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Abstract We study the effects of final state interactions in
the non-mesonic weak decay AN — nN (n is a neutron
and N is either a neutron or a proton) of the hypernucleus
ﬁHe. Using a three-body model the effects of distortion of
the interaction of the emitted nucleon pair with the residual
nucleus is considered. We also study the influence of the
final state interaction between the emitted nucleons using
the Migdal-Watson model. The effect of spin symmetries in
the final state of the pair is also considered. Based on our
calculations, we conclude that final state interactions play
a minor role in the kinetic energy spectrum of the emitted
nucleon pair.

1 Introduction

Electrons and nucleons make up most of the visible matter
in the universe, with the nucleons being composed of up and
down valence quarks. In a hyperon, a strange quark replaces
one of up or down quark. A hypernucleus is created by a
reaction such as K + A — 7 + hypernucleus, with the out-
come that a hyperon is implanted as an impurity within the
nucleus A. The A-particle, with an up-down-strange parti-
cle composition, has isospin and spin 0, and its implantation
forms a common kind of hypernucleus, first observed in 1952
[1,2]. In free space, the lambda decays with a total decay rate
I' =2.5x 107% eV, and a corresponding mean lifetime of
263 + 2 ps [3],into p + 7~ (64.1%) or n + 7° (35.7%).
Due to Pauli blocking, the mesonic channel A — 7w 4+ N
is strongly inhibited in a heavy (e.g., '*C or heavier) nucleus
and the non-mesonic weak decay (NMWD) AN — nN
becomes a dominant channel. We expect it to be negligi-
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ble for the case of the *“He hypernucleus studied in this work.
The process can be induced by a neutron (N = n) or a proton
(N = p) withrespective widths I, and I',. The non-mesonic
decay process AN — NN can occur due to the combina-
tion of a weak vertex and a strong vertex in the process and
are dominated by the proton-induced reaction Ap — np
and neutron-induced reaction. In the nuclear medium these
widths are modified because the nucleon and the hyperon can
move in their respective mean fields arising from the NN and
N A interactions. The fact that three-body non-mesonic decay
modes are negligible, but two-body non-mesonic decay com-
prise nearly 20% of the events, implies that the three-body
decay modes probably do not play an important role in the
emission spectra and would fail to explain the observed dis-
crepancies between a two-body decay calculation and the
data. In this work, we plan to ascertain if this assertion is
valid.

One of the interests in the study of non-mesonic decays of
light hypernuclei such as jHe is because they are expected
to be the only feasible method to study the AS = 1 weak
baryon-baryon interaction with the weak interaction Hamil-
tonian due to the W-exchange given by [4]

Gr . _ -
Hyeak = 7 5 Oc cos b, [y, (1 — ys)sdy" (1 — ys)u] ,

D

where u, s, d are quark spinors. While this Hamiltonian does
not favor AT = 1/2 over AT = 3/2 weak transitions,
the AT = 1/2 weak transitions are found to dominate in
experiments. This is not a well understood fundamental phe-
nomenon.

For AT = 1/2 the effective weak Hamiltonian can be
written in terms of a nucleon, ¥y, a lambda, ¥4, and a pion
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field, ¢ . That is,
5 = 0
Hyeak = _Ganle(An + Brys)r - TWa 1) (2)

where the weak coupling constant is G Fm%r =221x107"7,
and the constants A, = 1.05 and B, = —7.15 are adjusted

toreproduce the free lambda decay. The isospin spurion ( (1) )

enforces AT = 1/2 [4,5].

Hypernuclei also possess properties of relevance for the
study of nuclear structure, medium modification of particle
properties, and stellar processes. For example, the ground
state of helium-4 with an implanted lambda, here denoted as
jHe, must be similar to “He and must be stable, except that an
eventual weak decay of the lambda occurs. Therefore, precise
measurements of the mass and the excitation energies of a
hypernucleus reveals the medium properties of the hyperon-
nucleon interaction of relevance for the understanding of high
density nuclear matter occurring in stellar environments such
as within neutron stars [6].

The induced decay of a hypernucleus into two emit-
ted nucleons, usually termed non-mesonic weak decay
(NMWD), (AN — nN), is evidently a complex problem,
involving more than one particle. To qualitatively describe
the decay, one can resort to very simple models for the decay
width, based on, e.g., the mean field description of the bound
system and free nucleons (e.g., plane waves) in the final chan-
nel. But to account for the effect of final state interactions
(FSD), such as the interaction of the emerging nucleons with
the field of the residual nucleus and the pn and nn interac-
tions, one has to go well beyond the above simple model.

