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Abstract

A computer program is presented which calculates the elastic and inelastic scattering in intermediate and high energy nuclear
collisions. A coupled-channels method is used for Coulomb and nuclear excitatibis B2, E3, M1, andM 2 multipolarities,
respectively. The program applies to an arbitrary nucleus, specified by the spins and energies of the levels and by reduced matrix
elements. For given bombarding conditions, the angular distribution of elastic and inelastic scattered particles and angular
distributions of gamma-rays from the excited nucleus are computed.

0 2002 Elsevier Science B.V. All rights reserved.

PACS 25.70.-z; 25.70.De

Keywords: Coupled-channels; Elastic scattering; Inelastic scattering; Eikonal

PROGRAM SUMMARY Operating systems: WINDOWS or UNIX

Program language used: Fortran-77
Title of program: DWEIKO (Distorted Wave EIKOnal Approxima-
tion) Memory required to execute with typical data: 8 Mbytes of RAM
memory and 1 MB of hard disk space
Catalogue identifier: ADRN
No. of bitsin aword: 64
Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/ADRN
Memory required for test run with typical data: 1 MB
Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland No. of bytes in distributed program, including test data, etc.: 27 407

Computers: The code has been created on an IBM-PC, butalso runs pistribution format: tar gzip file
on UNIX machines

Y This program can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/ADRN
* Corresponding author.
E-mail address: bertulani@nscl.msu.edu (C.A. Bertulani).

0010-4655/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0010-4655(02)00824-X



318 C.A. Bertulani et al. / Computer Physics Communications 152 (2003) 317-340

Keywords. Elastic scattering, Coulomb excitation, relativistic colli-  pact parameter” entering the scattering matrix elements, one solves
sions, coupled-channels, nuclear excitation coupled-channels equations for the time dependent Coulpmb-

clear field expanded into multipoles. A four-point Runge—Kutta pro-
Nature of physical problem cedure is used to solve the coupled-channels equations. The elastic

The program calculates elastic scattering differential cross sec- scattering is calculated purely with the eikonal approximation. The
tions, probabilities, and cross sections for inelastic scattering coupled-channels is a separate calculation for the inelastic ampli-
in nuclear collisions at intermediate and high energi€gy > tudes. The inelastic couplings, therefore, have no effect on the ob-
50 MeV/nucleon). It is particularly useful in the analysis of exper- tained elastic scattering cross sections.

iments with stable and unstable nuclear beams running at several

intermediate-energy heavy ion accelerators around the world. Typical running time
_ Almost all the CPU time is consumed by the solution of the coupled-
Method of solution channels equations. It is about 2 min on a 1 GHz Intel P4-processor

Eikonal wavefunctions are used for the scattering. For each “im- machine for the inclusion of 5 nuclear states.

LONG WRITE-UP

1. Introduction

The eikonal approximation is very useful in the study of nucleus—nucleus scattering at high energies [1]. In the
Distorted Wave Born Approximation (DWBA) the transition amplitude for the reactian ») B involves a matrix
element of the form [2]

Towsa = [ 5700 b, BlUmla, A2 . (1)

whereUint(r) is the interaction potential, and, (¥;) is the scattering wave function in the entrance (exit) channel,
a=a+A(B=>b+B).{a, Al and(b, B| are the initial and final intrinsic wavefunctions of the system, respectively.
Using the eikonal approximation for the wave functions one has [1]

v () ~explig.r +ix ()}, (2)
wherey (b) is the eikonal phase, given by

1 o0
X(b)=—af dz Uopt(r). )

The conditions of validity of the eikonal approximation are: (a) forward scattering, &e1 radian, and (b) small
energy transfers from the bombarding energy to the internal degrees of freedom of the projectile, or target. Both
conditions apply perfectly well to direct processes in nuclear scatterifg@at 50 MeV/nucleon [1].

In the above equatior/op(r) is the optical potential, witlr = /62 + z2, whereb can be interpreted as the
impact parameter. For the Coulomb part of the optical potential this integral diverges. One solves this by using
X = xn + xc, whereyy is given by the equation above without the Coulomb potential and writing the Coulomb
eikonal phaseyc as

xc(b) =2nIn(kb), 4)

wheren = Z17,€?/hv, Z1 andZ, are the charges of projectile and target, respectivelytheir relative velocity,
k their wavenumber in the center of mass system. Eq. (4) reproduces the exact Coulomb scattering amplitude when
used in the calculation of the elastic scattering with the eikonal approximation [2]:

VAV AL-4
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wheregg = argl'(1 + in/2). This is convenient for the numerical calculations since, as shown below, the elastic
scattering amplitude can be written with the separated contribution of the Coulomb scattering amplitude. Then,
the remaining integral (the second term on the right-hand side of Eq. (24)) converges rapidly for the scattering at
forward angles.

Although the Coulomb phase in Eq. (4) diverge$at 0, this does not pose a real problem, since the strong
absorption suppresses the scattering at small impact parameters. One can correct it for a finite charge distribution
of the nucleus [3]. For example, assuming a uniform charge distribution with r&dius Coulomb phase becomes

xc(®) = 2n{O b — R)In(kb) + O (R — b)[In(kR) + In(1+ /1 — b%/R?)

