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ABSTRACT

RELATIVISTIC COULOMB EXCITATION OF
THE PYGMY DIPOLE AND GIANT RESONANCES

Nathan S. Brady, MS
Texas A&M University-Commerce, 2016

Advisor: Carlos Bertulani, PhD

Nuclear collisions involving heavy charged nuclei traveling at relativistic speeds can

bring one or both nuclei to an excited state. In collisions where the target is excited by the

electromagnetic field of the projectile the process is called Relativistic Coulomb Excitation

(RCE). Classical approximations are a good starting point for describing RCE, however,

more accurate predictions require a quantum mechanical treatment.

Collisions which result in RCE have a certain probability to displace a large fraction of

the nuclear matter inside a nucleus. This characteristic response is intrinsic to all nuclei con-

taining more than a few protons and neutrons and is called a Giant Resonance (GR). Many

classical and microscopic models have been used to describe this phenomenon including zero

range Skyrme forces, Mean-field Approximations, and the Random Phase Approximation

(RPA). As the number of neutrons become much larger than the number of protons within

the nucleus the excess neutrons begin to form a skin beyond the typical charge radius. This

neutron skin can be excited through RCE and cause the skin to oscillate against the strongly

bound symmetric core. The strongest oscillation between the core and neutron skin is called

the dipole mode and the resulting phenomenon is referred to as the Pygmy Dipole Resonance

(PDR).
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This thesis will look at how the PDR is influenced by the larger strength of the GR

for interactions above 100 MeV/nucleon. As the dynamics of the collision changes, the

probability of exciting a PDR changes considerably. The effects due to the coupling of the

PDR to the GR indicates a need for improved theoretical studies for reactions at these

collision energies.
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Chapter 1

INTRODUCTION

Understanding the principles by which our universe is guided and the laws that restrict

its evolution have always been a large motivation for scientific discovery. Nuclear physics is

the study of phenomena which govern the interactions between matter at the femtometer

scale. These interactions are built up from the residue of the strong nuclear force, described

by quantum chromodynamics, and are subject to electromagnetic interactions described

through quantum electrodynamics.

Particle collisions are used to investigate the dynamics of interacting particles. Mea-

surements are made by extracting information, (e.g., mass, momentum, spin, ...) carried

by the products of these collisions and inferring the original conditions which produced the

observations. The probability of producing a particular event is calculated through its cross

section which tells us where to expect certain products produced by said event.

Statement of the Problem

In peripheral collisions the distance between the two nuclei under consideration are

just large enough so as not to directly interact by the strong nuclear force. The event is

then dominated by Coulomb interactions, and at relativistic speeds it is better known as

Relativistic Coulomb Excitation (RCE), which is a well-established tool used for studies in

nuclear structure [1]. During an RCE event, the electric field generated by the incident heavy-

ion transfers energy to the nucleons within the other nucleus exciting it to a higher energy

level. At certain excitation energies the nuclear response will be amplified considerably and

is described as the characteristic resonance of the nucleus.

These characteristic resonances which dominate the low energy excitations around 8

MeV and higher for all nuclei with more than a few nucleons (i.e., protons and neutrons) are

known as Giant Resonances (GR). These phenomena, first observed by Bothe and Gentner
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in 1937 [2], were shown to have a high probability of photoabsorption at these energies.

These phenomena are well studied, see for instance [3, 4] and theories, both classical and

microscopic, reproduce the observations well. An associated phenomenon which appears in

nuclei with more neutrons than protons is known as the Pygmy Dipole Resonance (PDR)

and is the collective vibration of the neutrons against a symmetric nuclear core. Further

reading on the pygmy resonance can be found in Ref. [5]

Purpose of the Study

The PDR was suggested in 1987 as a possible excitation in neutron-rich nuclei by

Kubono, Nomura, and collaborators [7]. Theoretical support was later established by Ikeda

[8] and collaborators. Experimental evidences for the existence of a collective low energy

response in neutron-rich nuclei, far from the valley of stability, took nearly two decades

more to emerge. Initially the direct breakup of light and loosely-bound projectiles, such

as 11Be and 11Li were suggestive of a collective nuclear response, i.e., a PDR, but was

later shown to be a direct Coulomb dissociation of the weakly-bound valence nucleons [9].

This suggests that the characteristics are poorly understood and further investigations, both

experimentally and theoretically, are needed.

The intent of this study is to investigate the dynamics of these associated phenomena

produced from RCE experiments. A coupling between the PDR and the various excited

vibrational modes comprising the GR is investigated. The calculation of this coupling is

important to investigate since the strength and energy of the PDR would be affected appre-

ciably. This in turn would affect the calculation of the neutron skin, which is characterized

by the PDR.

Hypothesis

The Coulomb excitation of PDR at 100 MeV/nucleon and above are investigated. As

the dynamics of the collision evolve, the question of the influence on the PDR by the larger
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GR is addressed.

• The coupling of the GR to the PDR will affect the excitation probability considerably.

• Different collision energies will affect the amount this coupling changes the cross section

of the PDR.

Research Questions

An important aspect of investigating the PDR is the calculation of the neutron skin

which tells us more about neutron matter and how it relates to neutron stars. We will

attempt to answer the following questions:

• How does the collision energy affect the centroid energy and width of the PDR? How

much does this change the calculation of the neutron skin and polarizability?

• How do the separate major modes of oscillation of the GR (i.e., Giant Dipole and Giant

Quadrupole) affect the cross section of the PDR? Is there a preference to coupling with

either of the modes?

Significance of the Study

A revitalized interest in neutron matter and nuclei far from the line of stability has

emerged. The ability to measure the neutron radius has historically been an experimental

challenge which stems from the neutral charge of the neutrons. Since the PDR has been

shown to emerge in neutron-rich nuclei it has been suggested that it could be used to constrain

the neutron skin thickness [6].

Accurate measurements of the neutron skin and extraction of the dipole polarizability

are important for constraining the symmetry energy associated with the binding of nucleons

in the nucleus. How the GR affects the PDR is then an important question; for small changes

to the observed PDR the measurement of the neutron skin will be affected.
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Method of Procedure

Since the objective was to determine how the multipole modes of the GR affected

the PDR cross section, we utilized current predictions of both the PDR and GR’s centroid

energy and width. Two practical examples of reactions, 68Ni + 208Au and 68Ni + 208Pb, are

used to facilitate discussions on the effect of coupling between the GR and the PDR.

Definition of Terms

Nucleon. The constituent particles of nuclei, i.e., protons and neutrons, which come

together to form the nucleus of an atom. Elements differ by the number of protons, Z,

and isotopes, elements with the same Z, differ by the number of neutrons, N. [3, 10]

Nuclei. Term which refers to the nucleus of all elements composed of nucleons. [3,10]

Differential Cross Section. Rate of scattered particles detected at some angle,

dσ/dΩ, where Ω is the solid angle. Interpreted as the probability of detecting a particle

within the given solid angle. [3, 10]

Cross Section. An effective “area” which an interaction can occur. [3, 10]

Coulomb Interaction. Class of interactions between particles through their mutual

electromagnetic fields. [11]

Nuclear Excitation. The observed reaction of nuclear matter to external stimuli

resulting in the jump of one or more nucleons within the nucleus into a higher energy

level. The nucleus is then said to be in an excited state. [3, 10]

Relativistic Coulomb Excitation. Excitation of a nucleus by the electromagnetic

field of a charged particle moving at relativistic speeds. [12]
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Multipole Expansion. The decomposition of the angular dependence of a potential

into increasingly finer segments. Multipole moments comprising the first few terms of

the expansion are defined as the Monopole (l = 0), Dipole (l = 1), and Quadrupole

(l = 2) moments. [11]

Giant Resonance. A high-frequency collective nuclear response involving an appre-

ciable number of nucleons. Characterized by the large photoabsorption cross section

observed in all nuclei with more than a few nucleons. [3, 4]

Giant Dipole Resonance. The second and most prominent multipole moment of

oscillation which makes up the Giant Resonance. Described as the collective vibration

between the protons and neutrons. [3, 4]

Giant Quadrupole Resonance. The third multipole moment of oscillation and

second largest contribution to the Giant Resonance. [3, 4]

Pygmy Dipole Resonance. Similar to a giant resonance, but with a smaller

strength. [3, 4]

Limitations

Calculations utilize well known empirical data when necessary such as; the width of the

resonance, location of the centroid energy, and total nuclear cross sections σNN corrected

for in-medium interactions. The location of the Pygmy Dipole Resonance is taken from

experimental data while the width used is more consistent with theoretical calculations.

This restricts our analysis of results to be in a qualitative manner.