The aforementioned plane wave model fails rather drasti-
cally in describing the nn channel, while it works adequately
for the pn channel, as shown, e.g., in Refs. [7,8]. This was
traced to the fact that the p in the pn channel suffers a push
owing to the Coulomb field of the residual nucleus, which
renders the pn correlation effects rather weak. The plane wave
description, which exhibits a peaking of the pn spectrum as
a function of the sum kinetic energies of the two nucleons
comes out at the right place with the data. Thus two final
state interactions seem to cancel each other in the pn chan-
nel. This feature is not reflected in the nn channel, since the
n-residual nucleus final state interaction is the same for both
neutrons and thus the nn correlation survives. The compar-
ison of the simple plane wave model with the data clearly
shows the need for this correlation: the peaking in the cal-
culation is way to high. The data show a peaking at much
lower sum kinetic energies. Needless to say that besides the
decay modes An — nn and Ap — np there are also two-
nucleon induced modes ANN — nNN, which is an evident
three-body problem.

@ Springer

This work is build up on the ideas explained in some
of Hussein’s publications with his collaborators [7—11]. We
extend their work an we concentrate our efforts in exploit-
ing aspects of the three-body problem in the case of ANN
— nNN and the final state interaction involving the resid-
ual nucleus and the nucleons. The basic goals of this work
is to show that final state interactions can be treated in dif-
ferent ways, leading to different predictions for the kinetic
energy sum of the pn and nn spectra. Although we compare
our results with the specific case of the NMWD of the ‘/‘\He
nucleus, our ideas are very general and can be applied to
decay of any other hypernucleus.

2 The three-body final state interaction

In this section we consider a pn emitted pair for the sake of
simplifying the notation, although all developments can also
be used for nn pairs. In order to take into account the final
state interaction we use a three-body description based on
the Faddeev equation for the full final state wave function
for the pn+(A-2) system, lll;_)(pn, Py, Pa2),

[E—HO—U

T (=)
pA72_UnA72_V[’n] ‘Pf (Pn, Pp, Pa—2)=0,

3

where Hyj is a sum of the kinetic energy operator of the two
emerging nucleons, K ,,, K, and of the residual nucleus, plus
the intrinsic Hamiltonian of the residual nucleus, 2 4_>. The
quantity

ha2+Upa—2+Upa—2+ Vpu, 4

describes the bound three-body system immediately after the
decay of the A hyperon (the two nucleons are still inside the
nucleus) and, by definition, V, is real.

The direct solution of the three-body Schrodinger equa-
tion, Eq. (3), is not possible when only two-body interac-
tions are present, as is our case. On the other hand, the Fad-
deev decomposition allows a legitimate method of finding
the solution. For this purpose, we first write the formal solu-
tion of Eq. (3), namely the Lippmann-Schwinger equation
for the full final state wave function, as

v =07 + (EC) — Hy) ™!

x (Ubaa + Uy oy + Von) 917, ®)
where the inhomogeneous solution o\ corresponds to the
two outgoing nucleons and the left over residual A-2 nucleus.

Itis a solution of the equation without the n(A-2) and p(A-2)
potentials. Following the usual procedure to solve Faddeev-
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like equations, we write

=) — &) ) =) (=)
V=0, + Y Y (6)
where the Faddeev components are given by the solution of
coupled Schrodinger equations. Consider the one accounting
for the relative motion of the pair, ¥ ,,,

- - i T R S
W) = (EC) = Ho) "'V [q>fpn+pr +u +l1115"):|'

(N

In Egs. (4,6-7), the “free” three-body Green’s function,
(E) — Hy)~!, is an outgoing one with E(™) = E — je.
The next step is to formally solve for '1/15,7) by writing

[1 —(ED) - HO)—IV,,,,] i)

= (EC = Ho) "Wy x [0 + )+ 9 0] ®)
or, with the identity [1 — (E®) — Hp) ™'V, 17! = (E©) —
HO)ilt;n’

) — (g —1i 5
wi) = (EC = Hy '), @'

+ED = ), (v +w), ©)

where 1), is the two-nucleon 7-matrix operating in the three-
body Hilbert space.

Equations (6-9) are the Faddeev equations to be solved
to determine the there-body final state wavefunction. Once
they are solved, the full wave function is constructed by
their sum. In most applications one component dominates.
In the simple model mentioned above, the full wave func-
tion is replaced by the single particle wave function with
no nucleon-nucleon correlations. The Faddeev equations
above contain the single-particle aspect through the poten-
tials Upa—2 and U, 42 and the full NN correlations in the
final state. In this section, we do not consider correlations in
the bound state wave function besides the pn one. Effects of
symmetry and their consequence for correlation functions a
pair of identical nucleons have been published in the litera-
ture, e.g., in Ref. [12].