—J1-b?2/R2 - L (1-b%/R?)%?}, (6)

where® is the step function. This expression is finite toe 0, contrary to Eq. (4). If one assumes a Gaussian
distribution of charge with radiuR, appropriate for light nuclei, the Coulomb phase becomes

xc(b) =2y {In(kb) + 3 E1(b*/R?)}, @)

where the error functioir'; is defined as

e¢]

—t
El(x):/ert. ®)

X

This phase also converges,fas> 0. The cost of using the expressions (6) and (7) is that the Coulomb scattering
amplitude becomes more complicated than (5). Moreover, we have verified that the elastic and inelastic scattering
cross sections change very little by using Egs. (6) or (7), instead of Eq. (4).

The simplification introduced by the eikonal approximation is huge, as one avoids the calculation of scattering
wavefunctions by solving numerically the Schrédinger equation for each partial wave, as is done DWBA for nuclear
scattering at low energies. For computer programs appropriate for nuclear scattering at low energies, see, e.g., the
codes FRESCO [4] and DWUCKA4 [5].

The eikonal approximation is also valid in relativistic collisions, as it can be derived from relativistic wave
equations, e.g., the Klein—Gordon equation [6]. Moreover, since it involves directions transverse to the beam, it
is relativistically invariant. The eikonal wavefunction also allows the interpretation of the internal wave function
variableb as an impact parameter. Thus, one can use the concept of classical trajectories, to obtain excitation
amplitudes and use them as input to the scattering amplitudes.

Atintermediate energy collision€(;p >~ 50 MeV/nucleon), one must perform a correction due to the Coulomb
deflection of the particle’s trajectory. This correction amounts to calculating all elastic and inelastic integrals
replacing the asymptotic impact parameiday the distance of closest approach in Rutherford orbits, i.e.

b’:ao—i—,/a(z)—i—bz, 9)

whereag = Z1Z,€%/mv? is half the distance of closest approach in a head-on collision of point charged particles.
This correction leads to a considerable improvement of the eikonal amplitudes for the scattering of heavy systems
in collisions at intermediate energies.

As has been shown in Ref. [7], the nucleus—nucleus elastic and inelastic scattering at intermediate and high
energies is corrected appropriately for relativistic kinematics if one replaces the quantity Eq. (9) by
ayy= Z1Z2€*/ymv?, wherey = (1—v?/c?)~Y/2is the Lorentz factor.
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2. Theoptical potentials

Usually, the optical potentials used in DWBA calculations are described in terms of Woods—Saxon functions,
both for the real and for the imaginary part of the potentials, i.e.

Uopt=_VOf(VaRraar)_iWOf(VaRi»ai)a (10)

where f(r, R,a) = 1/{1+ exfd(r — R)/a]}. The parameters entering these potentials are fitted to reproduce the
elastic scattering data [8].
In nuclear collisions at intermediate and high energiag,(> 50 MeV/nucleon) the elastic scattering data are
very scarce. One has to resort to folding models with effective interactions, at least as a guide for the experimental
analysis. Among these models, the M3Y interaction is very popular. It has been shown to work quite reasonably
for elastic and inelastic scattering of heavy ions at low and intermediate energy collisions [9,10].
In its simplest form the M3Y interaction is given by two direct terms with different ranges, and an exchange
term represented by a delta interaction:
® Ae*ﬁls N Be*ﬁzs
t(s) =
Bis Bas
whereA = 7999 MeV,B = —2134 MeV,C = —276 MeV fn?, 1 = 4 fm™%, andp, = 2.5 fm™. The real part of
the optical potential is obtained from a folding of this interaction with the ground state densijtiasd o, of the
nucleiA andB:

szsy(r)==‘/’d3r1d3r2pA(r1>pB<rzn<s>, (12)

with s=r +ry —r1. The imaginary part of the optical potential is usually parameterized aSoji= AUmay,
with A = 0.6-0.8[9,10].

This double folding M3Y potential yields values at the central region,0, which are too large compared to
usual optical potentials. However, one has to consider that the nuclear scattering at intermediate and high energies
(E\ap = 50 MeV/nucleon) is mostly peripheral. Central collisions will lead to fragmentation reactions which are not
being considered here. Thus, the only requirement here is that the optical potential reproduces well the peripheral
processes. This is the case of the M3Y potential and th*tpotential discussed below.

Another simple method to relate the nuclear optical potential to the ground-state densities isottie “t-
approximation. This approximation has been extensively discussed in the literature [12,13]. In its simplest version,
neglecting the spin-orbit and surface terms, the optical potential for proton—nucleus collisions is given by

Uopt(r) = <tpn)pn (r)+ <tpp)pp(r)’ (13)

wherep, (pp,) are the neutron (proton) ground state densities(andlis the (isospin averaged) transition matrix
element for nucleon—nucleon scattering at forward directions,

+C8(9), (11)

2n h? h .
mm=m=—%fmm=m=—§%mm+m (14)

whereo,; is the free proton—nucleon cross section apdis the ratio between the imaginary and the real part of
the proton—nucleon scattering amplitude. The basic assumption here is that the scattering is given solely in terms
of the forward proton—nucleon scattering amplitude and the local one-body density [12].