Delimitations

The low-energy resonances considered in this thesis are induced through the method of

Relativistic Coulomb Excitation. Therefore, only heavy-ion reactions at 100 MeV/nucleon

and above are considered. Since we are considering only Relativistic Coulomb Excitations,
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we restrict ourselves to collisions at large impact parameters, i.e., no overlap of the two

nuclei, so b > R1 +R2.

Organization of Thesis Chapters

Chapter 1 gives an outline of the study and motivations for this investigation. The

problem of inducing the PDR and GR through Coulomb excitation is introduced, then a

brief explanation of the coupling between the PDR and GR is given as the main focus of

the thesis. Chapter 2 develops the theoretical background leading to the idea of relativistic

Coulomb excitation in the context of nuclear reactions. We also show how the equivalent

photon method can be used in the theory of relativistic Coulomb excitation and show how

the idea of equivalent photons appears in many aspects of physics. The coupled-channels

calculation, important for determining how the PDR and GR are coupled, is also introduced

at the end of Chapter 2. Chapter 3 takes the ideas developed in the previous chapter and

applies it to the development of nuclear physics. The giant and pygmy dipole resonances are

introduced and theoretical models are briefly covered. Chapter 4 gives results on how the

PDR is coupled to the GR. These results are then compared to current theoretical predictions

using perturbation theory. Chapter 5 summarizes the results of the calculation and we give

our conclusions.
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Chapter 2

COULOMB EXCITATION

2.1 Underlying Theory

The theory of electrodynamics, which describes the interactions between charged par-

ticles, plays a pivotal role in modern physics and the development of the standard model.

Forgoing the highly interesting yet impertinent pre-19th century studies in electrostatics, I

instead choose to begin with the monumental work of Maxwell in 1873 [13, 14], which stem

from numerous experimental works including the equally notable, experimental physicist,

Michael Faraday.

The second volume of Maxwell’s treaties [14], brought together, in a mathematically

coherent way, the presupposed distinct interactions of electricity and magnetism into a unified

theory of electromagnetism with light as its propagator. In Maxwell’s work a collection

of differential equations describing the propagation of the electromagnetic fields through

vacuum were formulated. These equations as amended by Heaviside are,

∇·E =
ρ

ε0
(2.1)

∇·B = 0 (2.2)

∇×E = −∂B

∂t
(2.3)

∇×B = µ0J + µ0ε0
∂E

∂t
(2.4)

setting ρ = J = 0 for a charge free region, the vacuum equations are reproduced. In the

case of electromagnetic fields in vacuum we may take the curl of both (2.3) and (2.4) and

use the identity, ∇× (∇×Φ) = ∇(∇ ·Φ)−∇2Φ, which gives the well known wave equation

for electromagnetic radiation.
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∂2E

∂t2
= c2 · ∇2E

∂2B

∂t2
= c2 · ∇2B

with the velocity of the wave, through a non-conducting medium, denoted by c = (ε0µ0)
− 1

2 ,

the speed of light.

Maxwell’s work did away with action at a distance and cemented the idea of fields

into modern-day physics. The theory of electromagnetism has since been extended beyond

its classical origins into a fully consistent quantum mechanical theory.

2.1.1 Potential Fields and Gauge Transformations

The Maxwell equations (2.1-2.4) are one of the greatest strides made in physics paving

the way for more modern theories. Using vector notation as above it is immediately apparent

that equation (2.2) has a freedom in defining the magnetic field as B = ∇ ×A where the

transformation A → A + ∇ψ is made with ψ(r, t) arbitrary. Since the curl of any scalar

vanishes, B = ∇× (A +∇ψ) = ∇×A +���
��: 0

∇×∇ψ, the magnetic field remains unchanged.

Applying the transformation preserves the magnetic field, however, the electric field

changes according to equation (2.3),

∇× E = −∂B

∂t
where B = ∇×A

⇒ ∇× E = − ∂

∂t
(∇×A)

= ∇×
(
−∂A

∂t

)
⇒ ∇×

(
E +

∂A

∂t

)
= 0

Since the curl of a gradient is always zero we can assign the term inside the parenthesis equal
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to the negative of some scalar potential φ so that,

⇒ E +
∂A

∂t
= −∇φ

∴ E = −∇φ−
∂A

∂t
(2.5)

Defining the magnetic field as the curl of some vector field A results in a new definition

for the electric field given by equation (2.5). This is true for any arbitrary gauge. Now using

the same transformation on equation (2.5),

E = −∇φ−
∂A

∂t
where A→ A +∇ψ

⇒ E = −∇φ− ∂

∂t
(A +∇ψ)

= −∇φ−
∂A

∂t
−∇

∂ψ

∂t

= −∇
(
φ+

∂ψ

∂t

)
−
∂A

∂t

by making a new transformation φ→ φ−
∂ψ

∂t
equation (2.5) remains unchanged. This gives

the final solutions to the partial differential equations (2.1 - 2.4) as,

E = −∇φ−
∂A

∂t
(2.6)

B = ∇×A (2.7)

where A and φ are the magnetic vector and electric scalar potential fields respectively and

are a consequence of the gauge freedom inherent of Maxwell’s equations.
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2.1.2 Lorenz Gauge

Many different gauges have been developed to exploit this “freedom” and is known as

gauge fixing [11]. One such gauge transformation, which fits nicely with special relativity,

is the Lorenz gauge. Named for the Danish physicist Ludvig Lorenz, it introduces a trans-

formation to the scalar φ and vector A potentials while maintaining the solutions to the

Maxwell equations (2.1 - 2.4) as above.

Beginning from equations (2.1) and (2.4) then inserting solutions (2.6) and (2.7), we

get the equations of motion for a

∇ · E =
ρ

ε0
where E = −∇φ−

∂A

∂t

⇒ ∇ ·
(
−∇φ− ∂A

∂t

)
=

ρ

ε0

∴ ∇2φ+
∂ (∇ ·A)

∂t
= − ρ

ε0
(2.8)

∇×B = µ0J + µ0ε0
∂E

∂t
where B = ∇×A

⇒ ∇× (∇×A) = µ0J +
1

c2
∂

∂t

(
−∇φ− ∂A

∂t

)

⇒ ∇ (∇ ·A) −∇2A = µ0J−
1

c2
∂

∂t
∇φ−

1

c2

(
∂2A

∂t2

)

∴ ∇2A−
1

c2

(
∂2A

∂t2

)
= −µ0J +∇

(
∇ ·A +

1

c2
∂φ

∂t

)
(2.9)

In equation (2.9) a necessary condition in order to preserve Maxwell’s equations is,

∇ ·A +
1

c2

∂φ

∂t
= 0 (2.10)

This is known as the Lorenz condition and allows us to write the equations of motion in
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their final form,

∇2φ−
1

c2

∂2φ

∂t2
= − ρ

ε0
(2.11)

∇2A−
1

c2

∂2A

∂t2
= −µ0J (2.12)

where we used equation (2.10) to solve for ∇ ·A and insert into equation (2.8). These are

the symmetric equations of motion for a charged particle.

By inspection we see a similarity between these and the wave equations for electro-

magnetic radiation in vacuum (i.e. ρ = J = 0). Applying the transforms A→ A0 +∇ψ and

φ→ φ0 − ∂ψ/∂t to the Lorenz condition, equation (2.10) leads to,

∇ ·A +
1

c2

∂φ

∂t
→ ∇ ·A0 +

1

c2

∂φ0

∂t
+∇2ψ −

1

c2

∂2ψ

∂t2
= 0

where A0 and φ0 are the original potentials. To preserve our original condition in equation

(2.10) for our initial potentials A0 and φ0 we require,

∇2ψ −
1

c2

∂2ψ

∂t2
= 0

which is simply the wave equation for a scalar function ψ(r, t). This means that under the

Lorentz gauge we have an infinite number of solutions which satisfy the Maxwell equations

and everything is treated as a wave. This blends nicely with the implications of special

relativity and naturally works in quantum mechanics where everything is a wave.

A Quantum Theory

The laws which govern our universe are quantum mechanical and any theory which

hopes to succeed in its attempt to describe physical reality must be consistent with quantum
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mechanics. The theory of quantum electrodynamics (QED) is marked as the first successful

quantum field theory, consistent with relativity. Due to the tremendous success of QED, it

has become the standard measure of a theory’s acceptance.

In our formulation of QED the interaction between charged particles (e.g., electrons,

protons, mesons, . . .) is through the exchange of photons. These photons are the mediators

of the electromagnetic force. The use of Feynman diagrams, introduced by Richard Feynman

in the 1940s, has become the preferred method in describing particle interactions.

This pictorial method was a simple way of tracking the overwhelmingly diverse in-

teractions plaguing QED at the time. Following Feynman’s steps provided a systematic

approach in diagramming these interactions.

