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Abstract

A computer program is presented which calculates the elastic and inelastic scattering in intermediate and high energ
collisions. A coupled-channels method is used for Coulomb and nuclear excitations ofE1,E2,E3,M1, andM2 multipolarities,
respectively. The program applies to an arbitrary nucleus, specified by the spins and energies of the levels and by redu
elements. For given bombarding conditions, the angular distribution of elastic and inelastic scattered particles and
distributions of gamma-rays from the excited nucleus are computed.
 2002 Elsevier Science B.V. All rights reserved.
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PROGRAM SUMMARY

Title of program: DWEIKO (Distorted Wave EIKOnal Approxima-
tion)

Catalogue identifier: ADRN

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/ADRN

Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Computers: The code has been created on an IBM-PC, but also runs
on UNIX machines

Operating systems: WINDOWS or UNIX

Program language used: Fortran-77

Memory required to execute with typical data: 8 Mbytes of RAM
memory and 1 MB of hard disk space

No. of bits in a word: 64

Memory required for test run with typical data: 1 MB

No. of bytes in distributed program, including test data, etc.: 27 407

Distribution format: tar gzip file

✩ This program can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/
* Corresponding author.

E-mail address: bertulani@nscl.msu.edu (C.A. Bertulani).
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Keywords: Elastic scattering, Coulomb excitation, relativistic colli-
sions, coupled-channels, nuclear excitation

Nature of physical problem
The program calculates elastic scattering differential cross sec-
tions, probabilities, and cross sections for inelastic scattering
in nuclear collisions at intermediate and high energies (Elab �
50 MeV/nucleon). It is particularly useful in the analysis of exper-
iments with stable and unstable nuclear beams running at several
intermediate-energy heavy ion accelerators around the world.

Method of solution
Eikonal wavefunctions are used for the scattering. For each “im-

pact parameter” entering the scattering matrix elements, one s
coupled-channels equations for the time dependent Coulomb+ nu-
clear field expanded into multipoles. A four-point Runge–Kutta p
cedure is used to solve the coupled-channels equations. The e
scattering is calculated purely with the eikonal approximation.
coupled-channels is a separate calculation for the inelastic am
tudes. The inelastic couplings, therefore, have no effect on the
tained elastic scattering cross sections.

Typical running time
Almost all the CPU time is consumed by the solution of the coup
channels equations. It is about 2 min on a 1 GHz Intel P4-proce
machine for the inclusion of 5 nuclear states.

LONG WRITE-UP

1. Introduction

The eikonal approximation is very useful in the study of nucleus–nucleus scattering at high energies [1
Distorted Wave Born Approximation (DWBA) the transition amplitude for the reactionA(a,b)B involves a matrix
element of the form [2]

TDWBA =
∫
Ψ
(−)∗
β (r)〈b,B|Uint(r)|a,A〉Ψ (+)

α (r)d3rα d3rβ , (1)

whereUint(r) is the interaction potential, andΨα (Ψβ ) is the scattering wave function in the entrance (exit) chan
α = a+A (β = b+B). 〈a,A| and〈b,B| are the initial and final intrinsic wavefunctions of the system, respecti
Using the eikonal approximation for the wave functions one has [1]

Ψ (−)∗(r)Ψ (+)(r)� exp
{
iq.r + iχ(b)

}
, (2)

whereχ(b) is the eikonal phase, given by

χ(b)=− 1

h̄v

∞∫
−∞

dzUopt(r). (3)

The conditions of validity of the eikonal approximation are: (a) forward scattering, i.e.θ � 1 radian, and (b) sma
energy transfers from the bombarding energy to the internal degrees of freedom of the projectile, or targ
conditions apply perfectly well to direct processes in nuclear scattering atElab � 50 MeV/nucleon [1].

In the above equation,Uopt(r) is the optical potential, withr = √
b2 + z2, whereb can be interpreted as th

impact parameter. For the Coulomb part of the optical potential this integral diverges. One solves this b
χ = χN + χC , whereχN is given by the equation above without the Coulomb potential and writing the Cou
eikonal phase,χC as

χC(b)= 2η ln(kb), (4)

whereη= Z1Z2e2/h̄v, Z1 andZ2 are the charges of projectile and target, respectively,v is their relative velocity,
k their wavenumber in the center of mass system. Eq. (4) reproduces the exact Coulomb scattering amplitu
used in the calculation of the elastic scattering with the eikonal approximation [2]:

fC(θ)= Z1Z2e2

2µv2 sin2(θ/2)
exp

{−iη ln
[
sin2(θ/2)

]+ iπ + 2iφ0
}
, (5)
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whereφ0 = arg (1+ iη/2). This is convenient for the numerical calculations since, as shown below, the e
scattering amplitude can be written with the separated contribution of the Coulomb scattering amplitude
the remaining integral (the second term on the right-hand side of Eq. (24)) converges rapidly for the scat
forward angles.

Although the Coulomb phase in Eq. (4) diverges atb = 0, this does not pose a real problem, since the str
absorption suppresses the scattering at small impact parameters. One can correct it for a finite charge di
of the nucleus [3]. For example, assuming a uniform charge distribution with radiusR the Coulomb phase becom

χC(b) = 2η
{
Θ(b−R) ln(kb)+Θ(R− b)

[
ln(kR)+ ln

(
1+

√
1− b2/R2

)
−

√
1− b2/R2 − 1

3

(
1− b2/R2)3/2]}

, (6)

whereΘ is the step function. This expression is finite forb = 0, contrary to Eq. (4). If one assumes a Gauss
distribution of charge with radiusR, appropriate for light nuclei, the Coulomb phase becomes

χC(b)= 2η
{
ln(kb)+ 1

2E1
(
b2/R2)}, (7)

where the error functionE1 is defined as

E1(x)=
∞∫
x

e−t

t
dt . (8)

This phase also converges, asb→ 0. The cost of using the expressions (6) and (7) is that the Coulomb scat
amplitude becomes more complicated than (5). Moreover, we have verified that the elastic and inelastic s
cross sections change very little by using Eqs. (6) or (7), instead of Eq. (4).

The simplification introduced by the eikonal approximation is huge, as one avoids the calculation of sc
wavefunctions by solving numerically the Schrödinger equation for each partial wave, as is done DWBA for
scattering at low energies. For computer programs appropriate for nuclear scattering at low energies, see
codes FRESCO [4] and DWUCK4 [5].

The eikonal approximation is also valid in relativistic collisions, as it can be derived from relativistic
equations, e.g., the Klein–Gordon equation [6]. Moreover, since it involves directions transverse to the b
is relativistically invariant. The eikonal wavefunction also allows the interpretation of the internal wave fu
variableb as an impact parameter. Thus, one can use the concept of classical trajectories, to obtain e
amplitudes and use them as input to the scattering amplitudes.

At intermediate energy collisions (Elab� 50 MeV/nucleon), one must perform a correction due to the Coul
deflection of the particle’s trajectory. This correction amounts to calculating all elastic and inelastic in
replacing the asymptotic impact parameterb by the distance of closest approach in Rutherford orbits, i.e.

b′ = a0 +
√
a2

0 + b2, (9)

wherea0 = Z1Z2e2/mv2 is half the distance of closest approach in a head-on collision of point charged pa
This correction leads to a considerable improvement of the eikonal amplitudes for the scattering of heavy
in collisions at intermediate energies.

As has been shown in Ref. [7], the nucleus–nucleus elastic and inelastic scattering at intermediate
energies is corrected appropriately for relativistic kinematics if one replaces the quantitya0 in Eq. (9) by
a′0 =Z1Z2e2/γmv2, whereγ = (1− v2/c2)−1/2 is the Lorentz factor.
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2. The optical potentials

Usually, the optical potentials used in DWBA calculations are described in terms of Woods–Saxon fun
both for the real and for the imaginary part of the potentials, i.e.

