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A computer code for quasiparticle random phase approximation – QRPA and projected quasiparticle
random phase approximation – PQRPA models of nuclear structure is explained in details. The residual
interaction is approximated by a simple δ-force. An important application of the code consists in
evaluating nuclear matrix elements involved in neutrino–nucleus reactions. As an example, cross sections
for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the
description of other nuclear and weak decay processes are also discussed.

Program summary

Title of program: QRAP (Quasiparticle RAndom Phase approximation)
Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines
Operating systems: WINDOWS or UNIX
Program language used: Fortran-77
Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space
No. of lines in distributed program, including test data, etc.: ∼ 8000
No. of bytes in distributed program, including test data, etc.: ∼ 256 kB
Distribution format: tar.gz
Nature of physical problem: The program calculates neutrino– and antineutrino–nucleus cross sections as
a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear
structure models.
Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even–even
nuclei. The nuclear matrix elements for the neutrino–nucleus interaction are treated as the beta inverse
reaction of odd–odd nuclei as function of the transfer momentum.
Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The new age of the physics beyond the standard model of elec-
troweak interaction has as one of the most promising pathways
the search of neutrino oscillations. Several experimental efforts
are oriented to find the neutrino masses and the related oscil-
lations involving atmospheric, solar, reactor and accelerator neu-
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trinos [1–5]. Since neutrinos interact so weakly with matter, they
bring information on the dynamics of supernova collapse and pos-
terior explosion as well as on the synthesis of heavy nuclei [6,7].

The detection signal of neutrinos is measured trough the weak
interaction of incoming neutrinos with the nuclei present in, e.g., a
liquid scintillator detector, as well as with the surrounding block-
house detector shield. The flux-averaged ν-nucleus cross sections
are the measured observables. Recently, Ref. [8] has studied the ef-
fect of neutrino oscillations on the expected supernova neutrino
signal with the LVD detector, through their interactions with pro-
tons and carbon nuclei in a liquid scintillator and with iron nuclei
in the support structure.

Charged and neutral νe-nucleus cross sections on 12C (liquid
scintillator) as well as on 56Fe (detector surrounding shield) were
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measured by the KARMEN Collaboration [9,10]. Other experiments
such as LAMPF [11,12] and LSND [13,14] have also used 12C to
search for neutrino oscillations and to measure neutrino–nucleus
cross sections. Furthermore, future experiments will use 12C as liq-
uid scintillator, such as in the spallation neutron source (SNS) at
Oak Ridge National Laboratory (ORNL) [15], or in the LVD (Large
Volume Detector) experiment [8].

On the other hand, the cross sections νe(ν̄e)–56Fe are impor-
tant to test the ability of nuclear models in explaining reactions
on nuclei with masses around iron, which play an important role
in supernova collapse [16]. The iron is used as material detector in
experiments on neutrino oscillations such as MINOS [17], whereas
future experiments, such as SNS at ORNL [15] plan to use the same
material.

There have been great efforts on nuclear structure models to
describe consistently semileptonic weak processes with 12C such
as RPA-like models. A brief summary on the different models em-
ployed for 12C is sketched in Ref. [18].

The puzzle with the Random Phase Approximation (RPA) and
the quasiparticle RPA (QRPA), when applied to the weak observ-
ables in the triad {12B, 12C, 12N}, is well known. That is, to get
agreement with data for the ground state triplet T = 1 (β±-decays,
μ-capture, and the exclusive 12C(νe, e−)12N reaction) the contin-
uum RPA (CRPA) calculations of Kolbe, Langanke, and Krewald [19]
needed to be rescaled by a reduction factor ∼= 4. The reason for
such a large discrepancy is very simple: within the RPA the tran-
sitions 12C → 12N(1+

1 ) and 12C → 12B(1+
1 ) are engendered mostly

by the particle–hole excitation p3/2 → p1/2, what is physically in-
correct. In fact, since late 1980’s we know from several hadronic
charge-exchange reaction measurements, and the consecutive Shell
Model (SM) calculations, that the excitations p3/2 → p3/2, p1/2 →
p1/2, and p1/2 → p3/2 participate quite significantly in these pro-
cesses (see, for instance, [20, Table I]). It is the involvement of
these configurations that brings about the necessary quenching of
the Gamow–Teller (GT) resonances and β-decay rates. To make
them come into play it is mandatory to open the p3/2 shell by
means of pairing correlations, which is done within both the SM
and the QRPA. But, a new problem emerges in the application of
the QRPA to 12C, as first observed by Volpe et al. [21] who noted
that within this approach the lowest state in 12N irremediable
turned out not to be the most collective one. As a consequence
the QRPA also fails in accounting for the exclusive processes to the
isospin triplet T = 1. Soon after it was shown [22–24] that the ori-
gin of this difficulty arises from the degeneracy among the p1/2
and p3/2 quasiparticle energies (both for protons and neutrons),
which is inherent to the non-conservation of particle number.
Therefore, for a physically sound description of the weak processes
among the A = 12 iso-triplet it is imperative to use the SM or the
number projected QRPA (PQRPA).

The QRAP code is based on Refs. [22–24], where a new formal-
ism for neutrino–nucleus scattering has been developed, and the
PQRPA is used as the nuclear model framework. The residual in-
teraction was done with the simple δ-force, which has been used
extensively in the literature to describe the single and double beta
decays [25–30].

Before proceeding we address briefly on the genesis of the
QRPA and PQRPA in a manner appropriate in the present context.
Although this is not a topic of central interest for the application-
oriented computer code, it belongs to the physics background.
The neutron–proton QRPA was developed in 1967 by Hableib and
Sorensen [31] in order to account for the hindrance of the al-
lowed β-transitions. Almost 20 years later, when Vogel and Zirn-
bauer [32] and Cha [33] discovered the importance of the particle–
particle force in the S = 1, T = 0 channel, the QRPA became to
be the most frequently used nuclear structure method for evaluat-
ing double beta (ββ) rates. It was quickly realized, however, that a

small change in the particle–particle interaction strength caused a
large change in the lifetimes and eventually the breakdown (called
a “collapse”) of the entire method. Later on several modifications
of the QRPA were proposed to make it more reliable. One of these
was the charge-exchange PQRPA, which has been formulated to
evade the disadvantages inherent in the non-conservation of parti-
cle number, and was derived from the time-dependent variational
principle [29]. But, the PQRPA did not yield substantially different
result from the plain QRPA, and was unable to avoid the collapse in
the study the two-neutrino ββ-decay in 76Ge. As a matter of fact,
the problem of the QRPA collapse has not yet been settled down,
in spite of enormous effort invested for this purpose by many nu-
clear physicists (compare, for instance, Fig. 1 from Ref. [29] with
Fig. 5 from a recent work of Yousef et al. [34]).

However, the PQRPA turned out to be quite important for the
description of relatively light nuclei such as 12C. For example, the
employment of PQRPA for the inclusive 12C(νe, e−)12N cross sec-
tion, instead of the continuum RPA (CRPA) used by the LSND Col-
laboration in the analysis of νμ → νe oscillations of the 1993–1995
data sample, leads to an increased oscillation probability [24].

The PQRPA was recently also used to calculate the 56Fe(νe, e−)-
56Co cross section [35]. A comparison between the QRPA and
PQRPA for the same interaction and employing the same model
space shows that the projection procedure could be important for
medium mass nuclei. Moreover, several approximations such as: i)
Hybrid Model (HM) [36], ii) QRPA with Skyrme interaction [37], iii)
relativistic QRPA (RQRPA) [38], and iv) QRPA and PQRPA with the
δ-force [35] yield different results for the neutrino cross section as
a function of the neutrino energy. It is a hard task to find the ori-
gin for the differences, mainly because these models are not using
the same interaction and/or the same single-particle configuration
space, carrying different types of correlations in each case.

The cross sections for charged- and neutral-current neutrino-
induced reactions on the iron isotopes 52–60Fe were also evaluated
within the HM for various supernova neutrino spectra [39]. Here,
large-scale SM calculations were used for the GT-like contributions,
while transitions for other multipoles are based on the RPA. More
precisely, the authors scale the SM cross sections using the ratios
obtained from the RPA calculations with and without this depen-
dence of the multipole operator. The reason for such a procedure
is twofold: i) the limitation of the SM to account for momentum-
transfer dependence of the GT operator, and ii) the lack of pairing
correlations in the RPA. It should be also mentioned that SM calcu-
lations of inelastic neutral-current neutrino–nucleus cross sections
in medium-mass nuclei, present in supernova environment, have
been constrained by the highly precise data on the magnetic dipole
strength distributions for the nuclei 50Ti, 52Cr, and 54Fe, which are
dominated by spin–isospin flipping (GT-like) contributions [40]. In
spite of the agreement between data and calculations it was neces-
sary to consider also here the effects of finite momentum transfer
what was done via the RPA. Briefly, the HM is neither fish nor
fowl, and a comparison of the results from Refs. [39,40] with self-
consistent calculations, such as the QRPA, PQRPA and RQRPA, could
be enlightening.