To pin down the driving physics on the W[EZ) + lI/n(X)
part of the three-body wave function, we resort to the limit
that V), vanishes and the recoiling nucleus has an infinite
mass. In this situation the full three-body wave function is
just x O (p p)X (=)(p,.), and the sum of Faddeev components
lI/(;) + J/n(/;) is the product minus the inhomogeneous form
(5). This leading order term would gain multiple scattering
corrections by increasing the importance of V), and two-
nucleon correlations would start to contribute to these two
Faddeev components.

Based on the above discussion, we now approximate the
less important summed wave components W;EZ) + lI/n(;) by

a product of distorted waves for p and n, minus the inhomo-
geneous solution, namely, x ™ (p,)x ™ (p,) — q)(f’), This
gives,

v = (EC — Hy) '], o)

fprn
+(EC = Hoeh, [x O @ O o) - 27,
(10)
and accordingly,
v = (ED — Hy) '), x T () x T (o). (11)

The full final state three-body wavefunction of Eq. (4) can
now be expressed as

(=) (=) =) (=)
v =o' 1wl wl

f f
HED = H) el x O ®p)x 7 (o). (12)
But,
v+ = x O O e - o), (13)

and we finally obtain the desired approximation for the final
state wavefunction

v =14+ EC = H) ™1, | O epx O v,
(14)

which will be used as the starting point of our calculations.

It is important to describe how the hypernucleus decay
width depends on the approximations used for the wavefuc-
ntions and how they relate to the final momenta and energies
of the emitted pair. We demonstrate this connection in the
coming section.

3 Decay width

The weak non-mesonic decay width is given by the Fermi
Golden Rule. The non-mesonic weak-decay rate of a hyper-
nucleus from its ground state i to the residual nucleus ground
state and two free nucleons pn' with total spin S, total kinetic
energy Epycm = E, + E), and relative energy Epy rel, 1S
given by

=25 [ @ e Pae) Vi Vi)
=7 7 Pn, Pp, Fa-2) [Vweak| ¥i, a(J1 M1

dpp dpy (15)

X4 (Epn,cm + Epn.r‘el - An) (271)3 (271)3’

' And similarly for nn pairs.

@ Springer
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where A, includes the energies for different final states with
the same spin J . Here we consider ground-state transitions
so that

Ay =My — M =176 MeV. (16)

In the calculation of the width we need the complex adjoint
of ¥ ;_) , namely,

W = x (0 x V% (pn)
XWa_s [1 + tpu (B — Ho)—l] . (17)

Thus, in a prior-form of the final state interaction for the
decay amplitude, i.e., when the distortion of the two-nucleon
final state by the NN potential occurs just after the weak
process, the individual nucleon optical distortion prevails,
and the width becomes

2
r= 7” > / ‘(x“kpp)x(‘)(pn), WH(SMSJFMF)}

h2Pp2
x [1 + tpn (An - ﬂ) (An — Ho + is)l]
4mN

2

X Vweak 8 (Epn,cm + Epn,rel - An)

WA(J1M1)>

dpp dpn
(2m)3 2m)3

x (18)

To derive the above formula one has to remind that the
energy of the three-body system in the center of mass is
E = A,, as constrained by energy conservation. The three-
body resolvent carries this energy minus the kinetic energy
operator. The neutron-proton T-matrix is calculated within
the three-body background where the remaining nucleus is a
spectator, then the two-body energy has its argument given by
Ay — h2me’ «m/4my, where the pn center of mass kinetic
energy operator is subtracted from the total energy of the
three-body system. It is disregarded the dependence on spin
of the distorted waves of the nucleons, and therefore the total
|JFMF) state is the sum of the total np spin and the spin of
the remaining nucleus.

Rearranging the terms,

r= 27” Zf ‘(x(‘)(pp)x(‘)(pn)

nP2
X [1 + t;f,, (An - #’;"") (A, — Hp + ig)—l]

2
WA(JIMI»‘

XWp 2 (SMsJpMp)

Vweak

dpp dpn
(27)3 (2m)3’

x4 (Epn,cm + Epn,rel - An) (19)

@ Springer

and inserting unit resolutions in the above equation one has
that

27 dpp dpn / ’ ’ "o
r==% —_| [ dp/,dp,dp’.d

h /(271)3 (2m)3 Pr@PnPpPn

X (X O ®pIP,) (x @)D, KO @), 5 D) )