Uopt=−V0f (r,Rr, ar )− iW0f (r,Ri, ai), (10)

wheref (r,R,a) = 1/{1+ exp[(r − R)/a]}. The parameters entering these potentials are fitted to reprodu
elastic scattering data [8].

In nuclear collisions at intermediate and high energies (Elab � 50 MeV/nucleon) the elastic scattering data
very scarce. One has to resort to folding models with effective interactions, at least as a guide for the expe
analysis. Among these models, the M3Y interaction is very popular. It has been shown to work quite rea
for elastic and inelastic scattering of heavy ions at low and intermediate energy collisions [9,10].

In its simplest form the M3Y interaction is given by two direct terms with different ranges, and an exc
term represented by a delta interaction:

t (s)=A
e−β1s

β1s
+B

e−β2s

β2s
+Cδ(s), (11)

whereA= 7999 MeV,B =−2134 MeV,C =−276 MeV fm3, β1 = 4 fm–1, andβ2 = 2.5 fm–1. The real part of
the optical potential is obtained from a folding of this interaction with the ground state densities,ρA andρB , of the
nucleiA andB:

UM3Y(r)=
∫

d3r1 d3r2ρA(r1)ρB(r2)t (s), (12)

with s = r + r2 − r1. The imaginary part of the optical potential is usually parameterized as ImUopt = λUM3Y,
with λ= 0.6–0.8 [9,10].

This double folding M3Y potential yields values at the central region,r � 0, which are too large compared
usual optical potentials. However, one has to consider that the nuclear scattering at intermediate and high
(Elab � 50 MeV/nucleon) is mostly peripheral. Central collisions will lead to fragmentation reactions which a
being considered here. Thus, the only requirement here is that the optical potential reproduces well the p
processes. This is the case of the M3Y potential and the “t-ρρ” potential discussed below.

Another simple method to relate the nuclear optical potential to the ground-state densities is theρρ”
approximation. This approximation has been extensively discussed in the literature [12,13]. In its simplest
neglecting the spin-orbit and surface terms, the optical potential for proton–nucleus collisions is given by

Uopt(r)= 〈tpn〉ρn(r)+ 〈tpp〉ρp(r), (13)

whereρn (ρp) are the neutron (proton) ground state densities and〈tpi〉 is the (isospin averaged) transition mat
element for nucleon–nucleon scattering at forward directions,

tpi(q = 0)=−2πh̄2

µ
fpi(q = 0)=− h̄v

2
σpi(αpi + i), (14)

whereσpi is the free proton–nucleon cross section andαpi is the ratio between the imaginary and the real par
the proton–nucleon scattering amplitude. The basic assumption here is that the scattering is given solely
of the forward proton–nucleon scattering amplitude and the local one-body density [12].

For nucleus–nucleus collisions, the extension of this method leads to an optical potential of the form

Uopt(r)=
∫ 〈
tNN (q = 0)

〉
ρA(r − r′)ρB(r′)d3r ′, (15)

wherer is the distance between the center-of-mass of the nuclei. In this expression one uses the isospin a

〈tNN 〉 = Z1Z2 +N1N2

A1A2
tpp + Z1N2 +Z2N1

A1A2
tpn. (16)
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Table 1
Parameters [14] for the nucleon–nucleon amplitude, as given by Eq. (17)

E σpp αpp ξpp σpn αpn ξpn

[MeV/nucl] [mb] [fm2] [mb] [fm2]

100 33.2 1.87 0.66 72.7 1.00 0.36
150 26.7 1.53 0.57 50.2 0.96 0.58
200 23.6 1.15 0.56 42.0 0.71 0.68
325 24.5 0.45 0.26 36.1 0.16 0.36
425 27.4 0.47 0.21 33.2 0.25 0.27
550 36.9 0.32 0.04 35.5 −0.24 0.085
650 42.3 0.16 0.07 37.7 −0.35 0.09
800 47.3 0.06 0.09 37.9 −0.20 0.12

1000 47.2 −0.09 0.09 39.2 −0.46 0.12
2200 44.7 −0.17 0.12 42.0 −0.50 0.14

Table 2
Same as in Table 1, but for lower incident energies [11]. The values are averaged
overpp andpn collisions.〈ξN 〉 is taken as zero at these energies

E [MeV/nucl] 〈σNN 〉 [fm2] 〈αNN 〉
30 19.6 0.87
38 14.6 0.89
40 13.5 0.9
49 10.4 0.94
85 6.1 1

The parameters of the nucleon–nucleon cross scattering amplitudes forElab � 100 MeV/nucleon are show
in Table 2, extracted from Ref. [14]. At lower energies one can use the isospin average values of Table 2
describes well the nucleus–nucleus elastic scattering at lower energies [11].

Formula (15) can be improved to account for the scattering angle dependence of the nucleon–
amplitudes. A good parametrization [14] for the nucleon–nucleon scattering amplitude is given by

fNN(q)= kNN

4π
σNN(i + αNN)e

−ξNNq2
. (17)

The nuclear scattering phase then becomes [1]

χN(b)=
∫ ∫

dr dr′ ρ1(r)γNN
(|b − s − s′|)ρ2(r′), (18)

where the profile functionγNN(b) is defined in terms of the two-dimensional Fourier transform of the eleme
scattering amplitude

γNN(b)= 1

2π ikNN

∫
exp[−iq.b]fNN(q)dq, (19)

ands, s′ are the projections of the coordinate vectorsr, r′ of the nuclear densities on the plane perpendicular to
z-axis (beam-axis). For spherically symmetric ground-state densities Eq. (18) reduces to the expression

χN(b)=
∞∫

0

dq qρ̃A(q)fNN(q)ρ̃B(q)J0(qb), (20)

whereρ̃i(q) are the Fourier transforms of the ground state densities.
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The optical potential can also be obtained by using an inversion method of the eikonal phases. Thes
might be chosen to fit the experimental data. In this approach, one uses the Abel transform [1]

Uopt(r)= h̄v

iπr

d

dr

∞∫
r

χ(b)

(b2 − r2)1/2
r dr. (21)

This procedure has been tested in Ref. [15] leading to effective potentials which on the tail, where the proce
place, are very close to those obtained with phenomenological potentials of Refs. [16,17]. It can also be
that under certain approximations, and for Gaussian density distributions, the potential obtained through
coincides with that obtained with the double folding procedure [15].

3. Elastic scattering

The elastic scattering in nucleus–nucleus collisions is a well established tool for the investigation of
state densities [8]. This is because the optical potential can be related to the ground state densities by
a folding of the nucleon–nucleon interaction with the nuclear densities of two colliding nuclei. But, as w
seen in the last section, this relationship is not straightforward. It depends on the effective interaction
proper treatment of polarization effects, and so on (for a review see, e.g., [12]). At higher bombarding e
(ELab � 50 MeV/nucleon), a direct relationship between the nuclear densities and the optical potential is p
as long as the effects of multiple nucleon–nucleon scattering can be neglected [18]. The effects of real, o
nuclear excitations should also be considered, especially for radioactive beams, involving small excitation e

The calculation of elastic scattering amplitudes using eikonal wavefunctions, Eq. (2), is very simple. T
given by [1]

fel(θ)= ik

∞∫
0

db bJ0(qb)
{
1− exp

[
iχ(b)

]}
, (22)

whereq = 2k sin(θ/2), andθ is the scattering angle. The elastic scattering cross section is

dσel

dΩ
= ∣∣fel(θ)

∣∣2. (23)

For numerical purposes, it is convenient to make use of the analytical formula for the Coulomb scattering am
Thus, if one adds and subtracts the Coulomb amplitude,fC(θ) in Eq. (22), one gets

fel(θ)= fC(θ)+ ik

∞∫
0

db bJ0(qb)exp
[
iχC(b)

]{
1− exp

[
iχN(b′)

]}
, (24)

where we replacedb in χN(b) by b′as given by Eq. (9) to account for the nuclear recoil, as explained at the e
Section 1.