This brief introduction shows: 1) the importance of neutrino–
nucleus cross sections for astrophysical purposes, and 2) that these
cross sections are strongly correlated with the nuclear structure
model employed. The QRAP code, with a simple residual inter-
action, is able to access the sources of these problems and it
can calculate several weak interaction processes mentioned above.
Needless to stress that this code can be easily adapted for the eval-
uation of ββ-decays.

The write-up is organized as follows. In Section 2 we make
a short survey of the theoretical description of weak interaction
processes, with emphasis on the formulation implemented in this
numerical code. In Section 3 we describe the QRPA, and PQRPA for-
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malisms, making explicit the differences among them. In Section 4
we show how the code is organized, how to make an input and
how to understand the output. Section 5 explains the role of each
subroutine of the code. Finally, Section 6 proposes a few cases to
practice with the code.

2. Weak interacting processes

In this section we give a brief summary of the main formulae
developed in Refs. [18,23] for:

• neutrino scattering (NS)

ν� + (Z , A) → (Z + 1, N − 1) + �−,

• antineutrino scattering (AS)

ν̄� + (Z , A) → (Z − 1, N + 1) + �+,

• muon capture (MC) rate

μ− + (Z , A) → (Z − 1, N − 1) + νμ,

where � = e,μ. The comparison with other formalisms [41–43]
can be found is in just mention works.

The weak Hamiltonian is expressed in the form

HW (r) = G√
2

Jαlαe−ir·k, (2.1)

where G = (3.04545±0.00006)×10−12 is the Fermi coupling con-
stant (in natural units),

Jα ≡ (J, i J∅)

= iγ4

[
gV γα − gM

2M
σαβkβ + g Aγαγ5 + i

gP

m�

kαγ5

]
, (2.2)

is the hadronic current operator,1 and

lα(q, Eν) ≡ (l, il∅) = −ius� (p, E�)γα(1 + γ5)usν , (2.3)

is the plane wave approximation for the matrix element of the lep-
tonic current in the case of neutrino reactions, with p� ≡ {p, iE�}
and qν ≡ {q, iEν} being, respectively, the lepton and the neutrino
momenta.

For the sake of convenience we will use spherical coordinates
(m = −1,0,+1) for the three-vectors, and the Walecka’s notation
[42], with the Euclidean metric, for four-vectors, i.e., x = {x, x4 =
ix∅}. The only difference is that we substitute Walecka’s indices
(0,3) by our indices (∅, 0), i.e. we use the index ∅ for the temporal
component and the index 0 for the third spherical component.

The quantity

k = Pi − P f ≡ {k, ik∅}, (2.4)

is the momentum transfer, where Pi and P f are momenta of the
initial and final nucleus, M is the nucleon mass, m� is the mass
of the charged lepton, and gV , g A , gM and gP are, respectively,
the vector, axial-vector, weak-magnetism and pseudoscalar effec-
tive dimensionless coupling constants. Their numerical values are:

gV = 1; g A = 1.26;
gM = κp − κn = 3.70; gP = g A

2Mm�

k2 + m2
π

. (2.5)

1 To avoid confusion, we will be using roman fonts (M,m) for masses and math
italic fonts (M,m) for azimuthal quantum numbers.

In the numerical calculations we use an effective axial-vector cou-
pling g A = 1 [44].

The finite nuclear size (FNS) effect is incorporated via the dipole
form factor with a cutoff Λ = 850 MeV, i.e.,

g → g

(
Λ2

Λ2 + k2

)2

. (2.6)

To use (2.1) with the non-relativistic nuclear wave functions,
the Foldy–Wouthuysen transformation has to be performed on the
hadronic current (2.2). When the velocity-dependent terms are in-
cluded this yields [45]:

J∅ = gV + (gA + gP1)σ · k̂ − gAσ · v,

J = −gAσ − igWσ × k̂ − gVk̂ + gP2(σ · k̂)k̂ + gVv, (2.7)

where k̂ = k/κ , κ ≡ |k|, and v ≡ −i∇/M is the velocity operator,
acting on the nuclear wave functions. The following short notation

gV = gV
κ

2M
; gA = gA

κ

2M
; gW = (gV + gM)

κ

2M
,

gP1 = gP
κ

2M

q∅
m�

; gP2 = gP
κ

2M

κ

m�

, (2.8)

has also been introduced.
In performing the multipole expansion of the nuclear operators

Oα ≡ (O, O ∅) = Jαe−ik·r, (2.9)

it is convenient:

1) to take the momentum k to be along the z axis, i.e.,

e−ik·r =
∑

L

i−L
√

4π(2L + 1) jL(ρ)YL0(r̂),

=
∑

J

i−J
√

4π(2J + 1) jJ(ρ)YJ0(r̂), (2.10)

where ρ = κr, and
2) to introduce the operators OαJ , defined as

Oα ≡ (O, O ∅) = √
4π
∑

J

i−J
√

2J + 1OαJ. (2.11)

Thus,

O∅J = jJ(ρ)YJ0(r̂) J∅,
OmJ =

∑
L

iJ−L FmLJ jL(ρ)
[
YL(r̂) ⊗ J

]
J, (2.12)

where the geometrical factors

FmJL ≡ (−)m+J
√

(2L + 1)

(
L 1 J
0 −m m

)
, (2.13)

are listed in Table I of Ref. [23].
Explicitly, from (2.7)

O ∅J = gV MV
J + ig AMA

J + i(gA + gP1)MA
0J, (2.14)

O mJ = i(δm0 gP2 − gA + mgW)MA
mJ

+ gV MV
mJ − δm0 gVMV

J . (2.15)

The elementary operators are given by

MV
J = jJ(ρ)YJ(r̂),

MA
J = M−1 jJ(ρ)YJ(r̂)(σ · ∇),

MA
mJ =

∑
L�0

iJ−L−1FmLJ jL(ρ)
[
YL(r̂) ⊗ σ

]
J,

MV
mJ = M−1

∑
L�0

iJ−L−1 FmLJ jL(ρ)
[
YL(r̂) ⊗ ∇]J. (2.16)
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Here we make use of the conserved vector current (CVC). From
(2.14), (2.15), and [46, Eqs. (10.45) and (9.7)]

k · OV = κ O V
0 = k∅ O V

∅ (2.17)

which yields

gV MV
0J − gVMV

J = k∅
κ

gV MV
J . (2.18)

Therefore, from (2.15)

OmJ = i(δm0 gP2 − gA + mgW)MA
mJ

+ 2|m|gVMV
mJ + δm0

k∅
κ

gVMV
J . (2.19)

The elementary operators MV
J , MA

J , MA
0J and MV

0J are real,
but MA±1J and MV±1J are not, and it is convenient to put in evi-
dence their real and imaginary parts, expressing them as

M±1J = MR
1J ± iMI

1J (2.20)

with MR
1J , and MI

1J arising, respectively, from the terms in (2.16)
with L = J ± 1, and L = J. Note that F±1JJ = ∓1/

√
2.

It is also convenient to separate the elementary operators into:

• natural parity (NP) (π = (−)J): MV
J , MA,I

1J , and MV ,R
1J , and

• unnatural parity (UP) (π = (−)J+1): MA
J , MV ,I

1J , MA
0J , and

MA,R
1J .