For nucleus—nucleus collisions, the extension of this method leads to an optical potential of the form

Uopt(r) = / (tvn (@=0))oa(r —r)pp(r) &, (15)
wherer is the distance between the center-of-mass of the nuclei. In this expression one uses the isospin average
Z1Z2+ N1N> Z1Ny + Z7N1
t = ton- 16
(tNN) A1Az pp A1Az pn ( )



C.A. Bertulani et al. / Computer Physics Communications 152 (2003) 317-340 321

Table 1
Parameters [14] for the nucleon—nucleon amplitude, as given by Eq. (17)
E Opp app Epp Opn apn &pn
[MeV/nucl] [mb] [fm?] [mb] [fm?]
100 33.2 187 0.66 72.7 00 036
150 26.7 153 0.57 50.2 ®6 058
200 23.6 ns 0.56 42.0 71 068
325 24.5 o5 0.26 36.1 a6 036
425 27.4 o7 0.21 33.2 @5 027
550 36.9 032 0.04 35.5 -0.24 0085
650 42.3 016 0.07 37.7 —0.35 009
800 47.3 006 0.09 37.9 -0.20 012
1000 47.2 —0.09 0.09 39.2 —0.46 012
2200 44.7 —-0.17 0.12 42.0 —-0.50 014
Table 2

Same as in Table 1, but for lower incident energies [11]. The values are averaged
over pp and pn collisions. (&) is taken as zero at these energies

E [MeV/nucl] (onn) [fm?] (ann)
30 196 0.87
38 146 0.89
40 135 0.9
49 104 0.94
85 61 1

The parameters of the nucleon—nucleon cross scattering amplitud€ggor 100 MeV/nucleon are shown
in Table 2, extracted from Ref. [14]. At lower energies one can use the isospin average values of Table 2, which
describes well the nucleus—nucleus elastic scattering at lower energies [11].

Formula (15) can be improved to account for the scattering angle dependence of the nucleon—nucleon
amplitudes. A good parametrization [14] for the nucleon—nucleon scattering amplitude is given by

k .
Inv @ = 4L7;VUNN(| Fayy)e N e (17)

The nuclear scattering phase then becomes [1]
xn (D) =f dr dr’ p1(Nywn (Ib —s— ) p2(r"), (18)

where the profile functiomry v (b) is defined in terms of the two-dimensional Fourier transform of the elementary
scattering amplitude

yan(b) = / expl—iq.b] fivw (@) da (19)

27TikNN

ands, s are the projections of the coordinate vectars' of the nuclear densities on the plane perpendicular to the
z-axis (beam-axis). For spherically symmetric ground-state densities Eq. (18) reduces to the expression

o0
xn () = / dq qpa(q) fnn(q)pB(q)Jo(gb), (20)
0
wherep; (¢) are the Fourier transforms of the ground state densities.
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The optical potential can also be obtained by using an inversion method of the eikonal phases. These phases
might be chosen to fit the experimental data. In this approach, one uses the Abel transform [1]

hv d x(b)
Uorlr) =17 dr/ (b2—r2)1/2 (21)

This procedure has been tested in Ref. [15] leading to effective potentials which on the tail, where the process takes
place, are very close to those obtained with phenomenological potentials of Refs. [16,17]. It can also be proved
that under certain approximations, and for Gaussian density distributions, the potential obtained through Eg. (21)
coincides with that obtained with the double folding procedure [15].

3. Elastic scattering

The elastic scattering in nucleus—nucleus collisions is a well established tool for the investigation of ground
state densities [8]. This is because the optical potential can be related to the ground state densities by means of
a folding of the nucleon—nucleon interaction with the nuclear densities of two colliding nuclei. But, as we have
seen in the last section, this relationship is not straightforward. It depends on the effective interaction used, a
proper treatment of polarization effects, and so on (for a review see, e.g., [12]). At higher bombarding energies
(ELab = 50 MeV/nucleon), a direct relationship between the nuclear densities and the optical potential is possible,
as long as the effects of multiple nucleon—nucleon scattering can be neglected [18]. The effects of real, or virtual,
nuclear excitations should also be considered, especially for radioactive beams, involving small excitation energies.

The calculation of elastic scattering amplitudes using eikonal wavefunctions, Eq. (2), is very simple. They are
given by [1]

o
fel(6) = ik/ db bJo(gb){1—exfix (]} (22)
0
whereq = 2k sin(0/2), andd is the scattering angle. The elastic scattering cross section is

dGel

= fel(®)]>. (23)

For numerlcal purposes, itis convenient to make use of the analytical formula for the Coulomb scattering amplitude.
Thus, if one adds and subtracts the Coulomb amplitfid&]) in Eq. (22), one gets

o0

fel(0) = fc(6) + ik/ db bJo(gb) exdixc (0)]{1 — expixn (B)]}, (24)
0

where we replacetl in xy (b) by b'as given by Eq. (9) to account for the nuclear recoil, as explained at the end of
Section 1.