The advantage in using this formula is that the term 1−exp[iχN(b)] becomes zero for impact parameters lar
than the sum of the nuclear radii (grazing impact parameter). Thus, the integral needs to be performed on
a small range. In this formula,χC is given by Eq. (4) andfC(θ) is given by Eq. (5), with

φ0 =−ηC +
∞∑
j=0

(
η

j + 1
− arctan

η

j + 1

)
, (25)

andC = 0.5772156. . . is the Euler’s constant.
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At high energies the elastic scattering cross section for proton–nucleus collisions is also well described b
of the eikonal approximation [1]. The optical potential for proton–nucleus scattering is assumed to be of th
[8]

Uopt(r)=U0(r)+US(r)(L.S)+UC(r) (26)

where

U0(r)= V0fR(r)+ iW0fI (r)+ 4iaSWS

d

dr
fI (r) (27)

and

US(r)= 2

(
h̄

mπc

)2

VS
1

r

d

dr
fS(r) (28)

are the central and spin-orbit part of the potential, respectively, andUC(r) is the proton–nucleus Coulom
potential. The Fermi (or Woods–Saxon) functionsfi(r) are defined as before. The third term in Eq. (27) acco
for an increase of probability for nucleon–nucleon collisions at the nuclear surface due to the Pauli pr
The existence of collective surface modes, the possibility of nucleon transfer between ions suffering pe
collisions, and the possibility of breakup of the projectile and the target make possible enhanced absorpti
surface. The spin-orbit interaction in Eq. (28) is usually parametrized in terms of the pion mass,mπ : 2(h̄/mπc)

2 =
4 fm2.

In the eikonal approximation, the proton–nucleus elastic scattering cross section is given by [1]

dσel

dΩ
= ∣∣F(θ)∣∣2 + ∣∣G(θ)∣∣2, (29)

where

F(θ)= fC(θ)+ ik

∞∫
0

db bJ0(qb)exp
[
iχC(b)

]{
1− exp

[
iχ(b)

]
cos

[
kbχS(b)

]}
(30)

and

G(θ)= ik

∞∫
0

db bJ1(qb)exp
[
iχC(b)+ iχ(b)

]
sin

[
kbχS(b)

]
. (31)

In the equation aboveq = 2k sin(θ/2), whereθ is the scattering angle,χ = χN + χC , J0 (J1) is the zero (first)
order Bessel function. The eikonal phaseχS is given by [1]

χS(b)=− 1

h̄v

∞∫
−∞

US(b, z)dz. (32)

Eqs. (23)–(32) describe the elastic scattering cross section ofA(projectile)+B in the center of mass system.
the laboratory the scattering angle is given by [19]

θL = arctan

{
sinθ

γ [cosθ + ρg(ρ,E1)]
}
, (33)

where,ρ =MA/MB ,

E1 = Elab[MeV/nucleon]
mNc2 , (34)



324 C.A. Bertulani et al. / Computer Physics Communications 152 (2003) 317–340

.

ithin the

nuclear
abilities
s. As a

r than
rojectile.

tes. The
nucleus

ctupole

s much
at
s it is
handled
etails by
wheremN is the nucleon mass, and

g(ρ,E1)= 1+ ρ(1+ E1)

1+ E1 + ρ
, γ = 1+ E1 + ρ√

(1+ ρ)2 + 2ρE1
. (35)

γ is the relativistic Lorentz factor of the motion of the center of mass system with respect to the laboratory
The laboratory cross section is

dσel

dΩL

(θL)= {γ 2[ρg(ρ,E1)+ cosθ ]2 + sin2 θ}3/2
γ [1+ ρg(ρ,E1)cosθ ]

dσel

dΩ
(θ). (36)

4. Total nuclear reaction cross sections

The total nuclear inelastic cross section (including fragmentation processes) can be easily calculated w
optical limit of the Glauber model [1]. It is given by

σR = 2π

∞∫
0

[
1− T (b)

]
bdb, (37)

whereT (b), the “transparency function”, is given by

T (b)= exp[2 ImχN(b)]. (38)

5. The semiclassical method and coupled-channels problem

Coulomb Excitation (CE) in high energy collisions is a well established tool to probe several aspects of
structure [20–22]. The CE induced by large-Z projectiles and/or targets, often yields large excitation prob
in grazing collisions. This results from the large nuclear response to the acting electromagnetic field
consequence, a strong coupling between the excited states is expected.

Since there will be very little deflection by the Coulomb field in collisions with impact parameter greate
the grazing one, the excitation amplitudes can be calculated assuming a straight-line trajectory for the p
A small Coulomb deflection correction can be used at the end, with the recipe given by Eq. (9).

We describe next a method for the calculation of multiple excitation among a finite number of nuclear sta
system of coupled differential equations for the time-dependent amplitudes of the eigenstates of the free
is solved numerically for electric dipole(E1), electric quadrupole(E2), electric octupole(E3), magnetic dipole
(M1), and magnetic quadrupole(M2) excitations.

Similarly, one can also calculate the amplitudes for (nuclear) monopole, dipole, quadrupole, and o
excitations.

In high energy nuclear collisions, the wavelength associated to the projectile-target relative motion i
smaller than the characteristic lengths of the system. It is, therefore, a reasonable approximation to trer as a
classical variabler(t), given at each instant by the trajectory followed by the relative motion. At high energie
also a good approximation to replace this trajectory by a straight line. The intrinsic dynamics can then be
as a quantum mechanics problem with a time-dependent Hamiltonian. This treatment is discussed in full d
Alder and Winther in Ref. [23].

The intrinsic state|ψ(t)〉 satisfies the Schrödinger equation{
H0 + V [r(t)]}∣∣ψ(t)〉 = ih̄

∂|ψ(t)〉
∂t

. (39)

Above,H0 is the intrinsic Hamiltonian andV is the channel-coupling interaction.
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Expanding the wave function in the set{|j 〉; j = 1,N} of eigenstates ofH0, whereN is the number state
included in the coupled-channels (CC) problem, we obtain a set of coupled equations. Taking the scalar
with each of the states〈k|, we get

ih̄ȧk(t)=
N∑
j=1

〈k|V (t)|j 〉exp
[
i(Ek −Ej)t/h̄

]
aj (t), k = 1, . . . ,N, (40)

whereEn is the energy of the state|n〉. It should be remarked that the amplitudes depend also on the im
parameterb specifying the classical trajectory followed by the system. For the sake of keeping the notation
we do not indicate this dependence explicitly. We write, therefore,an(t) instead ofan(b, t), restoring the notation
with b, or t , whenever necessary. Since the interactionV vanishes ast → ±∞, the amplitudes have as initia
conditionan(t →−∞)= δn1 and they tend to constant values ast →∞.

A convenient measure of time is given by the dimensionless quantityτ = γ vt/b, whereγ = (1− v2/c2)−1/2 is
the Lorentz factor for the projectile velocityv. A convenient measure of energy isE0 = γ h̄v/b. In terms of these
quantities the CC equations become

dak(τ )

dτ
=−i

N∑
j=1

〈k|W(τ)|j 〉exp(iξkj τ )aj (τ ); W(τ)= V (τ)

E0
; ξkj = Ek −Ej

E0
. (41)

The nuclear states are specified by the spin quantum numbersI andM. Therefore, the excitation probability o
an intrinsic state|n〉 ≡ |In,Mn〉 in a collision with impact parameterb is obtained from an average over the init
orientation(M1) , and a sum over the final orientation of the nucleus, respectively:

Pn(b)= 1

2I1 + 1

∑
M1,Mn

∣∣aM1
In,Mn

(b)
∣∣2. (42)

The total cross section for excitation of the state|n〉 is obtained by the classical expression

σn = 2π
∫
Pn(b)bdb. (43)