The operators OαJ ≡ (O∅J,OmJ) can be express as a sum of real
and imaginary operators, i.e., OαJ = OR

αJ + iOI
αJ , with OR

αJ (OI
αJ)

being an NP (UP) operator. This is a very important finding because
it implies that OR

αJ and OI
αJ do not contribute simultaneously, and,

therefore, one always can deal only with real operators.
In summary, natural and unnatural parity operators are, respec-

tively:

OR
∅J = gV MV

J ,

OR
0J = k∅

κ
gVMV

J ,

OR
m �=0J = (mgA − gW)MA,I

1J + gV MV ,R
1J , (2.21)

and

OI
∅J = g AMA

J + (gA + gP1)MA
0J,

OI
0J = (gP2 − gA)MA

0J,

OI
m �=0J = (−gA + mgW)MA,R

1J + gV MV ,I
1J . (2.22)

2.1. Neutrino–nucleus cross section

For the neutrino–nucleus reaction, the momentum transfer is
k = p� − qν , and the corresponding cross section reads

σ(E�, J f ) = |p�|E�

2π
F (Z ± 1, E�)

1∫
−1

d(cos θ)Tσ (q, J f ), (2.23)

where F (Z ± 1, E�) is the Fermi function (Z + 1, for neutrino, and
Z − 1, for antineutrino), θ ≡ q̂ · p̂ is the angle between the incident
neutrino and ejected lepton, and the transition amplitude is

Tσ (κ, J f ) = 1

2 J i + 1

∑
s�,sν

∑
Mi ,M f

∣∣〈 J f M f |HW | J i Mi〉
∣∣2. (2.24)

After expressing the spatial part of the lepton traces Lαβ in spher-
ical coordinates, and applying the Wigner–Eckart theorem, one can
cast the transition amplitude in the compact form [23]

Tσ (κ, J f ) = 4πG2

2 J i + 1

∑
J

[∣∣〈 J f ||O∅J|| J i〉
∣∣2L∅

+
∑

m=0±1

∣∣〈 J f ||OmJ|| J i〉
∣∣2Lm

− 2�(〈 J f ||O∅J|| J i〉〈 J f ||O0J|| J i〉
)
L∅0

]
. (2.25)

The explicit expressions for the traces L∅ ≡ L∅∅ , Lm ≡ Lmm , and
L∅0 are [23]

L∅∅ = 1 + |p| cos θ

E�

,

L∅0 =
(

q0

Eν
+ p0

E�

)
,

L0 = 1 + 2q0 p0

E�Eν
− |p| cos θ

E�

,

L±1 = 1 − q0 p0

E�Eν
±
(

q0

Eν
− p0

E�

)
S1, (2.26)

with

q0 = k̂ · q = Eν(|p| cos θ − Eν)

κ
,

p0 = k̂ · p = |p|(|p| − Eν cos θ)

κ
, (2.27)

being the z-components of the neutrino and lepton momenta, and
S1 = ±1 for NS and AS, respectively.

2.2. μ-Capture rates

The muon capture transition amplitude TMC( J f ) can be derived
from the result (2.25) for the neutrino–nucleus reaction amplitude,
by keeping in mind that: i) the roles of p and q are interchanged
within the matrix elements of the leptonic current, which makes
that in (2.26) S1 → −1, ii) the momentum transfer turns out to
be k = q − p, and therefore the signs on the right-hand sides of
(q0, p0) have to be changed, and iii) the threshold values (p → 0 :
q → k,k∅ → Eν − m�) must be used for the lepton traces. All this
yields q0 = Eν , p0 = 0, and

L∅∅ = L∅0 = L0 = 1, L1 = 0, L−1 = 2. (2.28)

Instead of summing over the initial lepton spins s� , as done in
(2.24), one has now to average over the same quantum number.
We get

Λ( J f ) = E2
ν

2π
|φ1S |2TMC( J f ), (2.29)

where φ1S is the muonic bound state wave function evaluated at
the origin, and Eν = mμ − (Mn − Mp) − Eμ

B − E f + Ei , where Eμ
B is

the binding energy of the muon in the 1S orbit. Thus from (2.25)
and (2.28)

Tσ (κ, J f ) = 4πG2

2 J i + 1

∑
J

[∣∣〈 J f ||O∅J − O0J|| J i〉
∣∣2

+ 2
∣∣〈 J f ||O−1J|| J i〉

∣∣2]. (2.30)

In the case of MC it is convenient to rewrite the effective cou-
pling constants (2.8) as
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gV = gV
Eν

2M
; gA = gA

Eν

2M
;

gW = (gV + gM)
Eν

2M
; gP = gP

Eν

2M
, (2.31)

where gP = gP2 − gP1.2

Thus, natural and unnatural parity operators are now, respec-
tively:

OR
∅J − OR

0J =
(

gV − k∅
κ

gV

)
MV

J = gV
mμ

Eν
MV

J ,

OR−1J = −(gA + gW)MA,I
1J + gV MV ,R

1J , (2.32)

and

OI
∅J − OI

0J = g AMA
J + (gA + gA − gP)MA

0J,

OI−1J = −(gA + gW)MA,R
1J − gV MV ,I

1J . (2.33)

3. Nuclear structure calculation

3.1. PQRPA

The PQRPA for charge-exchange excitations was derived from
the time-dependent variational principle in Ref. [29]. In the same
reference is also described in details the projected Barden–Cooper–
Schiffer (PBCS) approximation. Basically one employs the number
projection operators P̂N on the |BCS〉 state. That is: P̂0 = P̂ Z P̂ N
for a ground state with Z protons and N neutrons, and P̂μ =
P̂ Z+μ P̂ N−μ , with μ = ±1, for excited states in nuclei with Z + μ
protons and N − μ neutrons. In this section we give a brief de-
scription of both the PBCS and PQRPA approximations.

The PBCS gap equations are

2ēkuk vk − �k
(
u2

k − v2
k

)= 0, (3.1)

where

�k = −1

2

∑
k′

(2 jk′ + 1)1/2

(2 jk + 1)1/2
uk′ vk′G

(
kkk′k′;0

) I Z−2(kk′)
I Z

, (3.2)

are the pairing gaps, and

ēk = ek
I Z−2(k)

I Z
+
∑

k′

(2 jk′ + 1)1/2

(2 jk + 1)1/2
v2

k′

× F
(
kkk′k′;0

) I Z−4(kk′)
I Z

+ �ek, (3.3)

are the dressed single-particle energies, where

I K (k1k2 · · ·kn) = 1

2π i

∮
dz

zK+1
σk1 · · ·σkn

×
∏

k

(
u2

k + z2 v2
k

) jk+1/2;

σ−1
k = u2

k + z2
k v2

k , (3.4)

are the PBCS number projection integrals. The PBCS correction
term �ek can be found in Ref. [29], G(kkk′k′;0), and F(kkk′k′;0)

stand for the usual proton or neutron particle–particle (pp), and
particle–hole (ph) matrix elements of the residual interaction V ,
i.e.,

G(klmn; J) = 〈kl; J |V |mn; J〉,
F (klmn; J) = 〈kl−1; J |V |mn−1; J 〉. (3.5)

2 Note that there is a misprint in Eq. (2.41) of Ref. [23]. Also in Eq. (2.42) of the
same reference gP1 should read gP.

Note that these relations are valid for both identical and non-
identical particles.

The forward-going (Xμ), and backward-going (Yμ) PQRPA am-
plitudes are obtained by solving the RPA equations(

Aμ B
−B∗ −A∗−μ

)(
Xμ

Yμ

)
= ωμ

(
Xμ

Yμ

)
, (3.6)

with the PQRPA matrices defined as:

Aμ

(
pn, p′n′; J

)
= ω0

μδpn,p′n′ + N−1/2
μ (pn)N−1/2

μ

(
p′n′)

×
{[

up vnup′ vn′ I Z−1+μ
(

pp′)I N−3−μ
(
nn′)

+ v pun v p′ un′ I Z−3+μ
(

pp′)I N−1−μ
(
nn′)]F(pn, p′n′; J

)
+ [upunup′ un′ I Z−1+μ

(
pp′)I N−1−μ

(
nn′)

+ v p vn v p′ vn′ I Z−3+μ
(

pp′)I N−3−μ
(
nn′)]G(pn, p′n′; J

)}
,

B
(

pn, p′n′; J
)

= N−1/2
μ (pn)N−1/2

−μ

(
p′n′)I Z−2(pp′)I N−2(nn′)

× [(v punup′ vn′ + up vn v p′ un′)F
(

pn, p′n′; J
)

+ (upun v p′ vn′ + v p vnup′ un′)G
(

pn, p′n′; J
)]

, (3.7)

where

ω0
μ = ε

Z−1+μ
p + ε

N−1−μ
n , (3.8)

are the unperturbed energies,

Nμ(pn) = I Z−1+μ(p)I N−1−μ(n), (3.9)

are the norms,

εK
k = R K

0 (k) + R K
11(kk)

I K (k)
− R K

0

I K
, (3.10)

are the projected quasiparticle energies, and the quantities R K are
defined as [29]

R K
0 (k) =

∑
k1

(2 jk1 + 1)v2
k1

ek1 I K−2(kk1)

+ 1

4

∑
k1k2

(2 jk1 + 1)1/2(2 jk2 + 1)1/2

× [v2
k1

v2
k2

F(k1k1k2k2;0)I K−4(k1k2k)

+ uk1 vk1 uk2 vk2 G(k1k1k2k2;0)I K−2(k1k2k)
]
,

R K
11(kk) = ek

[
u2

k I K (kk) − v2
k I K−2(kk)

]
+
∑
k1

(2 jk1 + 1)1/2

(2 jk + 1)1/2

{
v2

k1
F(k1k1kk;0)

× [u2
k I K−2(k1kk) − v2

k I K−4(k1kk)
]

− uk1 vk1 uk vkG(k1k1kk;0)I K−2(k1kk)
}
. (3.11)

Both positive and negative solutions are physically meaningful.
For μ = ±1 the positive solutions describe excitations in the (Z ±
1, N ∓ 1) nuclei, while the negative energy solutions represent the
positive energy excitations in the (Z ∓ 1, N ± 1). Thus only one
RPA equation has to be solved, either for μ = +1, or for μ = −1,
to describe the excitations to the Z ± 1, N ∓ 1 nuclei. This is well-
known feature of the charge-exchange modes [47–50].