X(PLt, Pl Wa—2(SMs T ME) | Vipear\Wa (J1 M)
X8 (Epn,cm + Epnrel — An) ) (20)

where the kernel containing the two-nucleon scattering
matrix is evaluated for a contact s-wave interaction, giving

KO, p:p).p)) = 80, — p))s®, —p))

2P
/ S n,cm
+36 <P1;n,cm - P;m,cm) {1 + Tpn Ay — 4’7:N
-1
P, )% P )?
X |:An _ pn,cm N pn,rel +ie }’ (21)
4mN my
where the Jacobi momenta are
1

P;m,cm = p/p + p:’l ’ /pn,rel = E(p/p - p;z) > (22)

and analogous definitions are used for double primed quan-
tities.
The nucleon-nucleon amplitude is given by

75, (E)

—1 177!
- [/dp [<k200t28 —p2) - (E —p2+ie) H
0 -1
= [a +i47r2/ dp p*S(E — pz)i|
0
-1
= [a + i2n2\/E]
2y-1 1 s . -
=-Qr) M-+ E-iVE| . (23)
a 2
where ¢ and rg are the scattering length and effective range,
respectively, for the two-nucleon spin S.

With the ingredients above the kernel of the integrand
becomes

K (), p): Py )
= B(p’p - p/];)é(p;, - pg) - (27T2)_]5 (P;n,cm - P;m,cm>

2p/2
Jo Ly sa P nem
as 20 " 4my

2pr2 -1
i _ h P/pn,cm
" dmy

|: Oal’fz;:ucm)2 (hP;n,rel)2
x| A, — -
4mN my

-1
+ is:| . (24)
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In Ref. [8] the major findings were that the simple no-
correlation, no-FSI calculation, does describe reasonably
well the qualitative aspects of the data, but fails when con-
fronted with those of nn and pn final decay channels. In
that reference one assumed the following: (1) plane waves
for the outgoing protons and neutrons, and (2) no nn or
pn interactions in the final channel, amounting to setting
rgn(Ep,,) = t,fn(E,m) = 0. Thus, one has,

xO@pIP,) (X7 )Ip,) =8, — P,)8(Pn — Py,
(25)
K@), py: Py P) = 8(0), — P3P, — P},
(26)
and the formula for the decay width in Eq. (20), reduces to

27

SMgJpMp

|(Pn> PN SMsJEME|Vipear| J1 M)

dp, dpn

x8(E,n + Egr — AN)—(ij)3 255

27
which is the one also used in Ref. [10].

The experimental kinetic energy sums of proton-neutron
and neutron-neutron pairs [13] are compared in Fig. 1
(adapted from Ref. [8]) to theoretical calculations with no
FSI in the upper and in the lower panels, respectively. The
experimental data denoted by AN, n(E;) are corrected for
the detectors acceptance, neglecting events with Ey > 25
MeV or/and scattering angles obeying cos 6,y < —0.5. The
connection between the decay widths and the total kinetic
energy of the emitted pairs, including details about the fold-
ing with detection efficiency is presented in Ref. [10].

The theoretical results presented in Fig. 1 use Eq. (27) with
(solid curves) and without (dashed curves) the experimental
cuts included in the calculations. The Figure clearly shows
that the low energy peaking in the spectrum calculated from
I' is reasonable for the pn channel, while it is quite bad for
the nn channel. We attribute this to the approximations made
above, Eqs. (25), and (26).

In the following, we present a new calculation of the spec-
tra by including both the final nucleons’ distorted waves and
the nucleon-nucleon interaction as explicit in Eq. (20).

4 Calculation details
4.1 An alternative formula for the width

The weak decay processof A — (A—2)+ N + N accounting
for the final state interaction can alternatively be calculated
using the full Eq. (20) with the account of FSI, where the
nucleon optical distortion by the remaining nucleus happens
before the nucleon-nucleon final state interaction.

1000}

500

ANpn(E)

| === Without exp. efficiency

G 3000 —— With exp. efficiency
di
E- 2000} # data
=4
< 1000t
0 L + I ++—’ L .
50 100 150 200

Kinetic energy sum [MeV]

Fig. 1 The experimental [13] kinetic energy sums for proton-neutron
and for neutron-neutron pairs are compared to theoretical calculations
with no FSI (see text) in the upper and in the lower panels, respec-
tively. The experimental data denoted by AN,y (E;) are corrected for
the detectors acceptance, neglecting events with Ey > 25 MeV or/and
scattering angles obeying cos 6,y < —0.5. The theoretical results using
Eq. (27) with (solid curves) and without (dashed curves) the experimen-
tal cuts included in the calculations [8]

We will present very general simplifying assumptions to
obtain the distorted waves for each of the emitted nucleons
which can be applied to the NMWD of any hypernucleus in
practical calculations.