6. Time-dependent electromagnetic interaction

We consider a nucleus 2 which is at rest and a projectile nucleus 1 which moves along thez-axis. Nucleus 2 is
excited from the initial state|IjMj 〉 to the state|IkMk〉 by the electromagnetic field of nucleus 1. The nuclear st
are specified by the spin quantum numbersIj , Ik and by the corresponding magnetic quantum numbersMj and
Mk . We assume that nucleus 1 moves along a straight-line trajectory with impact parameterb, which is therefore
also the distance of the closest approach between the center of mass of the two nuclei at the timet = 0. The
interaction,VC(t), due to the electromagnetic field of the nucleus 1 acting on the charges and currents nu
can be expanded into multipoles, as explained in Ref. [25]. One has

WC(τ)= VC(τ)

E0
=

∑
πλµ

Wπλµ(τ), (44)

whereπ =E,M denotes electric and magnetic interactions, respectively, and

Wπλµ(τ)= (−1)λ+1 Z1e

h̄vbλ

1

λ

√
2π

(2λ+ 1)!!Qπλµ(ξ, τ )M(πλ,−µ), (45)

whereM(πλ,µ) is the multipole moment of orderλµ [24],

M(Eλ,µ)=
∫

d3r ρC(r)rλY1µ(r), (46)
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and

M(M1,µ)=− i

2c

∫
d3r JC(r).L(rY1µ), (47)

ρC (JC ) being the nuclear charge (current). The quantitiesQπλµ(τ) were calculated in Refs. [25,26], and for t
E1,E2, andM1 multipolarities. We will extend the formalism toM2 andE3 excitations.

We use here the notation of Edmonds [27] where the reduced multipole matrix element is defined by

Mkj (πλ,µ)= (−1)Ik−Mk

(
Ik λ Ij

−Mk µ Mj

)
〈Ik‖M(πλ)‖Ij 〉. (48)

To simplify the expression (41) we introduce the dimensionless parameterψ
(λµ)
kj by the relation

ψ
(λµ)
kj = (−1)λ+1 Z1e

h̄vbλ

1

λ

√
2π

(2λ+ 1)!!Mkj (πλ,−µ).

Then we may write Eq. (41) in the form

dak(τ )

dτ
=−i

N∑
r=1

∑
πλµ

Qπλµ(ξkj , τ )ψ
(λµ)
kj exp(i ξkj τ )aj (τ ). (49)

The explicit expressions for Eq. (45) can also be obtained by a Fourier transform of the excitation am
found in Ref. [22], i.e.

Wπλµ(τ)= 1

E0
· 1

2π

∞∫
−∞

eiωtVπλµ(ω)dω= 1

2πh̄

∞∫
−∞

ei ξτVπλµ(ξ)dξ, (50)

whereω = (Ek − Ej)/h̄ = E0ξ/h̄ (here we omit the sub-indexeskj for convenience). The expressions f
Vπλµ(ωij ) are given by [22]

Vπλµ(ωij )= Z1e

vγ
(−1)µ

√
2λ+ 1

(
ωij

c

)λ
Gπλµ

(
c

v

)
Kµ(ξij )M(πλ,−µ). (51)

Using the properties ofVπλµ(ω) for negativeω, one can show thatVπλµ(−ω)= (−1)λ+µV ∗
πλµ(ω). Then, one

gets from Eq. (50)

Wπλµ(τ)= Z1e

2πh̄vγ
(−1)µ

(
γ v

bc

)λ√
2λ+ 1Gπλµ

(
c

v

)
Fλµ(ξij , τ )M(πλ,−µ), (52)

where

Fλµ(ξ, τ ) = 2

∞∫
0

cos(ξτ )ξλKµ(ξ)dξ, for λ+µ= even,

= 2

i

∞∫
0

sin(ξτ )ξλKµ(ξ)dξ, for λ+µ= odd. (53)

These integrals can be obtained analytically.
Using the functionsGπλµ(c/v) derived in Ref. [22] we get explicit closed forms for theE1,E2,E3,M1 and

M2 multipolarities,
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QE10(ξij , τ )=− 2

γ
τφ3(τ ); QE1±1(ξij , τ )=∓φ3(τ ), (54)

QM10(ξij , τ )= 0; QM1±1(ξij , τ )= i

(
v

c

)
φ3(τ ), (55)

QE20(ξij , τ )=
√

6
(
2τ2 − 1

)
φ5(τ ),

QE2±1(ξij , τ )=±3
(
2− β2

)
γ τφ5(τ ); QE2±2(τ )= 3φ5(τ ),

(56)

QM20(ξij , τ )= 0,

QM2±1(ξij , τ )=−3i

(
v

c

)
γ τφ5(τ ); QM2±2(τ )=∓3i

(
v

c

)
φ5(τ ),

(57)

and

QE30(ξij , τ )=−3

√
3

10
γ
(
5− β2

)
τ
(
2τ2 − 3

)
φ7(τ ),

QE3±1(ξij , τ )=∓ 3

2
√

10

(
15− 11β2)γ 2(4τ2 − 1

)
φ7(τ ),

QE3±2(ξij , τ )=−γ 15

2

(
3− β2)τφ7(τ );

QE3±3(ξij , τ )=∓15

2

√
3

2
φ7(τ ),

(58)

whereφ(τ)= (1+ τ2)−1/2, andβ = v/c.
The fieldsQπλµ(ξij , τ ) peak aroundτ = 0, and decrease rapidly within an intervalFτ � 1, corresponding to a

collision timeFt � b/γ v. This means that numerically one needs to integrate the CC equations in time wit
interval of rangen×Fτ aroundτ = 0, with n equal to a small integer number.

It is important to notice that the multipole interactions derived in this section assume that the Coulomb p
has an 1/r shape (whenγ → 1) even inside the nuclei. This is a simplification justified by the strong absor
at small impact parameters for which the Coulomb potential deviates from its 1/r form. We have not included th
deviations to the 1/r behavior of the Coulomb interaction inside the nuclei, as the proper relativistic treatm
it is rather complicated. This has been discussed in details in Ref. [28].

7. Time-dependent nuclear excitation: Collective model

In peripheral collisions the nuclear interaction between the ions can also induce excitations. Accordin
collective, or Bohr–Mottelson, particle-vibrator coupling model the matrix element for the transitionj → k is
given by [8,29]

V
(kj)

N(λµ)(r)≡ 〈IkMk|VN(λµ)|IjMj 〉 = − δλ√
2λ+ 1

〈IkMk|Yλµ|IjMj 〉Yλµ(r̂)Uλ(r), (59)

whereδλ is the vibrational amplitude andUλ(r) is the transition potential. To follow the convention of Ref. [2
we useα0 instead ofδ0 in the equation above.

The transition potentials for nuclear excitations can be related to the optical potential in the elastic chann
is discussed in details in Ref. [29]. The transition potentials for isoscalar excitations are

U0(r)= 3Uopt(r)+ r
dUopt(r)

dr
, (60)
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for monopole,

U1(r)= dUopt

dr
+ 1

3
R0

d2Uopt

dr2
, (61)

for dipole, and

U2(r)= dUopt(r)

dr
, (62)

for quadrupole and octupole modes.R0 is the nuclear radius at12 the central nuclear density.
The deformation lengthδλ can be directly related to the reduced matrix elements for electromagnetic trans

Using well-known sum-rules for these matrix elements one finds a relation between the deformation len
the nuclear sizes and the excitation energies. For isoscalar excitations one obtains [29]

α2
0 = 2π

h̄2

mN

1

〈r2〉AEx , δ2
λ�2 =

2π

3

h̄2

mN

λ(2λ+ 1)
1

AEx
, (63)

whereA is the atomic number,〈r2〉 is the r.m.s. radius of the nucleus, andEx is the excitation energy.
For dipole isovector excitations [29]

δ2
1 =

π

2

h̄2

mN

A

NZ

1

Ex
, (64)

whereZ (N ) the charge (neutron) number. The transition potential in this case is modified from Eq. (61) to a
for the isospin dependence [29]. It is given by

U1(r)=−Λ
(
N −Z

A

)(
dUopt

dr
+ 1

3
R0

d2Uopt

dr2

)
, (65)

where the factorΛ depends on the difference between the proton and the neutron matter radii as

Λ
2(N −Z)

3A
= Rn −Rp

1
2(Rn +Rp)

= FRnp

R0
. (66)

Thus, the strength of isovector excitations increases with the difference between the neutron and the prot
radii. This difference is accentuated for neutron-rich nuclei and should be a good test for the quantityFRnp which
enters the above equations.