The advantage in using this formula is that the termexfi x y (b)] becomes zero for impact parameters larger
than the sum of the nuclear radii (grazing impact parameter). Thus, the integral needs to be performed only within
a small range. In this formulgy is given by Eq. (4) and¢ () is given by Eq. (5), with

o
Ui Ui
o= —UC‘FZ(m —arctanﬁ) (25)

=0 /
andC = 0.5772156.. is the Euler’s constant.
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At high energies the elastic scattering cross section for proton—nucleus collisions is also well described by means
of the eikonal approximation [1]. The optical potential for proton—nucleus scattering is assumed to be of the form

[8]

Uopt(r) = Uo(r) + Us(r)(L.S) + Uc(r) (26)
where
d
Uo(r) = Vofr(r) +iWo fi(r) + 4iasWsEf1 () (27)
and
A \° 1d
Us(r) =2< ) Vs——fs(r) (28)
myc r dr

are the central and spin-orbit part of the potential, respectively, @a@) is the proton—nucleus Coulomb
potential. The Fermi (or Woods—Saxon) functigfi¢) are defined as before. The third term in Eq. (27) accounts
for an increase of probability for nucleon—nucleon collisions at the nuclear surface due to the Pauli principle.
The existence of collective surface modes, the possibility of nucleon transfer between ions suffering peripheral
collisions, and the possibility of breakup of the projectile and the target make possible enhanced absorption at the
surf%ce. The spin-orbit interaction in Eq. (28) is usually parametrized in terms of the pionmas¥/i/mc)? =
4 fme.

In the eikonal approximation, the proton—nucleus elastic scattering cross section is given by [1]

(;(g' =|FO)f +|cO)|, (29)
where
F(0) = fc(0) +ik 7 dbbJo(gb) exfixc (0)]{1 — explix (b)] codkbxs(b)]} (30)
and 0
G@O)= ik]odb bJ1(gb) exfixc (b) +ix ()] sin[kbyxs®)]. (31)
0

In the equation above = 2k sin(6/2), whered is the scattering angle; = xy + xc, Jo (J1) is the zero (first)
order Bessel function. The eikonal phageis given by [1]

1 o0
xs(b) = . f Us(b, z) dz. (32)
v

Egs. (23)—(32) describe the elastic scattering cross sectidpobjectile) + B in the center of mass system. In
the laboratory the scattering angle is given by [19]

sing
0 = arctal , 33

‘ r{av[cos9+pg<p,51)]} (33)
where,p = M /M3p,

Ejap[MeV/nucleon
mch

&= , (34)
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wherem y is the nucleon mass, and
1+p(1+&1) 1+&+0p

g, &)= —F—7—"—, y = .
I+é&itp V(@ + )2+ 206

y is the relativistic Lorentz factor of the motion of the center of mass system with respect to the laboratory.

The laboratory cross section is

doel | _ {r%1pg(p, E1) + cosH]? + i }3/2 doe

de, T Y1+ pg(p. €1) cosh] s

(35)

). (36)

4. Total nuclear reaction cross sections

The total nuclear inelastic cross section (including fragmentation processes) can be easily calculated within the
optical limit of the Glauber model [1]. It is given by

o
og =27 /[1 —T(b)]bdb, (37)
0
whereT (b), the “transparency function”, is given by

T(b) =exg2Imyn()]. (38)

5. The semiclassical method and coupled-channels problem

Coulomb Excitation (CE) in high energy collisions is a well established tool to probe several aspects of nuclear
structure [20—22]. The CE induced by large-Z projectiles and/or targets, often yields large excitation probabilities
in grazing collisions. This results from the large nuclear response to the acting electromagnetic fields. As a
consequence, a strong coupling between the excited states is expected.

Since there will be very little deflection by the Coulomb field in collisions with impact parameter greater than
the grazing one, the excitation amplitudes can be calculated assuming a straight-line trajectory for the projectile.
A small Coulomb deflection correction can be used at the end, with the recipe given by Eq. (9).

We describe next a method for the calculation of multiple excitation among a finite number of nuclear states. The
system of coupled differential equations for the time-dependent amplitudes of the eigenstates of the free nucleus
is solved numerically for electric dipolg1), electric quadrupol€E?2), electric octupolg E3), magnetic dipole
(M1), and magnetic quadrupol@/?2) excitations.

Similarly, one can also calculate the amplitudes for (nuclear) monopole, dipole, quadrupole, and octupole
excitations.

In high energy nuclear collisions, the wavelength associated to the projectile-target relative motion is much
smaller than the characteristic lengths of the system. It is, therefore, a reasonable approximatiorn tastrat
classical variable(z), given at each instant by the trajectory followed by the relative motion. At high energies it is
also a good approximation to replace this trajectory by a straight line. The intrinsic dynamics can then be handled
as a quantum mechanics problem with a time-dependent Hamiltonian. This treatment is discussed in full details by
Alder and Winther in Ref. [23].