4.2 FSI using eikonal waves

The basic ingredients needed to calculate the width, Eq.
(20) are the distorted waves of the outgoing nucleons and
the two-nucleon t-matrix. For simplicity and insight we use
the eikonal approximation in the evaluation of the distorted
waves.

We take for the nucleon-nucleus optical potential the “tp”
approximation which relates the optical potential to phe-
nomenological nucleon-nucleon scattering parameters [14]

Vopt (r, E) = INN(E)pa(r), (28)

where fyy(E) is the average zero momentum transfer
nucleon-nucleon t-matrix element, and p(r) is the matter
density of the residual (assumed spherical) nucleus normal-
ized as

4 /00 rzdr,o(r) = A, (29)
0

reproducing experimental quantities such as
o
4 / r4dr,0 rH=A (r2>, (30)
0

where (r?) is the squared rms radius of the residual nucleus.

@ Springer
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The distorted waves in the eikonal approximation are
given by

x .o =

. k o
e_lk.r X exp I:—ZE / dZ/Vopt (m)} ’ (31)
P Jz

which can be written as
X 70" =TS (2, b), (32)

where the distortion factor (eikonal S-matrix) S(z, ) has
been introduced,

S(z,b) = exp [—ii/ dZ/Vopt(\/m)} (33)

2E J,
In the following we assume for the matter density a Gaus-

sian shape, p(r) = poexp (—r? /az), which describes rea-
sonable well the light hypernuclei. Then, we have

o0
471/ rzdrp(r) =A= pon3/2a3, (34)
0
with
o 3
471/ r4dr,o(r) =A <r2> = AR? = p0§n3/2a5. (35)
0

Accordingly, we get the matter density atr = 0 and a in terms
of the mass number and the radius of the residual nucleus,

A

= (36)
(2?)3/2R3

£0

and

o ;

Now we turn to the calculation of the distortion factor
S(z, b), and use the Gaussian density in V,,,

kV, o) 2 b2
S(z,b) = exp [—iZ—EOfZ dz exp (—Z ; ﬂ (38)

We write the above as,

S(z,b) = Vo b 39
(z, )—CXP[—IE (z, )]- (39)

The integral
00 2 2
b
I(z,b) = / d7 exp (—Z 4; >
2 a

@ Springer

can be expressed in terms of the error function, @ (z/a). That
is,

1(z,b) = exp (-2-2)@ [1 —® (2)] (40)

The error function is evaluated from the incomplete Gaus-
sian integral,

Z

@ (5) - % /O dx e, (41)

The optical potential strength Vy = potyn (E), is calculated
from tabulated values of t v (E) [14,15]. The imaginary part
of tyn(E) is directly related to the nucleon-nucleon total
cross section as a consequence of the optical theorem.

The Fourier transform of x =) (p, r)* is needed in the cal-
culation of the width. This is just

X(_)(p, p/)* _

1 K —i
= G / dre™ e KTS (2, b), (42)
T

where p = 7ik. Using the cylindrical coordinates appropriate
in eikonal-type calculation, we can reduce the above to

OO . .
/ dze':% f dbe' ¥ Sz b),

) 43)

(-) IVE
x (. p) G

where we have introduced the momentum transfer ¢ = k—k’
and db = bdbdf. The product q; - b = gpbcosf. The
integral over cos 6 results in a Bessel function, and the final
expression for the distorted wave in momentum space is

1 © :

(=) INE iq;z

x (p,p) = [ dze'*S(z, qp) (44)
@em)'? J s

where S(gp, z) is given by

S(qp, 2) =/O bdbJy(qpb)S(z, b). (45)

The perpendicular component of the momentum transfer,
qp, is much larger than the z-component, g,. Accordingly, we
evaluate the b-integral above by setting ¢, = ¢ and ignore
the ¢9:% factor in the z-integral, resulting in

- N 1 *
(@) = oy [ dzsa, (46)
and
S(g,2) = / bdbJo(gb)S(z, b). 47)
0
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The above distorted wave in momentum space is to be com-
pared to the momentum space representation of the plane
wave which is a 3-dimensional delta function 6(q) = §(k —
k’). The calculation of S(g, z) requires S(z, b) of Eq. (39).
The dependence of S(g, z) on z is dictated by the integral

| bavatgrexp {~iaexsi—12 @111 = g /).
0

with o =k, Vy/2E,. Since the Bessel function is a damped
cosine function, one expects the function S(g,z) to be a
damped oscillatory function of ¢ as well. For large value
of x,

Jo(x) = +/2/mx cos(x — m/4).