Notice that the reduced transition probability for electromagnetic transitions is defined by [24]

B(πλ; i→ j)= 1

2Ii + 1

∣∣〈Ij‖M(πλ)‖Ii〉
∣∣2. (67)

These can be related to the deformation parameters by [29]

B(E0)=
[

3ZeR2
0

10π

]2

α2
0, B(E1)= 9

4π

(
NZe

A

)2

δ2
1, (68)

and

B(Eλ)λ�2 =
[

3

4π
ZeRλ−1

0

]2

δ2
λ. (69)

The time dependence of the matrix elements above can be obtained by making a Lorentz boost. One g

V
(kj)

N(λµ)(t) ≡ 〈IkMk|U |IjMj 〉
= −γ δλ√

2λ+ 1
〈IkMk|Yλµ|IjMj 〉Yλµ(θ(t),0)Uλ

[
r(t)

]
, (70)
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wherer(t)= b2 + γ 2v2t2 = b/φ(τ), θ = τφ(τ), and

〈IkMk|Yλµ|IjMj 〉 = (−1)Ik−Mk

[
(2Ik + 1)(2λ+ 1)

4π(2Ij + 1)

]1/2(
Ik λ Ij

−Mk µ Mj

)(
Ik λ Ij
0 0 0

)
. (71)

To put it in the same notation as in Eq. (49), we defineQ
(kj)
Nλµ(τ ) = V

(kj)

N(λµ)(t)/E0, and the coupled-channe
equations become

dak(τ )

dτ
=−i

N∑
j=1

∑
λµ

∑
π

[
Q
(kj)
Nλµ(ξkj , τ )+QCπλµ(ξkj , τ )

]
ψ
(λ)
kj exp(iξkj τ )aj (τ ). (72)

8. Absorption at small impact parameters

If the optical potentialUopt(r) is known, the absorption probability in grazing collisions can be calculated i
eikonal approximation as

A(b)= exp

[
2

h̄v

∞∫
−∞

Im
[
Uopt(r)

]
dz

]
, (73)

wherer =√
b2 + z2. If the optical potential is not known, the absorption probability can be calculated from

optical limit of the Glauber theory of multiple scattering (also from the “t-ρρ” approximation), which yields:

A(b)= exp

{
−σNN

∞∫
−∞

[∫
ρ1(r′)ρ2(r − r′)d3r ′

]
dz

}
, (74)

whereσNN is the nucleon–nucleon cross section andρi is the ground state density of the nucleusi. For stable
nuclei, these densities are taken from the droplet model densities of Myers and Swiatecki [30], but can b
replaced by more realistic densities.

Including absorption, the total cross section for excitation of the state|n〉 is obtained by

σn = 2π
∫
A(b)Pn(b)bdb. (75)

9. Angular distribution of inelastically scattered particles

The angular distribution of the inelastically scattered particles can be obtained from the semic
amplitudes,aM1

In,Mn
(b), described in Section 6. For the excitation of a generic state|n〉, it is given by [31]

f
µ
inel(θ)= ik

∞∫
0

db bJµ(qb)eiχ(b)aµ(b), (76)

where we simplified the notation:aµ ≡ a
M1
In,Mn

, with µ=Mn −M1.
The inelastic scattering cross section is obtained by an average over the initial spin and a sum over the fi

dσinel

dΩ
= 1

2I1 + 1

∑
M1,Mn

∣∣f µinel

∣∣2. (77)
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The program DWEIKO uses Eq. (77) to calculate the angular distribution in inelastic scattering. Bu
instructive to show how it relates to the usual semiclassical approximation. For collisions at high energ
integrand of Eq. (76) oscillates wildly at the relevant impact parameters and scattering angles. One can
approximation

Jµ(qb) �
√

2

πqb
cos

(
qb− πµ

2
− π

4

)
= 1√

2πqb

{
eiqbe−iπ(µ+1/2)/2+ e−iqbeiπ(µ+1/2)/2}, (78)

together with the stationary-phase approximation [32]∫
G(x)eiφ(x)dx �

(
2π i

φ′′(x0)

)1/2

G(x0)eiφ(x0), (79)

wherex0 is the point of stationary phase, satisfying

φ′(x0)= 0. (80)

This approximation is valid for a slowly varying functionG(x).
Only the second term in the brackets of Eq. (78) will have a positive (b= b0> 0) stationary point, and Eq. (76

becomes

f
µ
inel(θ)� i

k√
q

(
i

φ′′(x0)

)1/2√
b0 exp

[
ImχN(b0)

]
exp

[
iχ(b0)+ iπ(m+ 1/2)/2

]
aµ(b0), (81)

where

φ =−qb+ 2η ln(kb)+ Reχ ′
N(b), (82)

andb0, the “classical impact parameter” is the solution of

−q + 2η

b0
+ Reχ ′

N(b0)= 0. (83)

This equation has 2 solutions: (a) one corresponding toclose (or nearside) collisions, (b) and another correspondi
to far (or farside) collisions. These are collisions passing by one side and the opposite side of the target, but
to the same scattering angle. They thus lead to interferences in the cross sections.

In collisions at high energies, the inelastic scattering is dominated by close collisions and, moreover,
neglect the third term in Eq. (83). The conditionφ′(b0)= 0 implies

b0 = 2η

q
= a0

sin(θ/2)
, a0 = Z1Z2e2

2kv
, and φ′′(b0)=−2η

b2
0

=−q2

2η
. (84)

We observe that the relation (84) is the same [with cot(θ/2)� sin−1(θ/2)] as that between the impact parame
and the deflection angle of a particle following a classical Rutherford trajectory.

Inserting these results in Eqs. (76) and (77), one gets

dσ (n)inel

dΩ
=

(
4η2k2

q4

)
1

2I1 + 1

∑
M1,Mn

∣∣aM1
In,Mn

(b0)
∣∣2e2 ImχN (b0). (85)

One can easily see that the factor 4η2k2/q4 is the Rutherford cross section.
The above results show that the description of the inelastic scattering in terms of the eikonal approx

reproduces the expected result, i.e. that the excitation cross sections are determined by the product of the R
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cross sections and the excitation probabilities. This is a commonly used procedure in Coulomb excitatio
energies.

The cross sections in the laboratory system are obtained according to the same prescription as descri
end of Section 3.

10. Angular distribution of γ -rays

After the excitation, the nuclear state|If 〉 can decay by gamma emission to another state|Ig〉. Complications
arise from the fact that the nuclear levels are not only populated by Coulomb excitation, but also by con
andγ -transitions cascading down from higher states (see Fig. 1(a)). To compute the angular distributions o
know the parametersFl(i→ j) andεl(i→ j) for l � 1 [23],

ε2
l (i→ j)= αl(i→ j)F2

l (i→ j), (86)

whereαl is the totall-pole conversion coefficient, and

Fπl =
[

8π(l + 1)

l[(2l + 1)!!]2
1

h̄

(
ω

c

)2l+1]1/2

(2Ij + 1)−1/2〈Ij‖is(l)M(πl)‖Ii〉, (87)

with s(l) = l for electric(π = E) ands(l) = l + 1 for magnetic(π =M) transitions. The square ofFπl is the
l-poleγ -transition rate (in sec−1).