The intrinsic statéy (¢)) satisfies the Schrodinger equation

{Ho+ VIrml}y ()= ih%y)).

Above, Hy is the intrinsic Hamiltonian an¥t is the channel-coupling interaction.

(39)



C.A. Bertulani et al. / Computer Physics Communications 152 (2003) 317-340 325

Expanding the wave function in the sgfi); j = 1, N} of eigenstates ofp, where N is the number states
included in the coupled-channels (CC) problem, we obtain a set of coupled equations. Taking the scalar product
with each of the state&|, we get

N
i (t) = Z(k|V(t)|j) expli(Ex — Ej)t/h]a;(t), k=1,...,N, (40)
j=1

where E,, is the energy of the stati@). It should be remarked that the amplitudes depend also on the impact
parameteb specifying the classical trajectory followed by the system. For the sake of keeping the notation simple,
we do not indicate this dependence explicitly. We write, therefgre) instead ofa, (b, 1), restoring the notation
with b, or ¢, whenever necessary. Since the interacibranishes ag — +oo, the amplitudes have as initial
conditiona, (t - —o0) = 8,1 and they tend to constant valuesas cc.

A convenient measure of time is given by the dimensionless quantity vt /b, wherey = (1 —v?/c?)~Y2is
the Lorentz factor for the projectile velocity A convenient measure of energyhs = yfiv/b. In terms of these
quantities the CC equations become

N
%:_iZ<k|W(T)|j)eXp(iékjf)aj(r); W(r) =

j=1

The nuclear states are specified by the spin quantum numizers) . Therefore, the excitation probability of

an intrinsic staten) = |I,,, M,,) in a collision with impact parametéris obtained from an average over the initial
orientation(M1) , and a sum over the final orientation of the nucleus, respectively:

1 M 2
P,(b) = L. 42
n (D) 211+1M2A:/I |aln,Mn( )| ( )
1,Mn

V() Ex—E;
; kj=——F—
Eo Eo

(41)

The total cross section for excitation of the stateis obtained by the classical expression

oy =21 / P,(b)bdb. (43)

6. Time-dependent electromagneticinteraction

We consider a nucleus 2 which is at rest and a projectile nucleus 1 which moves alargxibeNucleus 2 is
excited from the initial state/; M ;) to the statel; M) by the electromagnetic field of nucleus 1. The nuclear states
are specified by the spin quantum numbgrsl; and by the corresponding magnetic quantum numbgrsand
M;.. We assume that nucleus 1 moves along a straight-line trajectory with impact paranwvetéch is therefore
also the distance of the closest approach between the center of mass of the two nuclei at the 6mghe
interaction,Ve(¢), due to the electromagnetic field of the nucleus 1 acting on the charges and currents nucleus 2
can be expanded into multipoles, as explained in Ref. [25]. One has

VC(T) = Z Wﬂku(r)a (44)

AW
wherer = E, M denotes electric and magnetic interactions, respectively, and

We(r) =

b A\ (26 + D!
where M (z A, 1) is the multipole moment of ordenu [24],

M(En, ) = / A pe (Y1, (1), (46)

Weau(r) = (=D

O, OM(TA, —p), (45)
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and
M(M1, ”)Z_éf drJde(r).L(rY1), (47)

pc (Jc) being the nuclear charge (current). The quantifgs,. (r) were calculated in Refs. [25,26], and for the
E1, E2, andM1 multipolarities. We will extend the formalism 42 andE 3 excitations.
We use here the notation of Edmonds [27] where the reduced multipole matrix element is defined by

. — (— 1\ k—Mk Iy Ao .
My (T, p) = (=1) (_Mk M M,-) (L NIM @M ). (48)
To simplify the expression (41) we introduce the dimensionless paramg]l’@r by the relation

Zel 27
avb* A\ (2x + D!

e My (Th, — ).

Then we may write Eq. (41) in the form

dak(f)

=- Z 3 QG DY exXpli £y T)a; (7). (49)

r=1mipn

The explicit expressions for Eq. (45) can also be obtained by a Fourier transform of the excitation amplitudes
found in Ref. [22], i.e.

o]

1 T
f Vﬂklt(w)dwzﬁ f elgrvnk/t(g)dsv (50)

—00

Wnk/l,(f) E

wherew = (Ex — E;)/h = Eoé/h (here we omit the sub-indexdg for convenience). The expressions for
Ve (wij) are given by [22]

vmm,)——( DFV2A+1 (Z-j) Gnm(§>Kﬂ<&,~>M<nx,—u>. (51)

Using the properties of; , (w) for negativew, one can show thaty . (—w) = (- Y
gets from Eq. (50)

Vi (@). Then, one

Z
Wnk/l,(f) = Zniiljy (G ( > V21 + Gﬂku( )FAM(SU ,DM(TA, =), (52)

where

P, 1) = 2/cos(gr)g*Ku(g)dg, for A + u = even
0

@]