Figure 2.1. Interactions between fermions can be represented by a Feynman diagram. The
solid lines represent fermions and the wavy line is the force carrier, i.e., the virtual photon.

Figure 2.1 gives the standard depiction of electron scattering, depicted as a Feynman

diagram. In 2.1 the horizontal axis represents the forward flow of time while the vertical axis

gives motion in 3-space. Fermions are represented by solid lines while the virtual photon

(wavy line) is the mediator of the electromagnetic interaction. This virtual photon connecting

the two particles removes the need for action at a distance. For a more in depth discussion

on QED and the use of Feynman diagrams in quantum field theory refer to Peskin and

Schroeder [15].

The development of this beautiful concept of gauge boson exchange as the force car-
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riers revolutionized theoretical nuclear/particle physics, beginning with the photon as the

mediator for the Coulomb interaction. Using this concept we proceed into discussions of

nuclear interactions, a many-body quantum problem. Starting with, as one might expect, a

classical approximation to the process of Coulomb excitation.

2.2 Nuclear Excitation

Excitation of nuclei by means of providing energy through electromagnetic interactions

is known as Coulomb excitation. This situation is observed most easily in nuclear collisions

where a target nucleus is perturbed by an external electromagnetic field. This may be

achieved through a number of ways, however, the excitation through scattering particles will

be this works focus.

2.2.1 Heavy-Ion Collisions

When the number of protons and neutrons involved in a nuclear collision becomes large

we refer to these as heavy ion collisions. These heavy nuclear collisions present a dynamic

system with a very rich collection of interesting phenomenon.

In this situation a charged ion Z1 interacts with another charged particle Z2 through

the exchange of a photon

Figure 2.2. The interaction picture for a particle (lower solid line) colliding with a nuclear
target (shaded circle), through the exchange of a virtual photon. The products are depicted
by the outgoing solid lines.

Figure 2.2 gives a diagram representation of two interacting nuclei Z1 and Z2 where
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the charged particles are shown to interact through the Coulomb force, represented by a

mediating particle the photon (wavy line). This idea of photon exchange will be central

to our discussions later. The three outgoing particles are what results from the interaction

and are the only things observed. By looking at the incoming particles and measuring the

outgoing products the scientist can reconstruct what interaction took place.

Several different ways to represent these types of interactions exist. However, the

simplest method is to use Feynman diagrams. The benefit of including, implicitly, the

conservation laws through vertex analysis still makes it preferable to other methods. For a

brief overview of Feynman diagrams and rules see [15, 16].

2.2.2 Classical Scattering

Early investigations into nuclear physics typically involved low energy interactions

between charged particles of low mass, e.g., electrons, protons, alpha particles, and a fixed

target nucleus. The most notable of these experiments, which revealed the nucleus as be-

ing composed of a dense central core surrounded by electrons, were conducted by Ernest

Rutherford.

In the aforementioned series of experiments, often called the Rutherford gold foil

experiments, the low energy scattering of an alpha particle beam off a target of thin gold foil

resulted in the detection of scattered alpha particles back towards the source. Backscattering

as it’s now called can be represented as a one-body elastic scattering problem which describes

the trajectory of an incident charged particle as it interacts with a central force.

Scattering particles is still the preferred method used to investigate nuclear structure.

Since the need to probe deeper into the nucleus is more necessary, scattering particles achieves

this by increasing the interaction energy and decreasing the impact parameter of the colliding

nuclei. This requires the construction of larger and more powerful colliders.
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Rutherford

Rutherford scattering, as the low energy method is more commonly referred, is the

classical approximation to a quantum mechanical system. In this system the interacting

particles carry with them a charge, Z(1,2)e, and momentum, p(1,2), where the indices denote

projectile and target, respectively. A particle is said to be scattered when its direction

Figure 2.3. Scattering of an incident beam of particles by a center of force.

of motion is altered. Coulomb proved that the electric force follows an inverse-square law

similar to the gravitational force which implies that the orbital equations are applicable, in

the classical limit.

Given the charge of each particle and their relative velocity, v at infinity, we may

calculate the strength of the Coulomb interaction by the Sommerfeld parameter

η =
Z1Z2e

2

~v
. (2.13)

A classical approximation is appropriate when, η � 1. This is possible when either, Z1Z2 �
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137, or, v � c. The trajectory of the projectile, Z1, approaches the target, Z2, as in Figure

2.3. The collisions considered in classical scattering are not strong enough to overcome the

Coulomb barrier. However, we must consider the distance of closest approach, a, between

the two nuclei. From the conservation of energy,

E =
1

2
mv20 =

Z1Z2e
2

a

we solve for a giving the distance in terms of the charges and relative speed,

a =
2Z1Z2e

2

mv20

This is an important parameter since it gives us a known value in the projectile’s trajectory.

In this arbitrary collision the trajectory of the projectile is dependent on the impact

parameter and its kinetic energy. The “scattering angle”, Θ, is uniquely determined for

classical scattering. A scattered particle, in relation to the target, is observed passing through

a cross sectional area σ(Ω). The area scattered is dependent on the scattering angle Ω. For

a small segment of the scattering angle dΘ multiplied over the azimuthal coordinate 2π sin Θ

the portion of solid angle is written as dΩ = 2π sin Θ dΘ.

Scattering strength is determined by the energy and angular momentum l. The angular

momentum of a particle or planet is given as,

l = b p0 = b
√

2mE

where p0 = mv0 is momentum and b is called the “impact parameter”. The impact parameter

is the distance between the centers of two scattering particles. Assuming from a classical

perspective that particles at different impact parameters will have different scattering angles,

the number of particles scattered are determined by the beam intensity, I = N/A, where N

is the total number of incident particles passing through area A.
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Using the differential cross section σ(Ω) defined as the flux, Φ(Ω) of particles per

beam intensity we have,

σ(Ω) =
Φ(Ω)

I
(2.14)

We can solve for the number of particles scattered into solid angle dΩ by using the definition

of flux, Φ(Ω) = dn/dΩ. The number of particles, n, incident on the target is dependent on

the impact parameter as well as the scattering angle allowing the flux to be written as,

Φ(Ω) =
dn

dA
·
dA

dΩ

where I = dn/dA, the incident beam intensity. Inserting into equation (2.14) we have,

σ(Ω) =
Φ(Ω)

I

⇒ I σ(Ω) =
dn

dA
·
dA

dΩ

multiplying by dΩ on both sides and substituting in I = dn/dA we get,

I σ(Ω) dΩ = I dA

⇒ 2πI σ(Θ) sin Θ dΘ = 2πI b db

where we used the incident beam cross section A = πb2 ⇒ dA = 2πb db. The differential

cross section is now dependent on the scattering angle Θ, solving for σ(Θ) gives,

σ(Θ) =
b

sin Θ

∣∣∣∣ dbdΘ

∣∣∣∣ (2.15)

a straightforward relation between the impact parameter and the scattering angle measured.

Additionally deriving the impact parameter from the eccentricity of a hyperbolic orbit equa-
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tion (2.15) becomes,

σ(Θ) =
1

4

(
ZZ ′e2

2E

)2

csc4
Θ

2
(2.16)

the famous Rutherford Scattering equation. The relationship between equations (2.15) and

(2.16) can be found in Goldstein’s Classical Mechanics. [17] Rutherford’s equation is relevant

for low energy scattering where the incoming particle doesn’t penetrate the targets Coulomb

barrier such as the gold foil alpha particle scattering. Once the projectile and target begin to

overlap, e.g., 25 MeV for α+Pb, the scattering becomes inelastic and Rutherford’s equation

no longer applies.

2.3 Semi-classical Theory of Coulomb Scattering

The validity of a semi-classical approach to the method of Coulomb excitation is well-

known for studies on nuclear excitation. As stated before it provides a way to study reactions

without having to include the many-body nuclear forces. This is a well established method

and has been extensively covered by several investigators.

In the electromagnetic excitation process we describe an interaction Hamiltonian as

Hint = HP + HT + V(r(t))

where the matrix HP (HT ) is the projectile(target) Hamiltonian and V(t) is a time-dependent

term describing the electromagnetic interaction between both projectile and target.