As for the non-relativistic case [23,33], the angular distributions of gamma rays following the excitation d
on the frame of reference used. In our notation, thez-axis corresponds to the beam axis, and the statistical te
are given by (we use the notation of [23,33])

α
(0)
kκ (f )=

(2If + 1)1/2

(2I1 + 1)

∑
Mf=−(M ′

f+κ),M ′
f

(−1)If+Mf

(
If If k

−Mf M ′
f κ

)∑
M1

a∗
IfM

′
f
(M1)aIfMf (M1), (88)

wheref is the state from which the gamma ray is emitted, and 1 denotes the initial state of the nucleus, be
excitation. To calculate the angular distributions of the gamma rays one needs the statistical tensors fork = 0,2,4
and−k � κ � k (see [23,33]).

(a) (b)

Fig. 1. Schematic description of a nuclear excitation (solid line) followed byγ -decay (solid wavy line). (a) The dashed lines are transitions
to internal conversion (unobserved). The dashed wavy line is an unobservedγ -decay. (b) Direct emission of an observed gamma ray.
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Instead of the diagram of Fig. 1(a), we will consider here the much simpler situation in which theγ -ray is
emitted directly from the final excited statef to a lower stateg, which is observed experimentally (see Fig. 1(b
The probability amplitude for this process is

ai→f→g =
∑
Mf

ai→f 〈IgMgkσ |Hγ |IfMf 〉, (89)

where〈IgMgkσ |Hγ |IfMf 〉 is the matrix element for the transitionf → g due to the emission of a photon wi
momentumk and polarizationσ . The operatorHγ accounts for this transition. The angular dependence o
γ -rays is given explicitly by the spherical coordinatesθ andφ of the vectork.

Since the angular emission probability will be normalized to unity, we can drop constant factors and wr
(an average over initial spins is included)

W(θ)=
∑

Mi,Mg,σ

|ai→g|2 =
∑

Mi,Mg,σ

∣∣∣∣∑
Mf

ai→f 〈IgMgkσ |Hγ |IfMf 〉
∣∣∣∣2. (90)

The transition operatorHγ can be written as

Hγ =
∑
l,m

H (lm)
γ =

∑
l,m

Ô (nuc)
lm ⊗ Ô (γ )

lm , (91)

where the first operator in the sum acts between nuclear states, whereas the second operator acts betw
states of well defined angular momentum,l,m.

Expanding the photon state|kσ 〉 in a complete set|lm〉 of the photon angular momentum, and using the Wign
Eckart theorem (angular momentum notation of Ref. [27]), one gets

〈IgMgkσ |Hγ |IfMf 〉 =
∑
l,m

〈kσ |lm〉〈IgMg |H(lm)
γ |IfMf 〉

= (−1)If−Mf
∑
l,m

(
If l Ig

−Mf m Mg

)
〈kσ |lm〉〈Ig‖H(l)

γ ‖If 〉. (92)

One can rewrite|kσ 〉 in terms of |zσ 〉, i.e. in terms of a photon propagating in thez-direction. This is
accomplished by rotating|kσ 〉 to thez-axis, using of the rotation matrix [35],Dl

mm′ , i.e.

〈kσ |lm〉 =
∑
m′
Dl
mm′ (z → k)〈zσ |lm′〉. (93)

Expanding the photon field in terms of angular momentum eigenfunctions, one can show that [24,34]

〈zσ |lmπ〉 =


√

2l + 1

2
δσm for π =E,√

2l + 1

2
σδσm for π =M.

(94)

One has now to express the operatorÔ (γ )

l′m′ in Eq. (91) in terms of the electric and magnetic multipole part
the photon field. This problem is tedious but straightforward [36]. Inserting Eqs. (93) and (94) in Eq. (92),
(neglecting constant factors)

〈IgMgkσ |Hγ |IfMf 〉 =
∑
l,m

(−1)Ig−l+Mf

√
(2l + 1)(2If + 1)

(
Ig l If
Mf m −Mf

)
×Dl

mσ (z → k)[FEl + σFMl], (95)

whereFπl is given by Eq. (87).
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Inserting Eq. (95) into Eq. (90) one gets a series of sums over the intermediate values of the angular m

W(θ) =
∑

Mi ,Mg ,σ,Mf ,

M′
f
,l,m,l′ ,m′

ai→f a
∗
i→f ′

√
(2l+ 1)(2l′ + 1)(2If + 1)

(
Ig l If
Mg m −Mf

)

× (−1)Mf+M ′
f−l−l′

(
Ig l′ If
Mg m′ −M ′

f

)
Dl
mσ

[
Dl′
m′σ

]∗
FlF

∗
l′, (96)

whereFl =FEl + lFMl . The productFlF
∗
l′ is always real since(−1)s(l) =Π (the parity).

Assuming that the particles are detected symmetrically around thez-axis one can integrate overφparticle, what
is equivalent to integrating, or averaging, overφγ . This yields the following integral∫

dφDl
mσ

[
Dl′
m′σ

]∗ = δmm′(−1)m−σ
∑
j

2j + 1√
4π

(
l j l′
m 0 −m

)(
l j l′
σ 0 −σ

)
Pj (cosθ). (97)

To simplify further Eq. (96) we use (see Ref. [23], p. 441, Eq. II.A.61)∑
Mg

(
Ig l If
Mg m −Mf

)(
Ig l′ I ′f
Mg m′ −M ′

f

)

= (−1)2l
′−Ig ∑

k,κ

(−1)k+m−M
′
f (2k+ 1)

(
l l′ k

m −m′ κ

)(
If I ′f k

Mf −M ′
f κ

){
l l′ k

I ′f If Ig

}
(98)

and

∑
σ=(−1,1)

(
l j l′
σ 0 −σ

)
FπlF

∗
πl′ =

2

(
l j l′
1 0 −1

)
FπlF

∗
πl′, for j = even,

0, for j = odd,

where use has been made of the parity selection rule

Π1Π2 =
{
(−1)l, for electric transitions,

(−1)l+1, for magnetic transitions.

Eq. (96) becomes

W(θ) =
∑

Mi ,k,κ,Mf ,M
′
f
,

l,l′,m,m′

(−1)2m
′+k+Mf ai→f a

∗
i→f ′

√
(2l + 1)(2l′ + 1)(2If + 1)

× (2j + 1)(2k+ 1)

(
If If k

Mf −M ′
f κ

)(
If l′ k

Mf −m′ κ

)
×

(
l j l′
1 0 −1

)(
l j l′
m 0 −m′

){
l l′ k

I ′f If Ig

}
FlF

∗
l′Pj (cosθ). (99)

Using∑
m,m′

(−1)2m
′
(
l j l′
m 0 −m′

)(
l j l′
1 0 −1

)
= (−1)l+l′+k 1

2k+ 1
δkj δκ0,

one gets
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MAX),
optical
W(θ) =
k=even,

Mi ,Mf ,l,l
′

(−1)l+l +k (2l + 1)(2l′ + 1)(2If + 1)(2k + 1)|ai→f |2

×
(
If If k

Mf −Mf 0

)(
l j l′
1 0 −1

){
l l′ k

I ′f If Ig

}
FlF

∗
l′Pj (cosθ),

or in a more compact form

W(θ)=
∑
k=even,

Mi ,Mf ,l,l
′

(−1)Mf |ai→f |2Fk(l, l′, Ig, If )
(
If If k

Mf −Mf 0

)√
2k+ 1Pk(cosθ)FlF

∗
l′, (100)

where

Fk(l, l
′, Ig, If ) = (−1)If−Ig−1

√
(2l + 1)(2l′ + 1)(2If + 1)(2k+ 1)

×
(
l l′ k

1 −1 0

){
l l′ k

If If Ig

}
. (101)

The angular distribution ofγ -rays described above is in the reference frame of the excited nucleus. To
the distribution in the laboratory one has to perform the transformation

θL = arctan

{
sinθ

γ [cosθ + β]
}
, (102)

and

W(θL)= γ 2(1+ β cosθ)2W(θ), (103)

whereγ is given by Eq. (35), andβ = √
1− 1/γ 2. The photon energy in the laboratory isEph

L = γE
ph
cm(1 +

β cosθ).