%/sin(gr)g*Ku(g)dg, for A + . = odd (53)
0

These integrals can be obtained analytically.
Using the functionss ;. (c/v) derived in Ref. [22] we get explicit closed forms for thd., E2, E3, M1 and
M2 multipolarities,
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2
Qr10(&j, 7) = —%np%); Or141(5j, T) = T3 (1), (54)
Om10E 1) =0 Omir1(Ej.0) =i(g>¢3<r), (55)
0r20(&ij, T) = v/6(21% — 1)¢°(1), (56)
Orpat1(&ij, 1) =£3(2— Byt (x);  Qrara(r) =3¢°(1),
Om20ij,7) =0,
[V 5 [V 5 (57)
QMzil(f;'ij,f)=—3l(Z>Vf¢ (7); QM2:I:2(T)=:F3|<;)¢ (1),
and
3
Or30(&ij, 1) = —3\/%y (5—B?)t(212 = 3)p' (1),
3 2\.,2 2 7
i) =F——(15-1 472 -1 ,
Or3t1(&ij, ) :Fzm( 18%)y?(4r° = 1)¢'(v) .

15
Qrssa(fij. 7) = —y 5 (3 B2)te’ (v);

15 /3
Orst3(Ej, ) = :FE\/;W(T),

whereg (1) = (14 t2)~Y2, andg = v/c.

The fieldsQ;.. (&, T) peak around = 0, and decrease rapidly within an intervst ~ 1, corresponding to a
collision time Ar >~ b/yv. This means that numerically one needs to integrate the CC equations in time within an
interval of range: x At aroundr = 0, withn equal to a small integer number.

It is important to notice that the multipole interactions derived in this section assume that the Coulomb potential
has an Ir shape (whery — 1) even inside the nuclei. This is a simplification justified by the strong absorption
at small impact parameters for which the Coulomb potential deviates fromfsitioim. We have not included the
deviations to the Ar behavior of the Coulomb interaction inside the nuclei, as the proper relativistic treatment of
it is rather complicated. This has been discussed in details in Ref. [28].

7. Time-dependent nuclear excitation: Collective model

In peripheral collisions the nuclear interaction between the ions can also induce excitations. According to the
collective, or Bohr—Mottelson, particle-vibrator coupling model the matrix element for the trangitierk is
given by [8,29]
kj 3
VAL o (1) = (M| Vv [ M) = ————
+1
wheres, is the vibrational amplitude and, (r) is the transition potential. To follow the convention of Ref. [29],
we usexg instead offg in the equation above.
The transition potentials for nuclear excitations can be related to the optical potential in the elastic channel. This
is discussed in details in Ref. [29]. The transition potentials for isoscalar excitations are

dUopt(’”)
d

(M| Yo, | 1; M) Y5, (FYU(r), (59)

Uo(r) =3Uopt(r) +r (60)
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for monopole,

QUopt 1 dPUopt

= =R 1
Ui(r) ===+ gRo— 5 (61)
for dipole, and
du,
vy = 20, (62)
r

for quadrupole and octupole mod& is the nuclear radius éthe central nuclear density.

The deformation lengtBy, can be directly related to the reduced matrix elements for electromagnetic transitions.
Using well-known sum-rules for these matrix elements one finds a relation between the deformation length, and
the nuclear sizes and the excitation energies. For isoscalar excitations one obtains [29]

1 21 h?
2 2
=27 — 8eo=——A21+1 , 63
% T[mN (r2YAE, 122 3 my @+ )AEX (63)
whereA is the atomic numbety2) is the r.m.s. radius of the nucleus, ahd s the excitation energy.
For dipole isovector excitations [29]
oAl
2Tt 2 (64)

1T 2my NZE
whereZ (N) the charge (neutron) number. The transition potential in this case is modified from Eq. (61) to account
for the isospin dependence [29]. Itis given by

2
U(r)=—4 (N; Z) ( dz:pt + %Ro d d(j‘;pt), (65)
where the factort depends on the difference between the proton and the neutron matter radii as
AZ(N— Z) _ Ri—R, _ ARy
34 IR +Ry)  Ro
Thus, the strength of isovector excitations increases with the difference between the neutron and the proton matter
radii. This difference is accentuated for neutron-rich nuclei and should be a good test for the g&pitwhich

enters the above equations.
Notice that the reduced transition probability for electromagnetic transitions is defined by [24]

(66)

. 1 2
B(ﬂ)»U—>J)=m|<1j||/\/l(77)\)||1i)| . (67)
These can be related to the deformation parameters by [29]
3ZeRr27? , 9 (NZe\?,
B(EO)_|: Ton } af, B(El)_E<T> 82, (68)
and
3 2
B(E)))>2= |:4—ZeR31} 82, (69)
T

The time dependence of the matrix elements above can be obtained by making a Lorentz boost. One gets

.
VD () = (MU |1 M,)
1

—Vﬁ(lkMkIY,\MIIij)YAM(Q(I),O)UA[V(I)], (70)
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wherer (1) = /b2 + y202t2 =b /¢ (1), 0 =t (1), and