Let us be more specific, and take advantage of the index f to la-
bel different final states | Jπf 〉 with same spin and parity. Evidently,
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f will run from 1 up the total number fmax of two-quasiparticle
configurations |pn Jπ 〉. Moreover, the eigenvalue problem (3.6) has
2 fmax solutions, and we will use the index F to label them. Thus,
if μ = +1 one has:

• for ω+1( J F ) > 0 (1 < F � fmax):

ω+1( J f ) = ω+1( J F ),

X+1(pn J f ) = X+1(pn J F ),

Y+1(pn J f ) = Y+1(pn J F ); (3.12)

• for ω+1( J F ) < 0 ( fmax < F � 2 fmax):

ω−1( J f ) = −ω+1( J F ),

X−1(pn J f ) = Y ∗+1(pn J F ),

Y−1(pn J f ) = X∗+1(pn J F ). (3.13)

Finally, to store the eigenvalues and eigenfunctions it is convenient
to define the index F as

F =
{

f , for F � fmax;
2 fmax − f + 1, for F > fmax.

(3.14)

3.2. QRPA

The usual gap equations are obtained from Eqs. (3.6)–(3.7) by:

1. Making the replacement ek → ek −λk , with λk being the chem-
ical potential, and taking the limit I K → 1. That is, Eq. (3.1)
remains as it is, but instead of (3.2) and (3.3) one has now

�k = −1

2

∑
k′

(2 jk′ + 1)1/2

(2 jk + 1)1/2
uk′ vk′G

(
kkk′k′;0

)
, (3.15)

and

ēk = ek − λk +
∑

k′

(2 jk′ + 1)1/2

(2 jk + 1)1/2
v2

k′F
(
kkk′k′;0

)
. (3.16)

2. Impose the subsidiary conditions

Z =
∑

jp

(2 jp + 1)2 v2
jp

, N =
∑

jn

(2 jn + 1)2 v2
jn
, (3.17)

as the number of particles is not any more a good quantum
number.

In this way the usual BCS gap equations read

2(ek − λt)uk vk = (u2
k − v2

k

)
�k. (3.18)

This equation, together with the normalization condition u2
k + v2

k= 1, has as solution the occupation probabilities (for example, from
Chapter I of Rowe [47])

u2
k = 1

2

(
1 + ek − λk

Ek

)
, v2

k = 1

2

(
1 − ek − λk

Ek

)
, (3.19)

which depend on the quasiparticle energies

Ek =
√

(ek − λk)
2 + �2

k , (3.20)

and the pairing gaps

�k = −1

2

∑
k′

(2 jk′ + 1)1/2

(2 jk + 1)1/2
uk′ vk′G

(
kkk′k′;0

)
. (3.21)

The QRPA equations are recovered from (3.6) by i) dropping the
index μ, ii) taking the limit I K → 1, and iii) substituting the un-
perturbed PBCS energies by the BCS energies relative to the Fermi
level, defined by equation

E(±)

k = ±Ek + λk, (3.22)

where Ek are the usual BCS quasiparticle energies defined in
(3.20). In this way the unperturbed energies in (3.7) are replaced
by

ω0
μ = E jp + E jn + μ(λp − λn). (3.23)

These energies, however, are not used in the QRPA eigenvalue
problem. Namely, the coefficients X(pn J f ) and Y (pn J f ), and the
eigenvalues ω( J f ) are obtained from(

A B
B A

)(
X
Y

)
= ω

(
X

−Y

)
, (3.24)

where

A
(

pnp′n′; J
)= (E p + En)δpp′δnn′

+ (up vnup′ vn′ + v pun v p′ un′)F
(

pnp′n′; J
)

+ (upunup′ un′ + v p vn v p′ vn′)G
(

pnp′n′; J
)
,

B
(

pnp′n′; J
)= (v punup′ vn′ + up vn v p′ un′)F

(
pnp′n′; J

)
+ (upun v p′ vn′ + v p vnup′ un′)G

(
pnp′n′; J

)
.

(3.25)

In the pn-QRPA the eigenvalues occur in pairs ±ω( J f ), but the
negative energies don’t have a direct physical meaning. The per-
turbed energies for daughter (Z + μ, N − μ) nuclei are defined as

ωμ( J f ) = ω( J f ) + μ(λp − λn). (3.26)

There is, however, only one set of eigenfunctions (X(pn J f ),

Y (pn J f )) for both μ = 1, and μ = −1. This is a very important
difference in relation to the PQRPA case, which is crucial for the
distribution of the transition strengths.

3.3. Nuclear matrix elements

When the excited states | J f 〉 in the final (Z ± 1, N ∓ 1) nuclei
are described within the PQRPA, the transition amplitudes for the
multipole charge-exchange operators (2.21) and (2.22) read

〈 J f , Z + μ, N − μ||OJ||0+〉
= 1

(I Z I N)1/2

∑
pn

[
Λμ(pn J )

(I Z−1+μ(p)I N−1+μ(n))1/2
X∗

μ(pn J f )

+ Λ−μ(pn J)

(I Z−1−μ(p)I N−1−μ(n))1/2
Y ∗

μ(pn J f )

]
, (3.27)

with the one-body matrix elements given by

Λμ(pn J) = −〈p||OJ||n〉√
2 J + 1

{
up vn, for μ = +1,

un vp, for μ = −1,
(3.28)

and J = J.
In the QRPA case, using the limit I K → 1 in (3.27), the nuclear

matrix elements for the multipole charge-exchange operators OJ

are

〈 J f , Z + μ, N − μ||OJ||0+〉
=
∑
pn

[
Λμ(pn J)X∗(pn J f ) + Λ−μ(pn J)Y ∗(pn J f )

]
, (3.29)

with the same one-body matrix elements (3.28).
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The unperturbed and perturbed transition strengths are de-
fined, respectively, as

S0
μ(pn J) = ∣∣Λμ(pn J)

∣∣2 (3.30)

and

Sμ( J f ) = ∣∣〈 J f , Z + μ, N − μ||OJ||0+〉∣∣2. (3.31)

One might be particularly interested in the Gamow–Teller (GT) and
Fermi (F) β-decay strengths (B-values), in which case (3.30) and
(3.31) are evaluated for the operators ÕJ , which don’t contain the
radial form factors jJ(ρ). That is, Õ0 = 1, and Õ1 = σ , for F and
GT operators, respectively. We denote the B-values as S̃μ(pn J ) and
S̃μ( J f ). Occasionally one also might want to calculate the energy
distribution of the last one, i.e.,

S̃μ( J f , E) = η

π

∑
f

S̃μ( J f )

η2 + (E − ω J f )
2
, (3.32)

where one usually takes η = 1 MeV.

4. Computer program and user’s manual

The QRAP code evaluates the electron neutrino–nucleus inter-
action described by Eq. (2.1) (IREAC = 1 for NS, IREAC = 2 for AS)
and (2.2) (IREAC = 0 for MC). The processes, from the ground state
of the even–even father nucleus (Z , N) to the excited states with
spin (ISPIN) and parity (IPARI) in the odd–odd daughter nucleus
(Z ± 1, N ∓ 1), are calculated by using the QRPA model (IQP = 0)
or the PQRPA (IQP = 1). These options must be setup in the in-
put data file, qrapin.dat, which is supplemented with two included
files:

(a) sp.inc, containing the dimensions of single-particle quantum
numbers, occupation probabilities, quasiparticle quantities and
strength amplitudes for allowed transitions;

(b) conf.inc, which has the dimensions for the quasiparticle state
configurations, the Hamiltonian matrices (A, B) or (A,B)
which are diagonalized, the forward and backward amplitudes,
and the eigenvalues.