It is therefore convenient to write the Bessel function in terms
of running waves of the form e7% and use the stationary
point method to evaluate the resulting integrals. The station-
ary points, b4, are obtained from

+q = —j—b {aexp (<b2/a?) 11 = g/} - (48)

The b-integrals can be evaluated by expanding the exponents

#+(q.b.2) = £qb — wexp (—b/a?) [1 = $(z/a)]

around the stationary points as
$+(q.b.2) = qbs —aexp (b2 /a’) [1 = ¢ (z/a)]
+%ﬂi(b —by)*, (49)
where f is given by,
d2
Bi = o |aexp (<b2/a’) 1 = g /anl] - (50)

The Gaussian b-integrals are readily performed using the
result

o
/ b b0 — fimhy fr 2ei#@be),

—00

to give finally for the distorted wave factor S(q, z),

1 .
S(CI» Z) = ZI: b+(Z)ﬂ+(Z)€l¢(q‘b+’Z)
—Vb_(2)p- (Z)e"¢'(‘1vb—»Z)]7 51)

where b+ and B4 are given by solving Eqs. (48) and (50),
respectively. When inserted in Eq. (45), the z-integral could
be evaluated through the use of the stationary point method
too.

4.3 FSI using the partial-waves method

The outgoing proton and neutron distorted waves can also
be calculated with the partial wave-method. Usually this is
more complicated than the eikonal waves, as one has to add
many partial waves and numerically solve the Schrodinger
equation. However, for the case of particle decay it is usually

sufficient to only care about s-waves for x }fn), i.e.

(=)
(=) _ 1 I/tN (V)
a0 = = (52)

where N = p, n and we used Yoo = 1/+/4x for the s-wave
spherical harmonics.
The scattering waves u™) are given by

u () = jokr) + no(kr) sin 8o, (53)

where 8y is the s-wave phase-shift and k = /2Eyun /Fi is
the relative momentum of the nucleon+residual nucleus, py
being their reduced mass. Using the Born-approximation, the
phase shift can be calculated from the N-nucleus potential
with the formula

Z/LNk
h2

8o = — / - r2Vy (r) jd (kr)dr. (54)
0

But notice that Eq. (53) is not very useful, as its Fourier
transform diverges because of the second term. Itis only valid
in the asymptotic region. It would only work if the the central
region of the wavefunction is suppressed. In fact, this occurs
due to absorption. A simple way to care for absorption is
to include an absorption radius, R, so that u(’)(r) = 0 for
r < R so that

x5 () = /R ” 2 jo(k'ryu' ™ (r)dr, (55)

where p’ = hK’. Another possibility is to use Eq. (39) in the
form

) = / r2S(z = r.b = 0)jok'ru > (r)dr.  (56)
0

In this case, the absorption is taken care by the eikonal S-
matrix, S, and the integral can start from the origin. The
big advantage of this s-wave wavefunction is that its Fourier
transform is angle independent.

4.4 FSI using Migdal-Watson formula
The final state interaction (FSI) between neutrons has been

worked out by Watson and Migdal [18,19]. This idea has been
used in later works to obtain the neutron-neutron scattering
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length [20] from, e.g., 9Be(n,nn)gBe [21l,d+n—>n+n+p
[22-25], H(n,np)n [26], K~ +d — K% +2n [27], 0r yd —
7 nn [28]. These indirect methods are necessary, because
direct nn scattering has not been carried out successfully yet.
But the ! Sy nn scattering length extracted from such indirect
experiments range from approximately —16 fm to —19 fm.

In its standard form the Migdal-Watson model factorizes
the reaction production probability times a FSI enhancement
function, F(E,y). As explained in Ref. [18] the matrix ele-
ment describing a reaction with two-nucleons in the final
channel can be factored into two parts at low energies, a part
describing the production mechanism times the square of
the relative wave function of the interacting pair, ¥, y (K, r),
averaged over the production region. If this wave function is
normalized to unity for zero interaction, then it becomes an
enhancement factor for the production process.

Fermi [29] suggested a suitable normalized enhancement
factor to be the square of the ratio of the wave function
Yun (K, 1) to the wave function corresponding to zero phase
shift, the ratio being evaluated at a radius corresponding to
the range of the interaction, r,y. If one uses the asymptotic
wave function for s-wave continuum states and the effective
range expansion, the enhancement factor F (E,y) for an nN
final-state interaction is [20]

Y (kun, TaN) 2

VO (kv ran)
_ (/ran = V/any + kyyran /2)?
(—1/any + K2 yran /2% + K2y

F(E,N) = ’

. (57)

where E,y and fik,y denote the relative energy and the rel-
ative momentum of the nN pair, respectively.