An appropriate choice for the frame of reference (i.e., target or projectile) reduces

the above interaction Hamiltonian. In our treatment of the problem we choose the frame of

reference of the target and consider only stable projectiles with the ground state Hamiltonian

HT . The excitation is then built from the ground state of the target. The new Hamiltonian
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must satisfy the time-dependent Schrödinger equation

HintΨ(t) = i~
dΨ(t)

dt
(2.17)

Performing an expansion on the total time-dependent wave function Ψ(t) in terms of

the set of orthogonal eigenfunctions which form a complete basis

Ψ(t) =
∑
n

an(t)ψne
−iEnt/~ (2.18)

where the ground state Hamiltonian of the target nucleus satisfies the eigenvalue equation

HTψn = Enψn (2.19)

using the newly expanded wave function (2.18) with the interaction Hamiltonian given as

Hint = HT + V(t)

we obtain a new form of the time-dependent Schrödinger equation (2.17) given as

i~
d

dt

(∑
n

an(t)ψne
−iEnt/~

)
=
(
HT + V(t)

)∑
n

an(t)ψne
−iEnt/~

i~
∑
n

(
ȧn(t)− iEn

~
an(t)

)
ψne

−iEnt/~ =
∑
n

an(t)
(
HT + V(t)

)
ψne

−iEnt/~

Distributing through on both sides of the equation and using the relation (2.19) we are left

with the equation,

i~
∑
n

ȧn(t)ψne
−iEnt/~ =

∑
n

an(t)V(t)ψne
−iEnt/~
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multiplying both sides by ψ∗m and integrating over all space we have

i~
∑
n

ȧn(t)e−iEnt/~ δmn =
∑
n

an(t)

(∫ ∞
−∞

d3r ψ∗mV(t)ψn

)
e−iEnt/~

i~ ȧm(t)e−iEmt/~ =
∑
n

an(t)Vmn(t)e−iEnt/~

where we used
∫∞
−∞ d

3r ψ∗mψn = δmn. The matrix elements for the electromagnetic interac-

tion potential are given as

Vmn =

∫ ∞
−∞

d3r ψ∗mV(t)ψn = 〈m|V (t)|n〉

solving for the differential time dependent amplitude of state m gives,

⇒ ȧm(t) = −
i

~
∑
n

〈m|V (t)|n〉 an(t)ei(Em−En)t/~ (2.20)

We now have a set of m coupled equation where the sum runs over all possible excita-

tion states n. The solutions to which are typically found by performing a multipole expansion

on the potential V(r(t)). The Multipole expansion is introduced in the next section.

Equation (2.20) can be interpreted as the transition amplitude of a particle from an

initial state |i〉 to some final state |f〉 with excitation ~ω = Ef −Ei. The excitation is taken

as the Fourier component to the transition frequency of the interaction Hamiltonian so that

we have,

afi(t) = −
i

~

∫ ∞
−∞
〈f |Hint|i〉 ei(Ef−Ei)t/~dt (2.21)

The term 〈f |Hint|i〉 is the matrix form of the interaction Hamiltonian.

Integrating over a short time interval the transition amplitude is then,

am(t) = −
i

~

∫ T

0

Vmn(t)ei(Em−En)t/~dt (2.22)
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since for short time intervals the system returns to its original state ψm so that an(t) = 1

for m = n else an(t) = 0.

Multipole Expansion

A multipole expansion of a potential is a way to approximate the effective electro-

magnetic interaction between charged particles in terms of their intrinsic coordinates. In

spherical polar coordinates this takes separate treatment of the radial, polar, and azimuthal

coordinates, r, θ, and φ respectively.

The Coulomb potential measured at r for a system of point-like charged particles ei

located at ri is given in general by the equation

V (r) =
∑
i

ei

|r− ri|
(2.23)

1

|r− r′|
≡ (r2 + r′2 − 2rr′ cos γ)−1/2 (2.24)

where the primed coordinates indicate the location of charged particles and cos γ = cos θ cos θ′+

sin θ sin θ′ cos(φ− φ′) is the angle between the primed and unprimed vectors.

Equation (2.24) depends on only the lengths of vectors r and r′ and the angle between

them γ. This allows a multipole expansion to be made in terms of the mutually orthogonal

Legendre polynomials of order l.

1

|r− r′|
=

1

r>

∞∑
l=0

(
r<
r>

)l
Pl(cos γ)

where r< (r>) is the lesser(greater) distance between r and r′. By the addition theorem,

as given in Appendix B of [18], a generalization to the geometric relation given by cos γ.

This leads to an expression for the Legendre polynomial as a linear combination of spherical
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harmonics, of order l,

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗lm(θ′, φ′)Ylm(θ, φ)

leading to a final form for the expansion given as,

1

|r− r′|
=

1

r>

∞∑
l=0

4π

2l + 1

(
r<
r>

)l l∑
m=−l

Y ∗lm(θ′, φ′)Ylm(θ, φ)

Applying the above expansion, given in terms of spherical harmonics for each discrete

point charge i at r′, equation (2.23) becomes,

V (r) =
∑
lm

4π

2l + 1

1

rl+1
Y ∗lm(θ, φ)M(El,m) (2.25)

where M, the electric multipole moment, is given as,

M(El,m) =
∑
i

eir
l
i Ylm(θi, φi), m = −l,−l + 1, . . . , l − 1, l

The sum is over each electric charge ei with position ri = (ri, θi, φi). Modifying the equation

above, using the density operator

ρ(r) =
∑
i

eiδ(r− ri),

the multipole moment M(El,m) is now a tensor operator of rank l. Integrating over all

space the operator takes on the general form,

M(El,m) =

∫
d3rρ(r)rlYlm(n), n =

r

r
(2.26)

One postulate of quantum mechanics states that, for any measurable system which
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has an associated physical observable can be represented by an operator. The multipole

expansion of equation (2.23) into (2.25) puts it into a special class of quantum mechanical

operators called the spherical tensor operators.

2.4 Relativistic Coulomb Excitation

In the previous section we expanded the potential in terms of its multipoles and put

the multipole moment in the form of an operator, a necessary step for its use in quantum

mechanics. Now we must go further and put the method of Coulomb Excitation into terms

that are consistent with relativity.

The premise of Relativistic Coulomb Excitation (RCE) is taken from its low energy

origins. As with Coulomb Excitation the fundamental assumption of RCE is that the nuclei

do not interpenetrate. Reactions of this nature due to this process are short lived and

enhanced due to Lorentz contraction of the field.

For the case of a projectile with energy, Elab ≥ 100 MeV/nucleon, the trajectory is

nearly straight, i.e., negligible deflection, giving an interaction distance equal to the impact

parameter b. We also consider only interactions involving the electric field and the target

or projectile, so that, b > RT + RP , is larger than the sum of the radii of the target and

projectile, respectively.

Using the same setup as with Coulomb Excitation, where we are in a target centered

frame with the z-axis being the path of the projectile, we consider the case where v ' c. A

particle traveling at these high energies will be Lorentz contracted in the direction of motion

and can be described by the Liénard-Wiechert potential,

φ(r, t) =
γZe√

(x− b)2 + y2 + γ2(z − vt)2

where b is the impact parameter and the factor γ = (1 − v2/c2)−1/2 is the Lorentz factor

making the component of the electric field parallel to the direction of motion, +z, compact
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Figure 2.4. A relativistic charged projectile incident on a target with impact parameter
larger than the strong interaction radius. The transfer of virtual photons is shown (wavy
lines) coming from the Lorentz contracted i.e., pancake shaped, electromagnetic field.

and pancake like.

The above equation is the same electric potential field from our discussions on Lorenz

gauge. The vector potential field used for a spinless particle following a classical trajectory

is,

A(r, t) =
v

c
φ(r, t)

where the velocity vector v = vẑ. A multipole expansion can be made to the Liénard-

Wiechert potential in a similar way as was done in the previous section.

Knowing the electric and vector potential field equations we can easily obtain the
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associated electric and magnetic field equations from equations (2.6) and (2.7),

Ez = −
Zeγvt

(b2 + γ2v2t2)3/2

ET =
Zeγb

(b2 + γ2v2t2)3/2

BT =
v

c
⊗ ET , and Bz = 0

where the equations are separated by components parallel(tangent) to the direction of motion

and are denoted by subscript z(T).

For fast moving charged particles the interaction of the field on the target is short.

That is for γ � 1 , by inspection of the denominator, the time is approximately,

γvt = b → t =
b

γv
'

b

γc

This shows the fields to be similar to two pulses of plane-polarized radiation. In the case for

radiation along the z direction, this is an exact analogy. Radiation along the T direction is

only approximate due to the presence of a magnetic field, however, this does not appreciably

affect the dynamics of the system. At speeds v = c the effects of the Ez field are minimal

and allow us to add an additional field, B = vEz/c. A calculation of the energy incident per

unit area on the target due to an electromagnetic wave is now possible. Fourier transforming

the Poynting vector S = E⊗B, the intensity of radiation, I(ω, b), is calculated with energy

Eγ = ~ω.