There are two input files: 1) qrapout.dat, where is listed the
output file that shows the neutrino/antineutrino (ν/ν̄) cross sec-
tion, as a function of the incident neutrino, or the muon capture
rate, for each state of a given nuclear spin in the daughter nucleus,
and 2) the above mentioned qrapin.dat, which contains: a) the
quantum numbers of all single-particle state (sps), and the corre-
sponding single particle energies (s.p.e.), b) the mass and the pro-
ton number of the parent nucleus, c) the neutron and proton pair-
ing strengths for the BCS approximation, d) the particle–particle,
and particle–hole strengths of the residual interaction, e) the posi-
tion of the Fermi level, and the experimental gap for neutrons and
protons, and f) the Q -value for the ν/ν̄ scattering.

There are three default output files. Two of them, AUXI.OUT
and OUT.OUT, contain the results of the nuclear structure model,
whereas the results for the weak processes appear in the file
created by qrapout.dat. For example, if one is interested in
the multipole Jπf = 1+ with a single-particle space of six lev-

els in 12C (“set 1”), we can introduce in qrapout.dat the file
names QNC.out (PNC.out) for neutrino capture, QAC.out (PAC.out)
for antineutrino capture, QMC.out (PMC.out) for muon cap-
ture, using the QRPA (PQRPA) model. The auxiliary output files
AUXI.OUT and OUT.OUT are relabeled to (QAUXI.OUT, QOUT.OUT)
and (PAUXI.OUT, POUT.OUT) for QRPA and PQRPA respectively.

All just mentioned outputs are included as examples. The
following units are employed: i) 10−42 cm2, for neutrino– or

antineutrino–nucleus cross sections, ii) 104 s−1, for muon capture
rates, and iii) MeV, for energies.

4.1. Reading the data

There are three sets of input data in qrapin.dat separated in
modules labeled as: *Data set 1 for a single-particle space of six
levels in 12C (0,1, and 2h̄ω oscillator shells), *Data set 2 for a
single-particle space of ten levels in 12C (0,1,2, and 3h̄ω oscil-
lator shells), and *Data set 3 for single-particle space of 12 levels in
56Fe (2,3, and 4h̄ω oscillator shells).

For each one of these input data, the number of sps represents
the available space where one wants to solve the BCS (or PBCS)
problem given by Eqs. (3.17) and (3.18) ((3.1)–(3.2)). It contains the
necessary number of harmonic oscillator shells leading to a smooth
smearing of the Fermi’s surface. The Fermi level with the neighbor-
ing levels constitute the active shell for the mentioned smearing.
For example, in 12C (ground state with J = 0+) the active shell is
composed by the 1p3/2 and 1p1/2 levels. According to the single-
particle shell model the sps filled up the 1p3/2 orbital, and the
nucleons can be promoted to the 1p1/2, creating a particle state
in 1p1/2 and a hole state in 1p3/2. This scheme describes the first
particle–hole (ph) excitation on 12C in order to obtain the 12N or
12B ground state with J = 1+ , by promoting a proton or a neutron,
respectively.

Let us show, as example, a data input of six sps for 12C: *Data
set 1. The rows starting with a symbol “*” are not read as input
and just serve to remind the user on the meaning of the physical
quantities. Taking out the comments “*” in the first lines of this
file, we have

1 +1 0.0 1 1
06 06 0 1 1 0
101 −20.09 112 −6.02 111 −0.29 123 3.07 201 3.85 122 7.18
101 −18.19 112 −3.17 111 2.79 123 5.73 201 6.06 122 9.36
12 06 28.80 28.85 30.0 50.0 27.0 64.0
2 1 6 6 1.00 6.88
2 1 6 6 1.00 7.00
17.338

First line: Nuclear spin (ISPIN = 1) of the daughter nucleus,
parity (IPARI = +1), coupling strength of particle–particle chan-
nel (t = 0.0) (see definition below), index of neutrino reaction
(IREAC = 1) and the index (IQP = 1) to solve the PQRPA problem.

Second line: Number of neutron sps (NSN = 06), number of
proton sps (NSP = 06), index to solve the QRPA equation in the
Tamm–Damcoff approximation (ITD: 0 no, 1 yes), index to print
the matrix elements of the nuclear Hamiltonian to be diagonalized
(MAPR: 0 no, 1 yes), index to solve the BCS equation with the self-
energy term (IFMU: 0 no, 1 yes), index to make the QRPA matrix
with the branch (Z + 1, N − 1) (μ = 1) or (Z − 1, N + 1) (μ = −1)
of PQRPA (IPRO: 0 (μ = 1), 1 (μ = −1)).

Third and fourth lines: quantum numbers and the s.p.e. for
each neutron and proton sps, respectively. They are represented in
the same way as in the shell model scheme, with their respective
quantum numbers (n�( j + 1

2 )). For example, 101 → 1s1/2 where 1
is principal quantum number, corresponding to the first harmonic
oscillator level (n), 0 corresponds to the orbital angular momentum
� ≡ s and the last number 1 ≡ j + 1

2 = 1
2 + 1

2 . Tables 1 and 2 show
the notation and the corresponding quantum numbers, as well as
the PBCS quasiparticle energies eN

j and e Z
j , defined by (3.10).

Fifth line: Mass number A (IAM = 12), proton number Z
(IZ = 6), and the following coupling constants: 1) neutrons and
proton pairing vpairN

s (VspairN = 28.80), and vpairP
s (VspairP =

28.85), 2) singlet and triplet particle–particle (pp) vpp
s (VsPP = 30),

and vpp
t (VtPP = 50), and iii) singlet and triplet particle–hole (ph)

vph
s (VsPH = 27), vph

t (VtPH = 64).
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Table 1
Notation for the quantum numbers, the resulting quasiparticle energies eN

j for neu-

trons and e Z
j for protons, and the pairing strength vpair

s within the PBCS. The ener-

gies are given in units of MeV, and vpair
s is dimensionless.

Notation Shell n � j + 1/2 eN
j e Z

j

101 1s1/2 1 0 1 −20.09 −18.19
112 1p3/2 1 1 2 −6.02 −3.17
111 1p1/2 1 1 1 −0.29 2.79
123 1d5/2 1 2 3 3.07 5.73
201 2s1/2 1 0 1 3.85 6.06
122 1d3/2 1 2 2 7.18 9.36

vpair
s 28.80 28.85

Table 2
Spin and parity for the one-quasiparticle space used in the input for 12C.

1s1/2 1p3/2 1p1/2 2s1/2 1d5/2 1d3/2

1s1/2 0+,1+
1p3/2 1−,2− 0+,1+

2+,3+
1p1/2 0−,1− 1+,2+ 0+,1+
2s1/2 0+,1+ 1−,2− 0−,1− 0+,1+
1d5/2 2+,3+ 1−,2− 2−,3− 2+,3+ 0+,1+,2+

3−,4− 3+,4+,5+
1d3/2 1+,2+ 0−,1− 1−,2− 1+,2+ 1+,2+ 0+,1+

2−,3− 3+,4+ 2+,3+

Sixth and seventh lines: Position of the Fermi level (LEVEL = 2),
initial (IIQ = 1) and final (IFQ = 6) states for which the BCS equa-
tions must be solved, number of particles interacting (NPIQ = 6) in
these levels, and the experimental gap (DELTAQ = 6.88 or 7.00) de-
fined below in Eq. (4.2); for neutrons and protons, fifth and sixth
lines respectively.

Eighth line: Q -value minus the lepton mass for ν/ν̄ scattering
(EGS = 17.338 for 12N [51]). It can be fixed as being the energy of
the ground state in the daughter nucleus. The lepton mass must
be added to EGS to obtain the Q -value for the reaction.

4.2. Running the code

As first step the QRAP solves the BCS problem. In this case, one
needs to adjust the pairing strength to reproduce the experimental
pairing gap.

Next, one can solve the PBCS problem or directly the QRPA if
the option IQP = 0 was selected. If IQP = 1 then the PQRPA equa-
tions are solved. It means that QRAP firstly calculates the nuclear
matrix elements in the QRPA or PQRPA by selecting the option
IQP = 0 or 1, appropriately. The option for which type of weak in-
teraction process one wants to evaluate is adopted with IREAC in
the input data. We recommend first to adjust the pairing strength
as it is explained below. After this it is convenient to fit the pa-
rameters of the residual interaction using the option IREAC = 3 for
the muon capture rate because this calculation is fast. Physically
you can check quickly how good is your choice of parameters be-
cause the values for inclusive muon-capture rate, and GT B-values
are available in the literature (see for example Refs. [52,53]).