10.1. Computer program and user’s manual

All nuclear quantities, either known from experiments or calculated from a model, as well as the con
realized in the experiment, are explicitly specified as input parameters. The program DWEIKO then comp
optical potentials (if required), differential cross section for elastic scattering, and Coulomb+ nuclear excitation
probabilities and cross sections, as well as the angular distribution of theγ -rays.

The units used in the program are fm (femtometer) for distances and MeV for energies. The output cross
are given in millibarns.

10.1.1. Input parameters
To avoid exceeding use of computer’s memory, the file DWEIKO.DIM contains the dimension of the

and sets in the maximum number of levels (NMAX), maximum total number of magnetic substates, (NST
maximum number of impact parameters (NBMAX), and maximum number of coordinates points used in the
potentials and absorption factors, (NGRID). A good estimate is NSTMAX= (2Jmax+ 1)NST, whereJmax is the
maximum angular momentum of the input states.

Most integrals are performed by the 1/3-Simpson’s integration rule. It is required that NGRID be aeven number,
since an extra point (origin) is generated in the program.

The input file allows for comment lines. These should start with a ‘#’ sign.
The file DWEIKO.IN contains all other input parameters. These are

(1) AP, ZP, AT, ZT, which are the projectile and the target mass and charge numbers, respectively.



C.A. Bertulani et al. / Computer Physics Communications 152 (2003) 317–340 335

2,

ipole,

rules
ter the

ns.
putation
is

meter.

at the

,

(2) ECA, the bombarding energy per nucleon in MeV.
(3) EX( j) and SPIN( j): the energy and spins of the individual states j.
(4) MATE1( j,k), MATE2( j,k), MATE3( j,k), MATM1( j,k), MATM2( j,k) the reduced matrix elements for E1, E

E3 and M1, M2 excitations,j → k, (as defined in (48)), in e fm (E1,M1), e fm2 (E2,M2), and e fm4 (E3) units.
(5) F(0,j), F( 1,j), F(2,j), F(3,j), the fractions of sum rule of the deformation parameters for monopole, d

quadrupole, and octupole nuclear excitations, entering Eq. (70).
To simplify the input, the deformation parameters are calculated internally in DWEIKO using the sum
(63)–(66), withEx replaced by the energy of the corresponding state, EX( j). The user needs to en
fraction of those sum rules exhausted by the state j, i.e. the program usesδ′λ = fλδλ, with (0� fλ � 1) entered
by the user, andδλ given by Eqs. (63)–(66).

The input cards in file DWEIKO.IN are organized as following:

(1) AP, ZP, AT, ZT, ECA
Charges and masses (AP, ZP, AT, ZT), bombarding energy per nucleon in MeV/nucleon.

(2) IW, IOPM, IOELAS, IOINEL, IOGAM
IW = 0(1) for projectile (target) excitation.
IOPM= 1(0) for output (none) of optical model potentials.
IOELAS= (0)[1]2 for (no output) [center of mass] laboratory elastic scattering cross section.
IOINEL = (0)[1]2 for (no output) [center of mass] laboratory inelastic scattering cross section.
IOGAM = (0)[1]2 for (no output) [output of statistical tensors] output of gamma-ray angular distributio
The statistical tensors are calculated for each impact parameter, so that one can use them in the com
of dPγN→M(b)/dΩγ = PN(b).dWγN→M/dΩγ . If IW = 0, a transformation to the laboratory system
performed.

(3) NB, ACCUR, BMIN, IOB
NB = number of impact parameter points (NB� NBMAX).
ACCUR = accuracy required for the time integration of the CC-equations for each impact para
A reasonable value is ACCUR= 0.001, i.e. 0.1%.
BMIN = minimum impact parameter (enter 0 for default. The program will integrate fromb = 0, with strong
absorption included).
IOB = 1(0) prints (does not print) out impact parameter probabilities.

(4) IOPW, IOPNUC
IOPW is a switch for the optical potential model (OPM).
IOPW= 0 (no OMP, IOELAS= 0), 1 (Woods–Saxon), 2 (read), 3 (t-ρρ folding potential), 4 (M3Y folding
potential).
IOPNUC= 0 (no nuclear), 1 (vibrational excitations).
If the optical potential is provided (IOPW= 2), it should be stored in ‘optw.in’ in rows of R× Real[U(R)]×
Imag[U(R)]. The program makes an interpolation to obtain intermediate values.
The first line in ‘optw.in’ is the number of rows (maximum= NGRID).

(5) V0 [MeV], r0 [fm], d [fm], VI [MeV], r0_I [fm], dI [fm]
If IOPW = 1, enter V0 [VI]= real [imaginary] part (> 0) of Woods–Saxon potential, r0 [r0_I]= radius
parameter(R= r0∗(AP1/3 + AT1/3), d [dI] = diffuseness,
If IOPW is not equal to 1, place a ‘#’ sign at the beginning of this line, or delete it.

(6) VS0 [MeV], r0_S [fm], dS [fm], V_surf [fm], a_surf [fm]
If IOPW = 1 and AP, or AT, equal to one (proton), enter here spin-orbit part. If not, place a ‘#’ sign
beginning of this line, or delete it.
VS0 = depth parameter of the spin-orbit potential (> 0), r0_S= radius parameter, dS= diffuseness
V_surf= depth parameter of the surface potential (> 0), a_surf= diffuseness.
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(7) Wrat
If IOPW = 4, enter Wrat= ratio of imaginary to real part of M3Y interaction.
If IOPW is not equal to 4, place a ‘#’ sign at the beginning of this line, or delete it.

(8) THMAX, NTHETA
If IOELAS = 1, 2 or IOINEL= 1, 2 enter here THMAX, maximum angle (in degrees and in the cent
mass), and NTHETA (� NGRID), the number of points in the scattering angle.
If IOELAST or IOINEL are not 1, or 2, place a ‘#’ sign at the beginning of this line, or delete it.

(9) JINEL
If IOINEL = 1 enter the state (JINEL) for the inelastic angular distribution (1< JINEL� NST).
If IOINEL is not 1, or 2 place a ‘#’ sign at the beginning of this line, or delete it.

(10) NST
NST (� NMAX) is the number of nuclear levels.

(11) I, EX(I), SPIN(I)
Input of state labels (I), energy EX(I), and angular momentum SPIN(I). I ranges from 1 to NST and
be listed in increasing value of energies.

(12) I, J, E1[e fm], E2[e fm2], E3[e fm3], M1[e fm], M2[e fm2]
Reduced matrix elements for E1, E2, E3, M1 and M2 excitations:〈Ij‖O(E/M;L)‖Ii〉, j � i, for the
electromagnetic transitions. Matrices for reorientation effects,i→ i, can also be given.
Add a row of zeros at the end of this list. If no electromagnetic excitation is wanted just enter a row of

(13) J, F0, F1, F2, F3
If IOPNUC= 1 enter sum rule fraction of nuclear deformation parameters for monopole, dipole, quad
nuclear excitations (ALPHA0, DELTE1, DELTE2, DELTE3) for each excited state J.
If IOPNUC= 0 insert a comment card (‘#’) in front of each entry row, or delete them.

(14) IFF, IGG, THMIN, THMAX, NTHETA
If IOGAM = 2, enter IFF, IGG= initial and final states (IFF> IGG) for the gamma transition.
THMIN, THMAX = minimum and maximum values of gamma-ray angles (in degrees) in the labo
frame.
NTHETA = number of angle points (� NGRID).

10.1.2. Computer program
The program starts with a catalogue of the nuclear levels by doing a correspondence of integers to each

substate.J = 1 corresponds to the lowest energy level, with the magnetic quantum numberM1 =−I1. J increases
with M1 and so on for the subsequent levels.