@+ +D)1Y2 ) 1, a1 Lk » I;
LeMi| Y |1 M ;) = (—1) Mk J J ). 71
(I My | Yyl J ]> =D |: 47,(21].4_1) :| M u Mj 0O 0 O (71)

To put it in the same notation as in Eq. (49), we def@%ﬁl(r) = V,i,k(jk)m (t)/ Eo, and the coupled-channels
equations become

d e - i
) IS OSS [0 @, 1) + Qemin By, D10 explisyra o). (72)

dr
j=1iun =w

8. Absorption at small impact parameters

If the optical potential/opt(r) is known, the absorption probability in grazing collisions can be calculated in the
eikonal approximation as

o]

2
A(b):exp[E f Im[Uopt(r)]dz], (73)

—00

wherer = /b2 + z2. If the optical potential is not known, the absorption probability can be calculated from the
optical limit of the Glauber theory of multiple scattering (also from thept-approximation), which yields:

A(b) = exp{ —ONN / [/ p1(r)p2(r —1") dSV’} dZ}, (74)

whereoyy is the nucleon—nucleon cross section ands the ground state density of the nucleugor stable
nuclei, these densities are taken from the droplet model densities of Myers and Swiatecki [30], but can be easily
replaced by more realistic densities.

Including absorption, the total cross section for excitation of the gtatie obtained by

oy =21 / A(b) P,(b)bdb. (75)

9. Angular distribution of inelastically scattered particles

The angular distribution of the inelastically scattered particles can be obtained from the semiclassical
amplitudesaf,‘f}Mn (b), described in Section 6. For the excitation of a generic $ttét is given by [31]

finel(©) =ik f db bJ, (qb)e*Pay,(b), (76)
0

where we simplified the notation;, = a%,an’ with u = M, — M.
The inelastic scattering cross section is obtained by an average over the initial spin and a sum over the final spin:

ol ___1 Z | fiel ’ (77)

ds2 21 +1 i
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The program DWEIKO uses Eq. (77) to calculate the angular distribution in inelastic scattering. But it is
instructive to show how it relates to the usual semiclassical approximation. For collisions at high energies, the
integrand of Eq. (76) oscillates wildly at the relevant impact parameters and scattering angles. One can use the
approximation

= T {eiqbe*iﬂ<u+l/2)/2 + efiqbein<u+l/2>/2}’ (78)
together with the stationary-phase approximation [32]
; 2ri \Y? ;
/ G(x)€?™ dx ~ (45”( )) G (x0)d?t0) (79)
X0
wherexg is the point of stationary phase, satisfying
¢'(x0) =0. (80)

This approximation is valid for a slowly varying functi@n(x).
Only the second term in the brackets of Eq. (78) will have a positive ko > 0) stationary point, and Eq. (76)
becomes

. 1/2
(0) i% (W) \/b—oeXp[Im xn (bo) | exdix (bo) +im (m + 1/2)/2]a, (bo), (81)
where
¢ =—qb+ 2nIn(kb) + Reyy (b), (82)

andbo, the “classical impact parameter” is the solution of

2
—q+ b—z +Reyy (bo) =0 (83)

This equation has 2 solutions: (a) one correspondictpt (or nearside) collisions, (b) and another corresponding
tofar (orfarside) collisions. These are collisions passing by one side and the opposite side of the target, but leading
to the same scattering angle. They thus lead to interferences in the cross sections.
In collisions at high energies, the inelastic scattering is dominated by close collisions and, moreover, one can
neglect the third term in Eq. (83). The conditipf(bg) = 0 implies
2n aop 212262

bop=—

2n _ 4*
== , a , =
q sin(6/2) 0 2kv

-L (84)

and ¢’ (bg) =—— =
¢" (bo) 2 2

We observe that the relation (84) is the same [with@®) ~ sin~1(6/2)] as that between the impact parameter
and the deflection angle of a particle following a classical Rutherford trajectory.
Inserting these results in Egs. (76) and (77), one gets

dO’-(n) 47’]2]{2 1 2
M1,M,

de q +1

One can easily see that the facte#?/q* is the Rutherford cross section.
The above results show that the description of the inelastic scattering in terms of the eikonal approximation
reproduces the expected result, i.e. that the excitation cross sections are determined by the product of the Rutherford
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cross sections and the excitation probabilities. This is a commonly used procedure in Coulomb excitation at low
energies.

The cross sections in the laboratory system are obtained according to the same prescription as described at the
end of Section 3.

10. Angular distribution of y-rays

After the excitation, the nuclear stafg;) can decay by gamma emission to another state Complications
arise from the fact that the nuclear levels are not only populated by Coulomb excitation, but also by conversion
andy -transitions cascading down from higher states (see Fig. 1(a)). To compute the angular distributions one must
know the parametera; (i — j) ande; (i — j) forl > 1 [23],

fi — j)=ouli —> NAFG — ), (86)
whereq; is the totall-pole conversion coefficient, and

[ 8r(l+1) 1(a)
wl =

21+141/2
2+ DR Z) ] @1+ D7V 1O M@ D), (87)

with s(l) = for electric(x = E) ands(/) =[ + 1 for magnetic(x = M) transitions. The square &, is the
I-pole y-transition rate (in sect).