For the residual interaction the code assumes a delta force,

V = −4π(vs P s + vt Pt)δ(r), (4.1)

which has been used extensively in the literature [26–28] to de-
scribe single and double beta decays.

Next, we explain how the parameters of the interaction are ad-
justed using for example the input data for six levels in 12C. The
results are presented in output file OUT.OUT.

Adjusting the gap �k

The parameters vpairN
s and vpairP

s are adjusted to reproduce the
experimental gap �N for neutrons, and �Z for protons, by solving
the BCS equations (3.17) and (3.18) in a self-consistent way. The
experimental gaps, according [54, Eq. (2.96)], are:

�N = −1

2

{
B(Z , N − 1) − 2B(Z , N) + B(Z , N + 1)

}
,

�Z = −1

2

{
B(Z − 1, N) − 2B(Z , N) + B(Z + 1, N)

}
, (4.2)

where B(N, Z) is the binding energy of the even–even nucleus
(Z , N). This is the most common fit (Fit1) used in several works
with standard QRPA [28–30]. In this case, the �N(Z) must be equal
or approximately equal to the energy �

N(Z)
jk=FL of the corresponding

to the Fermi level (FL). To solve the set of PBCS coupled equations
(3.1)–(3.4) for uk and vk it is recommended to obtain first the solu-
tions for the BCS problem, as these probability occupations are use
as input for the PBCS case. The PBCS coupled nonlinear equations
are solved consistently with Powell Hybrid method using subrou-
tine HYBRD [55].

The results of the BCS or PBCS problem are shown as tables in
the first lines of OUT.OUT for neutrons and protons, respectively.
The quantities defined by (3.10) and (3.11) are presented there. In
particular, the projected quasiparticle energy defined in (3.10) are

PROYSP =
{

E(+) = εK
k , with k above Fermi level,

E(−) = εK−2
k , with k below Fermi level,

(4.3)

which means that E(+) corresponds to a particle state, and E(−) to
a hole state. The values of �

N(Z)
jk

are shown in the ninth column of
the table labeled as CONFIGURATION SPACE. This Fit1 comes from
the fact that the experimental energy difference between the states
that lie just above (p state) and just above (h state) the FL is ap-
proximately twice the experimental gap, i.e.,

E K
p − E K

h � 2�K (4.4)

for K = N or Z .
There is another fitting procedure for the pairing gap that is

called by Fit2. In Fit2, all the s.p.e. eN(Z)
j from Table 1 are varied

with a χ2 search to account for the experimental spectra E j :

ε
Z(N)

k → E Z(N)
p ≡ E(+), for a particle state,

ε
Z−2(N−2)

k → E Z(N)

h ≡ E(−), for a hole state.

In Fit2, Eq. (4.4) is automatically satisfied. This procedure was em-
ployed to obtain the e j spectra shown in [23, Table III], whereas
the e j for the reduced space of six levels in the present example
are shown in Table 1. These s.p.e. are used in the input data Data
set 1.

To make the calculations as simple as possible the Fit1 pro-
cedure is the usual choice, with the e j spectra obtained either
from a harmonic oscillator or from a Wood–Saxon potential, and
by varying the coupling vpairN

s and vpairP
s to satisfy the condition

�
N(Z)
jk=FL ≈ �N(Z) .

For 56Fe the input data is called *Data set 3. The s.p.e. of the ac-
tive 3h̄ω shell were taken from the experimental energies of 56Ni,
and the 2h̄ω and 4h̄ω shell energies were taken from the harmonic
oscillator energies with h̄ω/MeV = 45A1/3 − 25A2/3. Fit1 was em-
ployed to adjust the experimental �N(Z) for 56Fe.

Adjusting the particle–hole couplings r and p
In the particle–hole matrix element F , defined in Eq. (3.5), the

couplings vs and vt appear as linear combinations vs + vt and
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Fig. 1. Ground state energy E, and B(GT)-value in 12N for different couplings r in
the ph-channel, as a function of the pp-channel coupling t . The experimental data
[51,58,59] are also shown. The value r = 2 corresponds to vph

s = 27 a nd vph
t = 64

(case PII of [23]). The Data set 2 was employed.

3vt − vs . Therefore, it is convenient to introduce the dimensionless
parameters

r = vph
s + vph

t

2vpair
s

, p = 3vph
t − vph

s

2vpair
s

, (4.5)

where

vpair
s = vpairN

s + vpairP
s

2
. (4.6)

Moreover, to start we can use vph
s = 27 and vph

t = 64 (in units
of MeV fm3). These values are inferred from the systematic study
of energetics of the GT resonances done by Nakayama et al. [56]
(see also Ref. [44]), and have been extensively used in the QRPA
calculations of the ββ-decay in 48Ca [25,30,57]. Moreover, it makes
sense to take the singlet ph coupling to be equal to vpair

s , obtained
from the proton and neutron gap equations, i.e.,

vph
s = vpair

s . (4.7)

Adjusting the particle–particle couplings s and t
Here also it is convenient to normalize to vpair

s the coupling
constants vpp

s and vpp
t that appear in the pp matrix elements G in

Eq. (3.5), and correspond, respectively to the channels (T = 1, S =
0) and (S = 1, T = 0), i.e.,

s = vpp
s

vpair
s

, t = vpp
t

vpair
s

. (4.8)

For nuclei with N > Z the pp-couplings are fixed on the basis of
the SU(4) and isospin symmetry, as vpp

s ≡ vpair
s , and vpp

t � vpp
s [25,

30]. However, in Ref. [22] it was shown that this parametrization
might not be suitable for N = Z . In fact, the best agreement with
data in 12C was obtained when the pp-channel is totally switched
off, i.e., vpp

s ≡ vpp
t = 0, and three different set of values for the ph-

coupling strengths were used. These conditions are related with

Fig. 2. Results from PQRPA calculations obtained in Ref. [23], as a function of the pp
parameter t , compared with the experimental data taken from Refs. [51,58,59], for:
(i) ground state energy in 12N (upper panel), (ii) B(GT)-value for the β transition
in 12N (middle panel), and (iii) exclusive muon capture rate Λ(1+

1 ) in 12B (lower

panel). The parameters of the ph channel for the δ-interaction are vph
s = 27 and

vph
t = 64.

s = t for 12C (N = Z ), and with s = 1 and t variable in nuclei with
N > Z . For 56Fe were adopted the values s = 1 and t = 0. In the
code QRAP the following conditions are standard: (i) s = t with t as
a variable parameter for N = Z ; and (ii) s = 1, and t as a variable
parameter for N > Z , i.e., the residual interaction is defined as a
function of two adjustable parameters vph

t and t .
Several experimental data are available in the literature that can

be used for fixing the residual interaction coupling constants, such
as: ground state energies of daughter nuclei, B(GT)-values for the
β+ or β− decay, and partial muon capture rate [51,58,59].

One can use the reduced space of six levels to identify in the
output file, the quantities shown in Figs. 1 and 2. The results for
three values of t are shown in Table 3.

The values of ωμ(1+
f ), and Sμ(1+

f ) in 12N and 12B can be found
in the output file AUXI.OUT. In the present case the largest value
of index f is fmax = 16. Both set of states, with μ = +1, and
μ = −1, are ordered from highest to lowest energies. In the PQRPA,
the most collective ones are that of the corresponding ground
states: |1+

F=16〉 in 12N (and |1+
F=17〉 in 12B) although there also

are significant strengths in the states F = 7,11, and 14. In QRPA,
the ground state is in |1+

F=16〉 for both 12N and 12B. These wave
functions are presented below. For the PQRPA case, we also show
the unperturbed energies ω0

μ(pn1+) (which are not ordered), and

the corresponding single-particle GT strengths S0
μ(pn1+), given re-

spectively, by (3.8), and (3.30) for the GT operator σ . The largest
ones are S0

+1(1pπ
1/2,1pν

3/2;1+), and S0
−1(1pπ

3/2,1pν
1/2;1+), which

in the particle–hole limit correspond to excitations 1pν
3/2 → 1pπ

1/2,

and 1pπ
3/2 → 1pν

1/2. For spins and parities Jπf �= 1+ , or 0+ , in
AUXI.OUT are shown the energies ωμ , but not the strengths Sμ .