Using this method, the plane wave prescription as described
by Eq. (27) is modified by including the FSI in its integrand.
Therefore, using the Migdal-Watson (MW) model, the decay
width becomes equal to

2
MW
=g 2
MgJpMp
dp, dpn

XF(EnSEnn + Er — AN 5 55505

The singlet ' Sy scattering length and the effective-range
for neutron-neutron scattering has been determined indirectly
andis assumedtobea;, = —18.9+0.4fmandr;, = 2.819
fm [30,31], although much lower values for the scattering
length (as much as 17%) have been reported in the literature
[32,33].

The neutron-neutron zero values triplet scattering param-
eters are unknown. In principle, they could be determined
by a crossed beam experiment of polarized neutrons, but
the presently available intensities of neutron sources are too
weak to allow for such experiments.

@ Springer
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(58)

For a neutron-proton pair both the triplet and singlet
zero value scattering parameters are known, e.g., af,p =
5.4114(27) fm, r,’lp = 1.7606(35) fm, a,,, = —23.7154(80)
fm and r;,, = 2.706(67) fm [34].

In Fig. 2 we show the enhancement function based on Eq.
(57) for the 'Sy singlet neutron-neutron (nn) and neutron-
proton (np) systems. It is evident that the main influence of
the FSI due to the nucleon-nucleon interaction occurs at very
low relative energy of the pair. Therefore, it is clear that this
kind of FSI will have little effect on the observed kinetic
energy sums for proton-neutron and for neutron-neutron pair
shown in Fig. 1. However, it might be useful to determine the
low relative energy spectrum of the pair. With the increased
efficiency of neutron detectors, experiments aimed at study-
ing the nn scattering length by detection of high energy neu-
trons are a real possibility to improve the accuracy of the nn
scattering lentgth [35].

4.5 FSI with spin correlations

The effects of spin correlations also play an important role
in final state interactions for the emission of nucleon pairs
from a nucleus. The effect of spin correlations on the spectra
of two-nucleon decays have been studied extensively. Here
we will borrow some fo the findings presented in Ref. [12]
where the interesting aspect of nuclear entanglement was
explored. For the case of NMWD spin correlations affect the
two-neutron decay mode.

Being identical particles, the detection of the two neutrons
requires the consideration of their admixture of singlet and
triplet states. When a single neutron is described initially by
a localized wave-packet ¥ (r1), the probability amplitude to
detect it with momentum p; is given by

Ay, 1)) = / Erx P (p1, DK @, r)Yo(ry), (59)

where x P (py,r) is an asymptotic outgoing wave with
energy Ey = p7/2M and K (r, r1) (1)) is the propagator
accounting for the wavefunction evolution from the source
to the asymptotic region.

Without consideration of spin correlations, when the neu-
tron 1 is detected with momentum p; and neutron 2 with
momentum p2, the probability amplitude for this event is the
product A(py, r1).A(p2, r2). Since the particles are indistin-
guishable, for a singlet (triplet) state S = 0 (S = 1) this
probability amplitude must be symmetric (antisymmetric)
and the normalized probability amplitude reads

1
V2
+A(p2, r)) A1, 1‘2],

AF (py,pa, 11, 12) = [A(Pl, r1)A(p2, r2)

(60)



Eur. Phys. J. A (2021) 57:67

Page9of 10 67

with the plus (minus) sign for the singlet (triplet) spin-state.

In Ref. [12] the two-particle momentum probability to
measure a neutron with momentum p; in coincidence with
another with momentum p,, was defined as

2
P@1p) = [ Endn|[ADEr P2 5|

) 2?
EMAC @1 p2 v | . (61)

where M is a mixing parameter which parametrizes the
triplet state relative contribution.
A correlation function

P(p1,p2)
P(p1) P(p2)

can be easily built from Eq. (61) to determine the relative
contribution of the singlet and the triplet states in the ini-
tial configuration of the neutron pair. In this equation, P (p1)
and P (p») are the probabilities of observing p; and p; inde-
pendently, with no coincidence measurements. As shown in
Ref. [12], the impact of spin admixtures in the correlation
function are larger for relative momenta |p; — p2|/2 ~ 20
MeV/c, based on the typical localization ranges r < 4 fm of
the pair within the nucleus. As expected, the correlation is
sensitive to the admixture of triplet and singlet states.

