like the formation of the quark-gluon plasma (see €.g.
ref.23). On the other hand. very strong electromagnetic fields for a very short time
are present in distant collisions with no nuclear contact. This is essentially due
to the Lorentz contraction of the fields. Such fields can also lead to interesting
effects. many of which of atomic and nuclear origin. which where discussed in
detail in ref.11.

In the present paper we have given a formulation of the eletromagnetic pro-
duction of lepton pairs (electron-positron pairs being by far the most important)
in RHI collisions, in a way which is as transparent as possible. We found tractable
analytical results for the relevant kinematical situations. There are slow pairs pro-
duced around the target and projectile (which we called ultra-fast pairs) charges.
respectilely. and dominantly. an intermediate energy region. This was the region
studied in the thirties. In addition we give impact paramneter dependent results
which point direcly to the limitation of the present approach for extremely rela-
tivistic collision of very heavy ions.

Lepton-pair production is suggested®* as being a potentially efficient probe of
quark matter formed in RHI collisions. As we saw in this article (and also in refs.
6-12). the electromagnetic production of leptons is by no means negligible, and
although the multiplicity (i.e. the number of pairs) in a single collision is smaller
than or about one. the cross sections for it are very high and éan be a source of
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experimental difficulties in the signature of that aspect of the quark-gluon plasma
formation.

As a final remark. let us compare the electromagnetic production of leptons in
RHI collisions with the corresponding process in reiativistic electron colliders. For
a detailed theoretical study of that, see ref. 25. In such machines, the y-values
achieved are much higher than in the heavy ion case, therefore the cross sections
are accurately enough given by eq. (2.3.11). We have astonishingly large ete™
production cross sections in RHI collisions. due to the large charge factor Z2Z2;
however. heavy leptons pairs (u*u~, s~ pairs) are practically not produced
unless the beam energy is very high (7 >> 16 for ytu~, and v >> 270for r* 1~
pairs). Also. the electromagnetic production. in the two photon mechanism, of
heavy quark-antiquark states (like the n., which was recently studied with the
PLUTO detector at PETRA in high energy e*e™ collisions?6), will be negligible
unless the beam energy is extremely large (y >> 600 in case of 5. production).

We acknowledge Prof. W. Scheid for fruitful discussions, and one of the
authors (C.A.B.) is grateful to Prof. J. Speth by his support and hospitality at
Kernforschungsanlage Julich.
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Resumo

Calculamos as probabilidades e se¢des de choque para a criacdo de pares
elétron- pésitron em colisdes nucleares relativisticas utilizando as funcdes de onda
de Sommerfeld-Maue para o par. Comparamos nossos resultados com os exis-
tentes na literatura. discutimos aspectos flsicos novos, até entdo inexplorados. e
fazemos aplicacGes as reacGes relativisticas com fons pesados.
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