The results for the eigenvalue problem are displayed in the
output file OUT.OUT. For the option MAPR = 1 are printed
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Table 3
Evolution of ground state energy, B(GT) and exclusive muon capture rate in 12C, as a function of the pp-channel parameter t . With [a] and [b] we denote, respectively, the
output files “AUXI.OUT” and “PMC.out”, ωμ(1+

f ) is in units of MeV, Sμ(1+
f ) is dimensionless and (Λ(1+

1 ), Λ) is in units of 104 s−1. The parameters for the ph-channel are:

vph
s = 27, vph

t = 64.

State [file] Observable t

0.0 0.3 0.6 Exp.
12N 16 [a] ω+1(1+

16) 18.319 17.951 14.970 17.34 [51]

16 [a] S+1(1+
16) 0.496 0.696 0.840 0.466 [58]

12B 1 [a] ω−1(1+
16) 12.528 12.126 9.202 13.36 [51]

1 [a] S−1(1+
16) 0.502 0.693 0.837 0.526 [58]

16 [b] Λ+1(1+
16) 0.689 0.936 1.119 0.62(3) [59]

[b]
∑

f Λ+1(1+
f ) 1.722 1.537 1.183

out the matrix elements (A,B) (Eq. (3.25)) for the QRPA, or
(Aμ=1, B) (Eq. (3.7)) for PQRPA. The nuclear wave functions
(X(pn; J F ), Y (pn; J F )) are grouped to four, with the index F , de-
fined in (3.14), going from 1 to fmax in the QRPA case, and from
1 to 2 fmax in the PQRPA case. To make easy reading together with
each set of wave functions are also printed: the value of f , the
two quasiparticle configurations (p and n), and the unperturbed
and perturbed energies.

Recalling Eqs. (3.8), (3.12), and (3.13) for the energies, one dis-
covers without difficulty that within PQRPA:

1) The ground state in 12N, with energy ω+1(1+) = 18.319 MeV,
has f = F = 16, and that its wave function is:∣∣12N

〉= 0.963
∣∣1pπ

3/21pν
1/2,1+〉+ 0.232

∣∣1pπ
3/21pν

3/2,1+〉
+ 0.122

∣∣1pπ
1/21pν

3/2,1+〉+ 0.105
∣∣1pπ

1/21pν
1/2,1+〉

+ · · · . (4.9)

2) The ground state in 12B, with energy ω−1(1+) = 12.528 MeV,
has f = 16, F = 17, and that its wave function is:∣∣12B

〉= −0.971
∣∣1pπ

1/21pν
3/2,1+〉+ 0.204

∣∣1pπ
3/21pν

3/2,1+〉
− 0.125

∣∣1pπ
3/21pν

1/2,1+〉+ 0.090
∣∣1pπ

1/21pν
1/2,1+〉

+ · · · . (4.10)

One proceeds in a similar way for the QRPA output, with en-
ergies now given by Eqs. (3.23) and (3.24). Now, the ground state
energies in 12B, and 12N, are, respectively, ω−1(1+) = 12.437 MeV,
and ω+1(1+) = 17.992 MeV, while the wave function for both nu-
clei is:∣∣1+

16

〉= −0.272
∣∣1pπ

3/21pν
1/2,1+〉− 0.759

∣∣1pπ
3/21pν

3/2,1+〉
+ 0.356

∣∣1pπ
1/21pν

3/2,1+〉− 0.472
∣∣1pπ

1/21pν
1/2,1+〉

+ · · · . (4.11)

From the comparison of the wave functions (4.9), and (4.11)
it can be easily figure out why Volpe et al. [21] called attention
to “difficulties in choosing the ground state of 12N, because the lowest
state is not the most collective one” when the QRPA is used. This is
an important issue that clearly gives you an idea about the need
for the number projection. In fact, as seen from (4.9), and (4.11),
the PQRPA yields the correct one-particle–one-hole (1p1h) limits
1pπ

3/2 → 1pν
1/2 and 1pν

3/2 → 1pπ
1/2, for 12N, and 12B ground states,

respectively. All remaining configurations come from the higher or-
der 2p2h, and 3p3h excitations. Contrary, the QRPA state (4.11) is
dominantly the two-hole excitation [(1pπ

3/2)
−1, (1pν

3/2)
−1], which

corresponds to the ground state of 10B. This should not be a sur-
prise, as we know that the proton–neutron QRPA states are the
same for all four nuclei 12N, 10B, 14N, and 12B. More details on

this question can be found in [23, Fig. 3]. The 1p1h amplitudes
[(1pπ

3/2)
−1,1pν

1/2], and [(1pν
3/2)

−1, (1pπ
1/2)] are dominantly present

in the QRPA states f = 13, and f = 15, i.e.,∣∣1+
13

〉= −0.476
∣∣1pπ

3/21pν
1/2,1+〉+ 0.437

∣∣1pπ
3/21pν

3/2,1+〉
+ 0.441

∣∣1pπ
1/21pν

3/2,1+〉− 0.096
∣∣1pπ

1/21pν
1/2,1+〉

+ · · · ,∣∣1+
15

〉= 0.703
∣∣1pπ

3/21pν
1/2,1+〉+ 0.708

∣∣1pπ
1/21pν

3/2,1+〉
+ · · · . (4.12)

The wave functions displayed above clearly evidence the supe-
riority of the PQRPA on the QRPA.

Output for the ν-nucleus processes
The output of the results for the weak processes is selected ac-

cording to the value of IREAC:
IREAC = 0 prints the results for the muon capture rate in the

file (QMC.out or PMC.out). For Jπ = 0+ or Jπ = 1+ are shown in
this output file the folded strengths S̃μ( J f , E) (SˆTILDE) defined
by (3.32), where ‘ENERGY’ represents E . The partial capture rate
for each state f , the perturbed energy ωμ=−1, and the strength
Sμ=−1( J f ) (if Jπ = 0+ , or Jπ = 1+) are shown in the table la-
beled CAPTURE RATE. The total capture for the evaluated spin Jπ

is presented in the last line.
IREAC = 1 or IREAC = 2 prints the results for the neutrino

or antineutrino cross sections in the files (QNC.out/PNC.out) or
(QAC.out/PAC.out). We repeat in this output the folded strengths
S̃μ( J f , E) (3.32) for Jπ = 0+ or Jπ = 1+ . The cross sections
(SIGMA(Enu)) are calculated as a function of the neutrino energy
(Enu) for each nuclear spin from f = 1 to f = fmax. The perturbed
ωμ=±1 energies for the daughter nucleus are also shown according
the process related. The absolute value of maximum (cos θ = −1)
and minimum (cos θ = 1) nuclear momentum transfer (|k|) in units
of MeV/c for each energy are also printed.

Note: The cross sections are printed up to a maximum energy
of 250 MeV. Depending upon the single particle space employed,
the cross sections, as a function of the neutrino energy, should be
restricted to lower energies. This issue will be discussed and ex-
plained in details in a next work [60]. Anyway, the PQRPA cross
sections obtained within the single-particle space provided as ex-
amples are well behaved up to Eν/ν̄ < 100 MeV on averaged ac-
cording to *Data set 1, *Data set 2 and *Data set 3. This interval
of energies is important for supernova neutrinos and low-energy
decay-at-rest neutrinos [10].

5. Routines included with the code

QRPA solves the pn-QRPA or pn-PQRPA charge-exchange prob-
lem for a nuclear spin Jπf of the daughter odd–odd nucleus.
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SUAVE calculates and prints the folded strength Jπ = 0+ or
Jπ = 1+ given by Eq. (3.32), folding the S̃μ( J f ) strength with a
Lorentzian function with η = 1 MeV.

RMUONCAP calculates the muon capture rate given by formula
(2.29).

SIMPSN2 calculates the neutrino or antineutrino cross sections
as a function of the neutrino energy. This subroutine uses the func-
tion G to call the subroutine SECCION, which evaluates the cross
section formula (2.23) using the Gauss–Legendre N-point quadra-
ture formula [61] on the function F to evaluate the angular inte-
gration of the transition amplitude times E� .

MATRIXP computes the matrix elements with the delta residual
interaction given in Ref. [62] for the PQRPA. The matrix elements
were modified according to the projection procedure shown in
Eq. (3.7).

MATRIX computes the matrix elements with the delta residual
interaction given in Ref. [62] for the QRPA. The matrix elements
are shown in Eqs. (3.25).

RPA finds eigenvalues and eigenvectors for the QRPA or PQRPA
equations. It uses the subroutine EIGRF and other related subrou-
tines from the IMSL Library [63] to orthonormalize the eigenvec-
tors.