Figure 3 shows the results for the two-body probability
density P(E,,), obtained from Eq. (61) so that P(E,,) =
P(Enn)dE,,, as a function of the relative energy of the
nn pair. The dashed (solid) curve shows results for sin-
glet (triplet) states. The function P(p,, p,y) was calculated
using the asymptotic expansion of the neutron wavefunction
depending on the the zero value scattering parameters. We
arbitrarily assumed rp = 4 fm for the average initial distance
of the nn pair right after the NMWD.

It is clear from Fig. 3 that spin correlations depend on
the size of the source function and the they spread over a
larger relative energy of the pair than the final state interac-
tion described in the previous section. Thus the initial con-
figuration of the emitted pair right after the NMWD and the
symmetry of the nn wavefucniton plays a larger role in the
kinetic energy sum of neutron-neutron pair than the final state
interaction discussed in the context of Fig. 2.

Within the same premises as those used in the derivation of
Eq. (58), the effect of spin correlation in the decay width can
be obtained by folding the correlation probability amplitude
of Eq. (61) with the decay formula (27). That is, inclusion of
spin correlations (sc) modify the decay width formula to

2
=5 2
MgsJpMp

C(p1,p2) = (62)

|(Pns Pu'» SMsJEME|Viear | J1 M1)|?

dp, dpy

Q2n)3 2n) 9

XP(pn’ pn’)‘s(Enn’ + Eg — An’)

100

---- nn 1S,
80 —— np 1S ]

F(EnN)

0 05 10 15 2.0
E,nv [MeV]

Fig. 2 The enhancement function of Eq. (57) for the 'Sy singlet
neutron-neutron (nn, dashed line) and neutron-proton (np, solid line)
systems

---- singlet
0.61 ngtet
—— triplet
£ 0.4f
LLI /' N\,
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’l' S
0.0 S

Enn [MeV]

Fig. 3 Momentum density as a function of the relative energy of the
nn pair. The dashed (solid) curve shows results for singlet (triplet) states

5 Contribution of FSI

We now consider the contributions of all FSI following the
calculation details discussed in the previous section. This is
shown in Fig. 4 where the dashed curves are corrected for
the detectors acceptance, as described previously. The solid
curve in Fig. 4 contains the changes due to FSI.

One sees from Fig. 4 that the FSI additional contributions
to the calculitions obtained with plane waves are not of major
relevance. The effects of FSI in the calculations are only
visible at low total kinetic energy of the pair. The largest
FSI contribution arises from considering distorted waves for
the emitted nucleons, as described in Sect. 4. The effects of
final state interaction and the spin-correlations (assuming an
arbitrary share of singlet and triplet states) are not enough to
modify the spectrum appreciably.

6 Conclusions

In conclusion, we derived a useful formalism to describe
final state interactions in the NMWD of a hypernucleus. As
an application and comparison with experimental data, we
have supplied an estimate of the corrections due to final state
interactions in the non-mesonic decay of ‘/“He. Evidently, our
approach can be used for the NMWD of any other nucleus.
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Fig. 4 The enhancement function of Eq. (57) for the 'Sy singlet
neutron-neutron (nn) and neutron-proton (np) systems

Our calculations are compared to experimental data on the
sum of the kinetic energies of neutron-neutron and neutron-
proton pairs. We considered the effects of (a) distortions
caused by the FSI of the outgoing nucleus with the residual
nucleus, (b) the FSI due to the relative interaction between
the outgoing pair, and (c) the effect of quantum symmetries
on spin correlations of the emitted pair in their source func-
tion just after the day. It was concluded that the later two
contributions are small while the distortion caused by inter-
action with the residual nucleus causes an enhancement in the
spectrum at lower kinetic energies, although not enough to
display an agreement with the measurements for the NMWD
of ‘j‘He.

It is necessary to highlight some limitations of our study:
(a) In our three-body model, we include final state interac-
tions between the nucleons and the residual nuclei, as well
as between the two nucleons. However, we do not include
“hard” binary collisions between the emitted nucleons and
the nucleons of the residual nucleus. This could be the rea-
son why we see a small effect of the final state interaction,
although we expect the effect to be small for *He, with only
two other nucleons to collide with. (b) We also make it clear
that ‘j‘He decays mostly (80% branching ratio) via mesonic
modes, and only one-fifth of the time via pn and nn emission,
and a very tiny number of events occur through the decay of
three nucleons. Additionally, non-mesonic two-body (80%)
and three-body (20%) modes dominate in heavier nuclei
like kZC, not considered here. An extension of our studies
to NMWD including binary nucleon-nucleon collisions and
the complications emerging for heavier nuclei is warranted.
Work in this direction is in progress [36].
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