The probability of nuclear transition is then given by the integral,

P (b) =

∫
I(ω, b)σγ(Eγ)dEγ =

∫
n(ω, b)σγ(Eγ)

dω

ω
(2.27)

where σ(Eγ) is the photonuclear cross-section for photons of energy Eγ and n(ω, b) is the
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number of equivalent photons in the electromagnetic wave at frequency ω and impact pa-

rameter b.

The term n(ω, b) in the above equation was first introduced by Enrico Fermi [19] who

proposed that the electromagnetic field created by a charged particle can be equated to a flux

of virtual photons. This idea of virtual photons mediating the electromagnetic interaction is

obviously an important part to the theory of electromagnetism both classically (low energy

scattering) and, as discussed above, quantum mechanically (QED).

Fermi’s work, published in 1924 by Zeitschrift für Physik and also, unconventionally,

published in Italian by Nuovo Cimento [20], was extended by Weizsäcer and Williams [21] to

be used at relativistic velocities. This was essentially restoring the Lorentz factors in their

proper places.

What remains to be shown is how this Lorentz contracted electromagnetic field inter-

acts with a target possessing charge.

2.4.1 Equivalent Photon Method

The electromagnetic field of a fast moving charged particle is Lorentz contracted in

the direction of motion. Considering only collisions where the nuclei do not overlap, i.e.,

impact parameter b > RP + RT , which is the case for Coulomb excitation, the probability

can be expressed in terms of the sum over all transition probabilities into a final state If .

The probability of Coulomb excitation is given as,

PC(b, Eγ) =
∑
f

∫
Pi→f (b)ρf (Eγ)dEγ (2.28)

where the sum is over all possible final states with the density of final states integrated over

all energy transfers Eγ = ~ω = Ef −Ei. The transition probabilities Pi→f are obtained from
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the transition amplitude calculated in equation (2.21) so that,

Pi→f (b) =
a2ε4

4

1

2Ii + 1

∑
Mi,Mf

∣∣aif ∣∣2
Using Wigner-Eckart theorem and respecting the orthogonality conditions of the Clebsh-

Gordon coefficients, which produce delta functions from the expansion coefficients between

angular momentum eigenstates, the transition probability can be expressed in the form,

Pi→f = Z2
1e

24π2a2ε2

~2
∑
πLM

B(πL, Ii → If )

(2L+ 1)3
∣∣S(πL,M)

∣∣2 (2.29)

again where π = E or M and B(πL, Ii → If ) is the reduced transition probability given as,

B(πL, Ii → If ) =
1

2Ii + 1

∑
Mi,Mf

∣∣〈IiMi|M(πL,M)|If ,Mf〉
∣∣2

=
1

2Ii + 1

∣∣∣〈Ii|∣∣M(πL)
∣∣ |If〉∣∣∣2

The transition probability given by equation (2.29) can now be plugged into equation

(2.28). If we use the idea proposed by Enrico Fermi to approximate the interaction of the

electric field as a flux of virtual photons as in equation (2.27) then the probability becomes,

PC(b, Eγ) =
∑
πL

PπL(b, Eγ) =
∑
πL

∫
dEγ
Eγ

nπL(b, Eγ)σ
πL
γ (Eγ)

where the sum is now over multipole states. The term nπL(b, Eγ) is the virtual photon

numbers and σπLγ is the photonuclear cross section for a given multipole.

2.4.2 Coupled-Channels

Coulomb Excitations are often dominated by transitions between the ground state

and a continuum resonance state. Excitation into these states are treated as exact in a

coupled-channels approach [22] where additional states are calculated as perturbations from
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the ground state.

In the coupled-channels approach an excitation into a continuum of states is called

a doorway state, or the particular entrance taken into the continuum. The ground state is

then coupled to the set of doorway states creating a coupling matrix. Amplitudes for such

excitations are given as,

α(n)(Eγ) = 〈φ(Eγ)|D(n)
LM〉

and can be used as an expansion of the ground state potential. Integrating over all en-

ergy separations ε = Eγ − En, where Eγ is the energy from the interaction and En is

the centroid energy of the resonance n. Taking, for example, the dominant E1 excitation

and summing over all magnetic quantum numbers the time-dependent transition amplitude,

equation (2.20), in the ground state is expressed as,

ȧ0(t) = −
i

~
∑
M

∫
dε〈φ(ε)|D(1)

1M〉〈D
(1)
1M |VE1,M(t)|0〉 a(1)ε,1M(t) exp

{
−i(E1 + ε)t/~

}

= −
i

~
∑
M

∫
dε α(n)(ε)V

(01)
M (t)a

(1)
ε,1M(t) exp

{
−i(E1 + ε)t/~

}
(2.30)

where the dominant resonance amplitude is given as,

d

dt
a
(1)
ε,1M(t) = − i

~

[
α(1)(ε) V

(01)
M (t)

]∗
exp

{
i(E1 + ε)t/~

}
(2.31)

Integrating (2.31) over time and using the result in equation (2.30) the result is,

da0
dt

(t) = − 1

~2
∑
M

V
(01)
M (t)

∫
dε
∣∣∣α(1)(ε)

∣∣∣2
×
∫ t

−∞
dt′
[
V

(01)
M (t′)

]∗
exp

{
− i
~

(E1 + ε)(t− t′)
}
a0(t

′)

where a
(1)
ε,1M(t = −∞) = 0 was used and the squared amplitude term

∣∣∣α(1)(ε)
∣∣∣2 is chosen

depending on the shape of the resonance.
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Chapter 3

NUCLEAR STRUCTURE

Nuclear physics is one of the largest areas of research and continues to be a significant

area of interest. Since its conception it has contributed to many fields including the field

of astrophysics, problems in energy generation, medical technology, archaeological carbon

dating, and even spawned the field of particle physics.

Early nuclear studies focused on the characterization of elements according to their

constituent particles i.e., protons, electrons, and later neutrons. With the discovery of the

neutron we had the final piece to a description of the nucleus, consistent with Einstein’s

mass-energy relation. With the neutrons discovery the energy contribution to the binding

of a nucleus was finally calculable.

A new look at the elements, tabulated according to the ratios of protons to neutrons,

was developed. From this point of view the binding energy, which apportions energy con-

tributed by the constituents of the nucleus expended to the confinement of the nucleons due

to the binding energy. The remaining energy constitutes the measured mass of the element.

The advent of this refined measurement to nuclear mass lead to questions apropos

of the mechanism behind the confinement of neutrons and more interestingly the protons.

Remembering the important relation from electrostatics, like charges repel, the protons

within a nucleus, being in close proximity to one another, must feel concurrently opposing

forces. These concurrent forces imposed on individual protons within the nucleus must be

overcome by a much larger attractive force for a nucleus to form. This “strong force”, which

opposes the repulsive force of the protons, binds nucleons together and is contained within

the description of the binding energy. However, its effective range of influence must be

shorter than the electromagnetic interaction since it is not observed outside the nucleus.

Hideki Yukawa, in 1935 proposed a ground breaking theory to explain the binding

of nucleons by the strong force [23]. Yukawa’s model of the strong force was analogous to
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the mediating photon model of the electromagnetic force where a low mass virtual particle

is exchanged between the nucleons effectively binding them together. A straightforward

calculation can be made to estimate this exchange. Using Heisenberg’s uncertainty relation,

∆E∆t > ~

which states that the uncertainty in time and energy must be greater than Planck’s constant.

Rearranging the above inequality for energy and multiplying both the top and bottom of

the fraction by c the speed of light we get,

∆E >
~c

c∆t
≈

~c

rS

where rS is the interaction distance of the strong force. Heisenberg’s energy time uncertainty

is valid for any “real particle”, however, quantum mechanics allows us to violate this inequal-

ity by restating the above inequality in a contrapositive way so that the relation reads, for

short time or length periods the energy must be less than or equal to some exchange energy

Eex so that,

Eex ≤
~c

rS

An estimation of the upper bound for the lowest energy exchange particle can be calculated

using some empirical data. Calculating the binding between the proton and neutron, which

minimizes the influence of the electromagnetic interaction, forming a deuteron. From ex-

periment the radius of the deuteron is, rD = 1.95 fm. We calculate the distance between

the centers of each nucleon by subtracting the proton and neutron radii, rp = 0.8 fm and

rn = 0.3 fm, from the diameter of the deuteron. Using ~c = 197 MeV·fm we get an exchange

energy of,

Eex ≤
~c

rS
≈

~c

2rD − rp − rn
= 140.7 MeV
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So the energy of an exchange particle necessary to bind a proton and neutron together

must not be greater than ≈ 140 MeV. This is similar to the result found by Yukawa and

corresponds to the lightest meson π0 = 135 MeV. We now see a similarity between QED

and the strong force. In QED the exchange of a virtual photon mediates the electromagnetic

interaction, this is analogous to result above where the exchange of a virtual pion mediates

the strong interaction. However, this is not the whole story since it was later found that the

pion is simply a consequence of a more fundamental theory of quarks, which are the building

blocks of hadrons.