A mesh in impact parameter is done, reserving half of the impact parameter points, i.e.NB/2, to a finer mesh
around the grazing impact parameter, defined asb0 = 1.2(A1/3

P +A
1/3
T ) fm. The intervalb0/3 fm � b � 2b0 fm is

covered by this mesh. A second mesh, with the other half of points, extends fromb= 2b0 fm to b= 200 fm. Except
for the very low excitation energies (Ej � 1 MeV), combined with very large bombarding energies (γ � 1), this
upper value ofb corresponds to very small excitation probabilities, and the calculation can be safely stoppe
reason for a finer mesh at small impact parameters is to get a good accuracy at the region where both
Coulomb, and absorption factors play equally important roles. At large impact parameters the probabilities
smoothly withb, justifying a wider integration step.

A mesh of NGRID points in polar coordinates is implemented to calculate the nuclear excitation potenti
absorption factors, according to the equations presented in Sections 2.2 and 2.3. The first and second der
the optical potentials are calculated by the routine DERIVATIVE. A 6-point formula is used for the purpos
routines TWOFOLD computes the folding over the densities, as used in Eq. (74). Routines RHOPP and
generate the liquid drop densities, and the routine PHNUC computes the eikonal integral appearing in Eq
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Repeated factors for the nuclear and for the Coulomb potentials are calculated in the main program an
in the main program with the arrays PSITOT and PSINUC. These arrays are carried over in a common blo
routine VINT which computes the functionQ(kj)

Nλµ(ξkj , τ )+QCπλµ(ξkj , τ ), used in Eq. (72).
The optical potentials are read in routine OMP_READ, or calculated in routines OMP_WS (Woods–S

OMP_DEN (t-ρρ) and OMP_M3Y (M3Y). Routine TM3Y sets the M3Y interaction. DEFORM calculates
effective potentials in the Bohr–Mottelson model. SIGNNE and PHNNE return the nucleon–nucleon cross s
and the parameters of the nucleon–nucleon scattering amplitude 17. PHNUCF calculates the eikonal pha
“t-ρρ” approximation with the help of the Fourier transform of the ground state densities, provided by FOU

The time integrals are performed by means of an adaptive Runge–Kutta method. All routines used
purpose have been taken from the Numerical Recipes [38]. They are composed by the routines ODEINT
RKCK, and RK4. The routine ODEINT varies the time step sizes to achieve the desired accuracy, contro
the input parameter ACCUR. The right side of (72) is computed in the routine DCADT, used externally
fourth-order Runge–Kutta routine RK4. RKCK is a driver to increase time steps in RK4, and RKQS is u
ODEINT for the variation of step size and accuracy control. The main program returns a warning if the s
errors for all magnetic substates is larger than 10× ACCUR.

Elastic scattering is calculated within the routine ELAST for nucleus–nucleus, and ELASTP for proton–n
collisions. Inelastic scattering is calculated within the routine INELAST, andγ -ray angular distributions ar
calculated in the routine GAMDIS.

The routine THREEJ computes Wigner-3J coefficients (and Clebsh–Gordan coefficients), RACA
6j-symbols, or Racah coefficients, YLM is used to compute the spherical harmonics, LEGENGC the Le
polynomials, and BESSJ0 (BESSJ1) [BESSJN] the Bessel functionJ0 (J1) [Jn].

The routines SPLINE and SPLINT perform a spline interpolation of the excitation amplitudes, before th
used for integration by means of the routines QTRAP and QSIMP, from Numerical Recipes [38].

11. Test input and things to do

A test input is shown below. It corresponds to the excitation of giant resonance states in Pb by mean
reaction17O (84 MeV/nucleon)+ 208Pb. Assuming that an isolated state is excited, and that it exhausts ful
sum rules, one gets (B(Eλ)≡ B(Eλ,Ex))

B(E1)= 9

4π

h̄2

2mN

NZ

AEx
e2, (104)

and, for (λ > 1)

B(Eλ)= 3

4π
λ(2λ+ 1)

R2

Ex

h̄2

2mN

e2 ×
{
Z2/A, for isoscalar excitations;
NZ/A, for isovector excitations; (105)

From these values, the reduced matrix elements can be calculated from the definition in Eq. (67).

Example 1. The input list below calculates the excitation cross sections for the isovector giant dipole (IVGD
isoscalar giant quadrupole (ISGQR) resonances in Pb, for the above mentioned reaction. The user shoul
this sample case and verify that the output numbers check those in Ref. [37]. In particular, compare the re
elastic scattering with the upper Fig. 2 of Ref. [37]. Also compare the inelastic excitation of the IVGDR w
upper Fig. 3 of Ref. [37]. Following this it might be instructive to change the input of energies, spins, and exc
strengths for low lying states, giant resonances, etc.

# Input of program ‘DWEIKO’
# Ap Zp At Zt Einc[MeV/u]
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hoose
17 8 208 82 84.
# IW = 0(1) IOPM= 0(1) IOELAS= 0(1)[2] IOINEL = 0(1)[2] IOGAM = 0(1)[2]

1 1 1 1 2
# NB ACCUR BMIN[fm] IOB = 1(0)

200 0.001 0. 0
# IOPW IOPNUC

1 1
# V0 [MeV] r0 [fm] d [fm] VI [MeV] r0_I [fm] dI [fm]

50. 1.067 0.8 58. 1.067 0.8
# VS0 [MeV] r0_ S[fm] dS [fm] Vsurf [fm] dsurf

# 15. 1.02 0.650. 0.8
# Wrat
# 1.
# THMAX NTHETA

6. 150
# JINEL

3
# NST

3
# I Ex[MeV] SPIN

1 0 0
2 10.9 2
3 13.5 1

# i ->j E1[e fm] E2[e fm**2] E3[e fm**3] M1[e fm] M2[e fm** 2]
1 2 0 76.8 0 0 0
1 3 9.3 0 0 0 0
0 0 0 0 0 0 0

# j F0 F1 F2 F3 (NOTE: fractions of sum rules for deformation parameters)
2 0 0 0.6 0
3 0 1.1 0 0

# IFF IGG THMIN THMAX NTHETA
2 1 20. 70. 150

Example 2. Table 3 gives the results of an experiment on Coulomb excitation of S and Ar isotopes [39]. C
the minimum impact parameter, BMIN, so that it reproduces the maximum scattering angle (θmax= 4.1◦) in the
experiment (use the formulab = a0 cot(θ/2) and read the last paragraph of Section 1). Using theB(E2) values in
the table reproduce the cross section values (careful with the units!).

Table 3
Experimental results on Coulomb excitation of S and Ar projectiles impinging on a197Au target [39]

Secondary beam 38S 40S 42S 44Ar 46Ar

Elab [MeV/nucleon] 39.2 39.5 40.6 33.5 35.2

Energy of the first excited state [MeV] 1.286(19) 0.891(13 0.890(15) 1.144(17) 1.554(26)

σ (E2;0+g.s. → 2+1 ; θlab � 4.1◦) [mb] 59(7) 94(9) 128(19) 81(9) 53(10)

B(E2;0+g.s. → 2+1 ) [e2 fm4] 235(30) 334(36) 397(63) 345(41) 196(39)
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Example 3. Compare the results of this code with those from the ECIS code [40–42]. But notice th
ECIS code has relativistic corrections in kinematic variables only. The relativistic dynamics in the Co
and nuclear interaction are not accounted for. Thus, one should expect disagreements for high energy
(Elab � 100 MeV/nucleon).

12. Output

The output of DWEIKO are in the files

(1) DWEIKO.OUT: Probabilities and cross sections;
(2) DWEIKO_OMP.OUT: Optical model potential;
(3) DWEIKO_ELAS.OUT: Elastic scattering cross section;
(4) DWEIKO_INEL.OUT: Inelastic scattering cross section;
(5) DWEIKO_STAT.OUT: Statistical tensors;
(6) DWEIKO_GAM.OUT: Angular distributions of gamma-rays.
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