GAPII solves the set of BCS coupled equations (3.17) and (3.18)
to obtain the vk and uk for neutrons and protons.

CONFGT builds up the pn configurations for a given spin and
parity.

FAUX evaluates the particle–particle matrix elements G(kkk′k′;
0) and F (kkk′k′;0), which are used to solve the gap equations for
neutrons and protons using the delta interaction.

RADWF computes harmonic oscillator radial wave functions. It
uses the additional subroutine OSCILL to evaluate the radial coef-
ficients.

HYBRD finds a zero of a system of N nonlinear equations in N
variables by a modification of the Powell Hybrid method. This sub-
routine was provided by the Argonne National Laboratory [55]. It
uses the subroutine FCN to calculate the PBCS nonlinear equations
given by formula (3.1).

FKPERMAT evaluates the perturbed matrix elements for the
weak decay operator, according to Eq. (3.27) for PQRPA, and
Eq. (3.29) for QRPA. The radial part of the SPNME were defined
in Ref. [64]. This subroutine uses the subroutine ANGULARMATRIX
to calculate the angular part of single-particle matrix elements
defined in Ref. [57], and shown in Appendix A for the sake of com-
pleteness.

There are other routines in the code that are shortly described
as follows. PRINMA prints the matrix elements (A,B) for the
QRPA, or (Aμ, B) for PQRPA, SKIPCOM is used to skip comments
in the input file, UNPMOM3 evaluates the unperturbed projected
matrix elements for beta decay, BETMAT2 is used to calculate the
single-particle matrix elements for beta decay, PROENER calculates
the quantities for the projected quasiparticles energies in (3.10).

6. Things to do

1. Use the sample input Data set 1 to obtain the results presented
in Table 3.

2. Modify the input Data set 1 by Data set 2, setting all parameters
of the residual interaction to zero. These values correspond to
BCS or PBCS approximation. Compare the folded strength of
Data set 1 with Data set 2 shown in Fig. 4 of Ref. [23].

3. In Ref. [65] the s.p.e. for neutrons were changed to analyze the
systematics of the paring strength in the odd carbon isotopes.
Change the s.p.e. for neutrons in Data set 2 and reproduce the
systematics shown in the level scheme of Fig. 2 and the spec-
troscopic factors of Fig. 3 of Ref. [65].

4. Compare the QRPA and PQRPA results for the exclusive νe–12C
cross section, as a function of the neutrino energy, with the
DAR experimental data from Ref. [68]. Note that the QRPA
result is not collective, and the addition of other 1+ cross
sections (for example, that of states (4.12)) is required to get
agreement with the experimental value.
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Appendix A. Single-particle nuclear matrix elements

The elementary operators defined in Eq. (2.16) have the reduced
single-particle pn matrix elements (RSPME) defined in [57,41] (re-
call that κ = |k| and p = −i∇).

For the RSPME dependent on the tensor product of spherical
harmonic times the nucleon velocity we have〈

p,

(
lp

1

2

)
, jp

∣∣∣∣∣∣ jL(κr)
[
YL(r̂) ⊗ ∇]J∣∣∣∣∣∣n,

(
ln

1

2

)
, jn

〉
= (−1)1+J+L

√
4π

[
W (−)

LJ (pn)R(−)
L (pn;κ)

+ W (+)
LJ (pn)R(+)

L (pn;κ)
]
, (A.1)

with angular and radial parts, respectively:

W (±)
LJ (pn) = ±(−1)lp+ jn+J+1/2ĴL̂l̂p ĵ p ĵn

(
ln + 1

2
∓ 1

2

)1/2

× (lpL|ln ∓ 1)

{
lp jp

1
2

jn ln J

}{
L J 1
ln ln ∓1lp

}
,

R(±)
L (pn;κ) =

∞∫
0

unp,lp (r)

(
d

dr
± 2ln + 1 ± 1

2r

)
× unn,ln(r) jL(κr)r2 dr. (A.2)

We use here the angular coupling |( 1
2 , l) j〉, Ĵ ≡ √

2 J + 1 and
(lpL|ln ∓ 1) is the short notation for the Clebsh–Gordon coefficient
(lp0L0|(ln ∓ 1)0).

For the scalar product of spin times nucleon velocity, we have〈
p,

(
lp

1

2

)
, jp

∣∣∣∣∣∣ jJ(κr)YJ(r̂)(σ · ∇)
∣∣∣∣∣∣n,

(
ln

1

2

)
, jn

〉
= 1√

4π

[
W (−)

J (pn)R(−)
J (pn;κ)

+ W (+)
J (pn)R(+)

J (pn;κ)
]
, (A.3)

with the angular part

W (±)
J (pn) = ±(−1)ln+ jn+J+1/2

√
6Ĵl̂p ĵ p ĵn

(
ln + 1

2
∓ 1

2

)1/2

× (lpJ|ln ∓ 1)

{
1 1

2
1
2

jn ln ln ∓ 1

}{
ln ∓ 1 jn

1
2

jp lp J

}
,

(A.4)

being the radial part R(±)
J (pn;κ) as in (A.2).
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The RSPME of the two operators independent of the nucleon
velocity is written below. For the spherical harmonic operator we
have〈

p,

(
lp

1

2

)
, jp

∣∣∣∣∣∣ jJ(κr)YJ(r̂)
∣∣∣∣∣∣n,

(
ln

1

2

)
, jn

〉
= 1√

4π
WJ0(pn)R0

J(pn;κ), (A.5)

with the angular and radial parts, respectively:

WJ0(pn) = (−1) jp− jn Ĵ ĵ p ĵn

(
jp jn J
1
2 − 1

2 0

)
,

R0
J(pn;κ) =

∞∫
0

unp ,lp (r)unn,ln(r) jJ(κr)r2 dr. (A.6)

Finally, the RSPME dependent on the tensor product of spherical
harmonic times the spin operator reads〈

p,

(
lp

1

2

)
, jp

∣∣∣∣∣∣ jL(κr)
[
YL(r̂) ⊗ σ

]
J

∣∣∣∣∣∣n,

(
ln

1

2

)
, jn

〉
= (−1)L+1+J

√
4π

WLJ(pn)R0
L(pn;κ), (A.7)

where the angular part is

WLJ(pn) = (−1)lp
√

6 ĵ p ĵnl̂pl̂n ĵ p L̂Ĵ

×
(

lp L ln
0 0 0

)⎧⎨⎩
1
2 lp jp
1
2 ln jn

1 L J

⎫⎬⎭ , (A.8)

with the radial part R0
L(pn;κ) given by (A.6).

Appendix B. Fermi function and effective momentum
approximation (EMA)

To account for the Coulomb interaction between the charged
lepton and the residual nucleus, the QRAP code is setup to use by
default the Fermi function [45,46]. This correction was employed in
several works for reactions on 12C with neutrinos from the DAR of
μ+ . As pointed out in Ref. [21], the quantity p�R A is of the order
of 0.5, where p� is the lepton momentum, and R A is the radius
of the nucleus. Thus, the correction is well described by a Fermi
function. Yet, for high energy neutrinos, e.g. neutrinos from the DIF
of π+ , the outgoing muons have p�R A > 0.5. For these relativistic
leptons, the effective momentum approximation (EMA) [66] should
take care of the Coulomb field of the daughter nucleus, instead of
the Fermi function. This prescription for the Coulomb correction is
considered in the code within the subroutine SECCION. More pre-
cisely, with EMA = 0 the Fermi function is employed, while with
EMA = 1 the EMA prescription is used. In the EMA procedure, the
lepton energy and momentum are modified by a constant electro-
static potential within the nucleus

E�,eff = E� − V eff , p�,eff =
√

E2
�,eff − m2

�,

with V eff = 4V C (0)/5 = −6Z f α/5R A [38,67]. These two approxi-
mations for the Coulomb correction were tested in the calculation
of the inclusive cross section for neutrino scattering on 208Pb [38].
As shown in Ref. [38], the Fermi function correction overestimates
the cross sections at higher neutrino energies where the EMA pro-
vides a more reliable approach. Thus, we recommend to use the
Fermi function correction in the range of neutrino energies for
which the cross section is below the corresponding EMA value,

whereas the EMA could be employed at higher energies, as shown
in previous studies [21,38].

As a final comment, the QRPA code could be easily extended to
calculate νμ-induced processes. This was done in Refs. [22,23] to
calculate νμ–12C cross sections using the EMA prescription for the
DIF regime of the LSND experiment. The nuclear structure calcula-
tions remain the same, while the kinematics changes by changing
the electron mass to the muon mass in the variable RMLEP.
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