It is now well known that all fundamental interactions, save for gravity, are due to

some exchange of virtual quanta. The advantage to using Coulomb excitation is that we can

exclude these internal interactions dominated by the strong force thereby simplifying our

calculations. We now consider an important excitation where a large number of constituent

nucleons are excited into a quasi-stable state. These excitations are highly dependent on the

number of nucleons, A, implying a dependence on the binding energy.

3.1 Giant Resonance

The large bulk nuclear response exhibited in nuclei with more than a few nucleons is known

as a Giant Resonance (GR). The GR phenomenon has been shown to be a fundamental

property of all nuclei [3,4,24] where the general features are; smooth transitions in the form,

width, and centroid energy correlating to a change in the mass number A. The width is small

compared to its excitation energy, and exhausts a large portion of the energy-weighted sum

rule.

GR excitations are sensitive to several variable parameters available to the experi-

menter. The first, and probably most obvious, would be the isotopes used in the reaction

(e.g. p+Pb, Pb+Pb, Ni+Au, . . . ). The energy of the collision and the characteristics of

the beam are then adjusted and selection of the scattering angle reveals the cross sections of

interest. The GR observed varies according to the excitation energies giving a cross section
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σ(Eγ), for excitation energy Eγ, which can be fit by a Lorentzian,

σ(Eγ) =
σ0E

2
γΓ

2

(E2
γ − E2

C)2 + E2
γΓ

2
(3.32)

for the Giant Dipole Resonance (GDR). The centroid energy, EC , is the most probable energy

of the resonance, e.g., ∼ 24 MeV for 16O and ∼ 13 MeV for 208Pb. The isotope excited into

a resonance determines; the value of σ0 which satisfies the sum rules, and the width Γ which

varies from ∼ 4 to 8 MeV. For different multipole excitations, (e.g., E1, E2, M1, M2, . . .)

the above parameters are adjusted accordingly.
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Figure 3.5. Example cross section for the GR in Lead-208.

In figure 3.5 a schematic for a typical photo-absorption cross section is given. At low

energies the system exhibits discrete states which are characterized by surface effects due to
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deformation, vibration, rotation, and a mixing of vibration and rotation. Around 8 MeV the

discrete states give way to a continuum of states with the GDR, a dominant feature of the

spectrum, appearing at around 8 MeV higher than where the continuum states begin.

These collective excitations involve an appreciable number of nucleons and are built

up from individual excitations from the ground state of the nucleus.

3.1.1 Classical models

Over the years several collective models have been developed to describe the bulk response

of nuclear matter. The progression of the theory from classical approximations to more

sophisticated many-body models has been long running. A typical classical model for the

GR phenomenon was first developed by Goldhaber and Teller [25] and later improved by

Steinwedel and Jensen [26].

Three possible explanations for the features which define a GR are:

• A restoring force between the displaced protons and neutrons exists which is inde-

pendent of the size of the nucleus. This possibility is discarded due to experimental

evidence which clearly indicates a dependence on the number of nucleons A.

• A difference between the proton and neutron densities within the nucleus. In this

situation the surface of the nucleus is not affected and the restoring force is proportional

to the gradient of the difference in density. This picture describes the Steinwedel-Jensen

model.

• Two spheres comprised of either protons or neutrons oscillate against one another.

This is a pure dipole mode picture with the overall density kept constant. This is the

picture taken in the Goldhaber-Teller model.

In the Goldhaber-Teller (GT) model a collection of protons, influenced by an electric

field realized as an impinging photon, takes the nucleus to an excited state. The major

feature of the GR phenomenon is of course the GDR and is described in the GT model as a
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collection of protons moving against a collection of neutrons with their relative oscillations

being opposite in phase to one another. This model allows for the collection of protons and

neutrons to interpenetrate while preserving their individual incompressibility. The interpre-

tation as two oscillating fluids will be important for our later look into the pygmy dipole

resonance.

The other interpretation developed by the Steinwedel-Jensen (SJ) model preserves the

total density of the nucleus by separating the proton and neutron densities such that,

ρA(r, t) = ρP (r, t) + ρN(r, t)

the variation in density is then introduced by the addition and subtraction of a fractional

density term δρ(r, t) and requiring that the number of particles is conserved,

∫
d3r δρ(r, t) = 0

A shift in the distribution of positive charge is the central idea behind both pictures of the

GDR developed by GT and SJ. Each model describes the phenomenon reasonably well with

the SJ giving an A dependence as A−1/3 which describes the experimental data better than

GT’s A−1/6 dependence. Each of these models takes a classical approach to this dynamic

quantum system. For a more complete picture one must include quantum mechanics.

Quantum mechanically describing the collective oscillations of many-particle systems

is an interesting and challenging problem in nuclear physics. In the days before computer

simulations, when quantum electrodynamics was first being developed, describing the dy-

namics of the wave functions for each individual nucleon inside of a nucleus was the stuff of

dreams. Simplifications to the model and exploiting the symmetries and bulk properties of

the system were necessary. Thus techniques such as mean field approximations where used

to reduce the degrees of freedom to a solvable problem.
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3.1.2 Microscopic Models

Although the classical models above describe the GDR reasonably well it is still neces-

sary to extend this into a microscopic picture. Several effective theories exist which describe

the GR on a microscopic level. Early attempts at calculations were developed based on the

linear response theory [31]. Nowadays, an effort is being undertaken to describe nuclear

collective motion with more elaborate models such as the time-dependent superfluid local

density approximation [32, 33]. Similarly, theoretical studies of the pygmy resonances have

been developed based on the improvements of the hydrodynamical model [34–36], and with

microscopic theories such as the random phase approximation (RPA) and its variants [37–40].

Sum Rules

It is often useful to estimate the photoabsorption cross section over every transition from

some initial state |i〉 → |f〉 to the possible final states. The estimate is found by the sum

rule for the system and is given in the form,

S(n)
i [F ] =

1

2

∑
f

(Ef − Ei)n
{∣∣〈f |F |i〉∣∣2 +

∣∣∣〈i|F †|f〉∣∣∣2}

The sum rules give a tool for calculating the sum of integral cross sections for real

photons over all possible final states.

3.2 Pygmy Dipole Resonance

Inherent to the majority of nuclei, excitation of the GR is a well investigated phe-

nomenon. As the ratio of neutrons to protons increases the distribution of protons and

neutrons begins to differ. Experiments which infer the radius of the nucleus typically involve

the measurement of elastically scattered particles from the target.

The standard ways of measuring the radius of nuclei are easily understood through
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classical scattering. To observe any reasonable detail of the nucleus the wavelength of the

projectile must be smaller than the target. Suppose we wish to measure the radius of 208Pb.

According to the radius formula,

R = R0A
1/3

where R0 = 1.2 − 1.25 fm, the radius of Lead 208 is RPb ' 7 fm, therefore the wavelength

of the projectile must be λ ≤ 2RPb ' 14 fm which corresponds to a projectile momentum

of p ≥ 89 MeV/c. High-energy electron experiments are able to achieve beam energies from

100 MeV to 1 GeV and are a good candidate for measuring the nuclear radius. Spectroscopic

analysis of only the elastically scattered electrons gives a good average estimate to the charge

radius of nuclei.

The electron projectiles are scattered by Coulomb interactions. This means that

electron scattering tells us about the distribution of charge, i.e., protons, in the nucleus.

Measurements of the distribution of all nuclear matter, which incorporates the protons and

the neutrons, requires us to overcome the Coulomb barrier. Alpha particle scattering is one

method where this is achieved. Using the classical scattering formula (2.16) developed by

Rutherford form his famous alpha particle scattering experiments. Increasing the energy of

the alpha projectiles the scattering cross section is well described by (2.16), however, at a

certain energy the predictions of Rutherford’s scattering formula are no longer accurate due

to the effects of the nuclear force.

The results of these measurements show that the root mean square (rms) charge radius

is almost the same as the rms nuclear radius differing by less than 1 fm. Since nuclei tend to

have more protons than neutrons this implies that the protons distribute themselves across

the nucleus leaving more neutrons to occupy the core.

When the number of neutrons become much larger than the number of protons the

neutrons are then pushed out, due to their occupation pressure, beyond the rms charge

radius creating a neutron rich layer. The difference between these two radii is called the

neutron skin, ∆RSkin = Rn −Rp.
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Figure 3.6. The dipole mode of the pygmy resonance in the Goldhaber-Teller (GT) and
Steinwedel-Jensen (SJ) modes.

In reactions which involve neutron-rich nuclei at low excitation energies, close to the

low energy tail of the GR, the excitation of the neutron skin against a symmetric nuclear

core is observed. This phenomenon is known as the Pygmy Dipole Resonance (PDR) and

can easily be visualized through the GT and SJ models as shown in figure 3.6.

Understanding the PDR is import since it can be used as a tool to constrain the

neutron skin thickness of these neutron-rich nuclei. How the PDR is related to the neutron

skin is through the fraction of the Energy Weighted Sum Rule (EWSR) exhausted by the

PDR [27].

Measurements of the neutron skin have far reaching implications including areas of

interest such as nuclear structure [28], neutron star structure [29], and heavy-ion collisions

[30].
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Chapter 4

PRESENTATION OF FINDINGS

(Published in Physics Letters B, Volume 757, 10 June 2016, Pages 553-557 )

As research on nuclear reactions with radioactive beams became the focus over the

last few decades, it became apparent that modifications of the linear response theory predict

a significant concentration in neutron-rich nuclei at low energies of the excitation strength

[41,42]. It is important to note that the amount of energy of the nuclear response exhausted

by the sum rule strongly depends on how the nuclear interaction, pairing, and other physical

phenomena are incorporated in the theory [37–42]. As an example, the E1 strength function

numerically calculated using the public code of Ref. [43], is given as

S(E) =
∑
ν

∣∣〈ν||OL| |0〉∣∣2 δ(E − Eν) (4.33)

where an RPA configuration space is defined in terms of delta-function states ν and the

operator OL is an electromagnetic operator. A smearing of 1 MeV of the fragmented strength

function is introduced which produces a continuous distribution, shown in Fig. 4.7 for

the E1 response in 68Ni. We used the option OL = jL(qr) in Eq. (4.33), where we take

q = 0.1fm−1 to be a representation of the momentum transfer. More details can be found

in Ref. [43]. In this case, the strength function has dimensions of MeV−1 and in the long-

wave approximation qr � 1 it is proportional to the usual response for electric multipole

operators. The calculation is performed for several Skyrme interactions, as shown in the

figure. The arrow shows the position of the expected pygmy dipole resonance. The results

presented in the literature, e.g. [37–42] show a greater response in the PDR energy range due

to interactions and adaptations in the model space. There is currently no clear prediction of

the exact location of the pygmy strength. It could be in the range of 7−12 MeV for medium

mass nuclei such as Ni isotopes. The amount of the sum rule exhausted by the pygmy
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Figure 4.7. Strength function for the E1 RPA response in 68Ni calculated with formalism
described in Ref. [43]. The calculation is performed for several Skyrme interactions, shown in
the figure inset. The arrow shows the location of the pygmy resonance. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article.)

resonance is also relatively unknown, although some models based on nuclear clustering can

reach up to 10% of the total strength [44].

Coulomb excitation of pygmy resonances is one of the effects overseen by the experi-

mental analysis of these reactions. The large excitation probability in Coulomb excitation at

small impact parameters leads to a strong coupling between the pygmy and giant resonances.

A manifestation of this coupling is seen as dynamical effects such as the modification to

transition probabilities and cross sections of the PDR. Previous observations of this coupling

effect are seen in the excitation of double giant dipole resonances (DGDR) [1, 45, 46]. The

experimental observation of the DGDR is a consequence of higher-order effects in relativis-
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tic Coulomb excitation arising due to the large excitation probabilities of giant resonances

in heavy ion collisions at small impact parameters. The dynamical coupling between the

usual giant resonances and the DGDR is very strong, as shown, e.g., in Ref. [22]. In the

present work this dynamical coupling effect on the excitation of the PDR is assessed using

the relativistic coupled channels (RCC) equations introduced in Ref. [47].

The S-matrix for state α given as, Sα(z, b), is obtained from the RCC equations [47]

iν
∂Sα(z, b)

∂z
=
∑
α′

〈α|MEL|α′〉Sα′(z, b)e−i(E
′
α−Eα)z/~ν , (4.34)

where ν is the projectile velocity andMEL is the electromagnetic operator for transitions by

the electric dipole (E1) and quadrupole (E2) modes connecting states α and α′. The states

must satisfy the intrinsic angular momenta and parity selection rules. The ground state is

denoted as |0〉 = |E0J0M0〉 and the excited states by |α〉 = |EαJαMα〉 where EJM are the

intrinsic energy and angular momentum quantum numbers. The electromagnetic operators,

in the long-wavelength approximation, are given by [47]

ME1m =

√
2π

3
ξY1m(ξ̂)

γZT e
2

(b2 + γ2z2)3/2


∓ b (if m = ±1)

√
2 z (if m = 0)

(4.35)

where ξ is the intrinsic coordinate of the excited nucleus and Ze is the charge of the nucleus

creating the interacting electromagnetic field (in our case, the target). The electromagnetic

operator for E2 transitions is [47]

ME2µ =

√
3π

10
ξ2Y2m(ξ̂)

γZT e
2

(b2 + γ2z2)5/2


b2 (if µ = ±2)

∓2γ2bz (if µ = ±1)√
2/3 (2γ2z2 − b2)z (if m = 0)

(4.36)

We note that the electromagnetic operator is expressed as MELm = fELm(r)OELm, where
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OELm = ξLYLm(ξ̂) is the usual electric operator, and fELm(r) is a function of the projectile-

target relative position r = (b, z).

Solutions to the coupled equations (4.34) are found by using Sα(z → −∞) = δα0.

For collisions at high energies and very forward angles, the cross sections for the transition

|0〉 → |α〉 are given by

dσα
dE

= 2πwα(E)

∫
db b exp[−2χ(b)]

∣∣Sα(z →∞, b)
∣∣2 , (4.37)

where wα(E) is the density of final states, b is the impact parameter in the collision, and

χ(b) is the eikonal absorption phase given by

χ(b) =
σNN
4π

∫
dq qρ1(q)ρ2(q)J0(qb) (4.38)

where σNN is the total nucleon–nucleon cross section, obtained from experiment, with

medium corrections added according to Refs. [48, 49]. The Fourier transform of the ground

state densities of the nuclei, ρi(q), is obtained from fitting to electron scattering experi-

ments [50] for 197Au and using Hartree–Fock–Bogoliubov calculations with the SLy4 interac-

tion for 68Ni. A reduction of the Coulomb excitation mechanism at small impact parameters,

first introduced in Ref. [51], is used to calculate reaction cross sections relevant to excitations

of the GDR and DGDR. To remain within the contexts of current experimental results we

neglect effects of nuclear excitations, and possible interferences which were subtracted in

experiments [52–54].

To facilitate our discussions we consider the excitation of 68Ni on 197Au and 208Pb

targets at 600 and 503 MeV/nucleon, respectively. These reactions have been experimentally

investigated in Refs. [52,53]. In the first experiment the pygmy dipole resonance was observed

at EPDR ' 11 MeV with a width of ΓPDR ' 1 MeV, for 68Ni and exhausted about 5% of

the Thomas–Reiche–Kuhn (TRK) energy-weighted sum rule. The excitation was identified

through the analysis of its decay product, gamma emission. The second experiment found
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the PDR centroid energy to be at 9.55 MeV, width a of 0.5 MeV and exhausting 2.8% of

the TRK sum rule. The PDR was identified by measuring the neutron decay channel of

the PDR. This studies focus will be on the effects of coupling between the different modes

of giant resonances with the PDR. Therefore, we will not take into consideration the decay

channels but restrict our analysis to the calculation of the excitation function dσ/dE.

A model is needed for including the bound and continuum discretized wavefunc-

tions in the matrix elements of 〈α|MEL|α′〉 in Eq. (4.34). To calculate the response

functions, dBEL/dE =
∑

spinswα′
∣∣〈α||OEL| |α′〉∣∣2, it is appropriate to use these wavefunc-

tions, with obvious consideration for summing over angular momentum coefficients. To

simplify calculations we assumed Lorentzian forms for the response functions dBEL/dE

and assign an appropriate fraction of the sum-rule based on current experimental values.

We then discretized the functions into energy bins to obtain the reduced matrix elements∣∣〈α||MEL| |α′〉
∣∣2 ∝ ∆Eχ(dBEL/dE)

∣∣
E=Eχ

, where Eχ = Eα′ − Eα. To keep everything in

terms of real numbers a phase convention is found for the reduced matrix elements. These

are then used, with proper care taken for the corresponding angular momentum coefficients,

in determining the matrix elements 〈α|MEL|α′〉 in Eq. (4.34) (see, e.g., Ref. [46]).

The Lorentzian functions are described by Eq. (3.32) with their respective centroid

energies EPDR for pygmy dipole resonances and EGDR (EGQR) for the isovector (isoscalar)

giant dipole (quadrupole) resonances. Their respective widths are denoted by ΓPDR, ΓGDR

and ΓGQR. The discretized strength function is subdivided into 35 energy bins centered

around each resonance. The PDR centroid energy EPDR = 11 MeV is chosen, consistent with

Refs. [52,53]. However, a full width at half maximum of 2 MeV was chosen, which is more in

line with theoretical calculations [35–42] than with the experimental data [52,53]. Our choice

to use the theoretical width was in essence made to better determine higher-order effects on

the modified tails of the PDR without changing the other aspects of the PDR appreciably.

For the major mode of the GR the (isovector) 1− giant dipole resonance (GDR) was given a

centroid energy and width of EGDR = 17.2 MeV and ΓGDR = 4.5 MeV, respectively. For the
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(isoscalar) 2+ giant quadrupole resonance (GQR) we take EGQR = 15.2 MeV and ΓGQR = 4.5

MeV. The centroid and width for the GQR are approximations based on the systematics of

GQR excitation in nickel isotopes [55] and are not experimental values. Looking at the total

number of channels involved in our calculation we have, 35× 3 + 35× 5 + 35× 5 + 1 = 456

which includes all magnetic substates plus an additional channel for the 0+ ground state. For

practical purposes, to reduce computational intensity, considering only the major dynamical

effects arising from the coupling of the PDR with the GQR via the dominant E1 interaction

at relativistic energies. A reduction by a factor of 2 is possible by implementing a coarser

binning of the PDR and GQR states introducing only a loss of accuracy at the level of 10%.

Calculations using all the channels above will converge to within 1%.

Figure 4.8. Coulomb excitation cross section as a function of the excitation energy of 600
MeV/nucleon 68Ni projectiles incident on 197Au targets. The filled circles represent the
calculations using first-order perturbation theory, while the filled squares are the results of
coupled-channel calculations.

In Fig. 4.8 we show, for 600 MeV/nucleon 68Ni projectiles incident on 197Au targets,
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the first-order Coulomb excitation cross sections as a function of the excitation energy for the

PDR and GQR separately. Calculations using first-order perturbation theory are denoted

by filled circles, while the filled squares represent the coupled-channel calculations. The

first-order Coulomb excitation cross sections, as shown in Ref. [?], can be obtained by means

of the relation

dσ

dE
=
∑
πL

NπL(E)

E
σ
(γ)
πL (E) (4.39)

where NπL are the virtual photon numbers of multipole πL and σ
(γ)
πL are the real photon cross

sections with multipolarity πL. The virtual photon numbers include the same absorption

coefficient as in Eq. (4.37) [51]. Summing over the relevant multipoles, here E1 and E2 stand

for 1− and 2+ excitations, respectively. The figure shows that the coupling between these

states has a visible impact on the energy dependence of the cross sections. According to the

Brink–Axel hypothesis, the excitation of a giant resonance on top of any other state in a

nucleus is possible [56,57]. Therefore, the couplings are a manifestation of (PDR⊗GQR)1− ,

(PDR⊗PDR)2+ , (PDR⊗GDR)2+ and (GDR⊗GQR)1− states which we investigate, as they

build up components of the PDR, GDR and GQR. Our findings suggest the importance for

the reliable extraction of the experimental strength of the PDR relative to the GDR.

The dynamical calculations show that both the strength and width of the PDR are

modified appreciably due to the coupling to the GQR. Fig. 4.8 shows separately that the

population of PDR and GQR states are modified. The 1− states in the GDR region are

affected very weakly and so are left out of the figure. In the high energy region the GDR

excitation dominates by a factor of 2–3 times that of the 2+ states. The important modifica-

tions in the excitation spectrum appear from the couplings PDR↔GQR↔PDR by E1 fields,

while couplings from PDR↔GDR↔PDR by E2 fields contribute very little to the 1− states

in the PDR energy region. In Fig. 4.8 we notice that the tails of the PDR, and to a lesser

extent those of the GQR, are appreciably modified. A small shift to the peaks is also seen,

although barely visible for the PDR, it is evident for the GQR. It is important to also keep

in mind that the strength and shape of the PDR will also be modified by the low energy
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tail of the GDR. For our case considered here, a GDR strength on the order of 3.8% lies

within the region of the PDR meaning that the PDR shape will only slightly be influenced

by this low energy tail. However, these effects have been considered in the experimental

analyses [52, 53]. In this work we are interested in the higher-order effects which have been

so far ignored.

Figure 4.9. Coulomb excitation cross section as a function of the excitation energy of 68Ni
projectiles incident on 197Au targets at two laboratory energies. The filled circles represent
the calculations using first-order perturbation theory, while the filled squares are the results
of coupled-channel calculations.

In Fig. 4.9 the energy region of the pygmy resonance has been singled out and we
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plot the results of our calculations for two different bombarding energies: 100 MeV/nucleon

and 2 GeV/nucleon, using the same notation as in Fig. 4.8. The coupling effects change

dramatically. For the lower energy interaction the influence of the giant resonances increases

appreciably for the response in the energy region of the PDR, while at the higher energy

collision this effect is much smaller and shows a slight tendency th decrease the PDR ex-

citation cross section. This is expected since for energies around 100 MeV/nucleon the E2

field is dominant, with an increase to the excitation of the GQR and consequently a strong

feedback to the PDR from subsequent E1 transitions.

Figure 4.10. Coulomb excitation cross sections of the PDR as a function of the bombard-
ing energy of 68Ni projectiles incident on 197Au targets. The filled circles represent the
calculations using first-order perturbation theory, while the filled squares are the results of
coupled-channel calculations.

The Coulomb excitation cross sections of the PDR as a function of the bombarding

energy of 68Ni projectiles incident on 197Au targets is given in Fig. 4.10. Calculations using

first-order perturbation theory are represented by the filled circles, while the filled squares
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are the results of our coupled-channel calculations. Its apparent that at lower energies

the deviation is more pronounced. At 600 MeV/nucleon the cross section for excitation of

the PDR changes from 80.9 mb obtained with the virtual photon method to 92.2 mb with

the coupled-channels calculation. A reflection of this effect in the extracted PDR strength

from the experimental data amounts to an appreciable change of 14%. This reduction is

approximately the same amount of the strength needed to reproduce the experimental data.

Calculations have also performed for 68Ni + 208Pb at 503 MeV/nucleon, corresponding

to the experiment of Ref. [53]. To first-order, the Coulomb excitation cross section for the

PDR in 68Ni is found to be 58.3 mb, with the inclusion of the effects of coupling to the giant

resonances, the cross section increases to 71.2 mb, i.e., an important 18.1% correction. The

dipole polarizability is defined as

αD =
~c
2π2

∫
dE

σ(E)

E2
(4.40)

where σ(E) is the photo-absorption cross section. From Ref. [53] the extracted experimental

value of αD is 3.40 fm3 while in order to reproduce the experimental cross section with

our dynamical calculations we have αD = 3.16 fm3, a small but non-negligible correction.

Assuming a linear relationship between the dipole polarizability and the neutron skin [58], a

reduction to the neutron skin from 0.17 fm, as reported in Ref. [53], to 0.16 fm is expected.

A correction such as this lies within the experimental uncertainty of 7% for αD and 0.02

fm for the neutron skin [53]. However, consideration of the coupling effects should be taken

into account in the future as more precise data becomes available, in particular, if the

measurement is performed at lower bombarding energies.
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Chapter 5

CONCLUSIONS

We conclude that probabilities of giant resonances due to the large Coulomb excitation

in heavy ion collisions at energies around and above 100 MeV/nucleon, the excitation of the

PDR is also modified due to the coupling between the 1− and 2+ states. Our calculations,

utilizing a Lorentz-like distribution for simplicity of the electromagnetic response and sum-

rules, are carried out without a detailed nuclear structure model. Future investigations

carried out for nearly “ab-initio” calculations based on a microscopic theory, coupled with a

proper reaction mechanism, might be possible. A known alternative using individual states

calculated by RPA or other microscopic models together with higher order perturbation

theory, have already used in previous studies of multiphonon resonances [59]. Finally, the use

of an advanced mean-field time-dependent method such as that developed in Ref. [33] is also

available. Deriving rather accurate dipole strength distributions from the electromagnetic

excitation of the PDR is mainly of relevance to the extraction of the dipole polarizability [53],

which is an important observable for constraining the symmetry energy, and is thus also

important for better understanding the properties of neutron-stars. A particularly important

aspect for the polarizability is the low-energy response due to the inverse weighting with

energy. This opens exciting possibilities for studies of the pygmy resonance in nuclei and its

use as a tool for applications in nuclear astrophysics.
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