As for the non-relativistic case [23,33], the angular distributions of gamma rays following the excitation depend
on the frame of reference used. In our notation,tais corresponds to the beam axis, and the statistical tensors
are given by (we use the notation of [23,33])

, 1/2
(0) _ (Zl.f +1 _ N\ +My If If k *
o (f)= 2hi D Z / (=1 ~Mp M) « ZaIfM}(Ml)alfo(Ml)’ (88)
Mf:—(Mf-‘rK),Mf My

where f is the state from which the gamma ray is emitted, and 1 denotes the initial state of the nucleus, before the
excitation. To calculate the angular distributions of the gamma rays one needs the statistical tekserg, ard

and—k < « < k (see [23,33)]).

fﬁﬁ— f —7
B e
B
T 0
2 — g 2 — g
1 — 1 —

(@) (b)

Fig. 1. Schematic description of a nuclear excitation (solid line) followeg gecay (solid wavy line). (a) The dashed lines are transitions due
to internal conversion (unobserved). The dashed wavy line is an unobserndechy. (b) Direct emission of an observed gamma ray.



332 C.A. Bertulani et al. / Computer Physics Communications 152 (2003) 317-340

Instead of the diagram of Fig. 1(a), we will consider here the much simpler situation in whighridne is
emitted directly from the final excited stafeto a lower statey, which is observed experimentally (see Fig. 1(b)).
The probability amplitude for this process is

di—f—g :Zai—rf(IgMgkU|Hy|1fo>’ (89)
My

where(I,Mko|H, |1y My) is the matrix element for the transitioh— g due to the emission of a photon with
momentumk and polarizations. The operatot,, accounts for this transition. The angular dependence of the
y-rays is given explicitly by the spherical coordinafeand¢ of the vectoik.

Since the angular emission probability will be normalized to unity, we can drop constant factors and write it as
(an average over initial spins is included)

WE) = Y laisgl?= )

Mi»Mg»O' Mi»Mg»O'

2
> ainp(IgMko | Hy |1 My)| (90)
My

The transition operatalf, can be written as
Hy =3 H"™ =3 0, @0, (91)
I,m I,m

where the first operator in the sum acts between nuclear states, whereas the second operator acts between photon
states of well defined angular momentutm;.

Expanding the photon stafieo’) in a complete sdim) of the photon angular momentum, and using the Wigner—
Eckart theorem (angular momentum notation of Ref. [27]), one gets

(IgMoko |Hy|I M) = Z(koum)(IgMg|Hy(lm)|1fo)

I,m

= (-~ MfZ( - )(kallm)(l IHP ). (92)

One can rewriteko) in terms of|zo), i.e. in terms of a photon propagating in thedirection. This is
accomplished by rotatingko) to thez-axis, using of the rotation matrix [Sspfnm,, ie.

(ko |Im) = ZD (2= K)(zo|lm'). (93)

Expanding the photon field in terms of angular momentum eigenfunctions, one can show that [24,34]

20+1

/Lsgm formr =E,
2

20+1

JT—}_U(SM, form=M.

One has now to express the operdﬁ;ﬁfn{ in Eqg. (91) in terms of the electric and magnetic multipole parts of
the photon field. This problem is tedious but straightforward [36]. Inserting Egs. (93) and (94) in Eq. (92), yields
(neglecting constant factors)

_ I Ir
(I, Moko |Hy |1 M) = Z( 1)le=l+My /(21+1)(21f+1)< M m —Af4f>

I,m

X D}y (2= KA + 0 Apl, (95)
whereA,; is given by Eq. (87).

(zo|lmm) = (94)
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Inserting Eqg. (95) into Eq. (90) one gets a series of sums over the intermediate values of the angular momenta

I, | Iy
W®) = aipai, (21+1)(21/+1)(21f+1)( g Y >
M’_‘A@Z{;Mﬁ ! \/ M, m —My
M},l,m.l’.m’
MpM—i—1' [ Ig 1 I I G
x (=Mt (Mgg o _Af/‘[,f>Dmﬂ[Dm, 1" Ay, (96)

whereA; = Ag; +1Ay;. The producty; A, is always real since—1)*¥) = IT (the parity).
Assuming that the particles are detected symmetrically aroung-#ixés one can integrate ov@particle, What
is equivalent to integrating, or averaging, oger. This yields the following integral

, 2j+1 i o
/dqufm[Dfn/] = Sy (= 1) “Z jj_n (m : _lm>(é A _ZG>Pj(COS'9)- (97)

To simplify further Eq. (96) we use (see Ref. [23], p. 441, Eq. 11.A.61)

)3 I, 1 Iy I, U1
Mg m —Mp )\ M, m' —M,

M, I
21 _q\km—M, Uk Iy Ik I Uk
=(=1 gZ( D (2k+1) (m -m' « My M, « I Iy I, (98)
k,x E f f -
and
. l ; l/
l U J * -
¥ (L d 1 Yanaz =121 b L) anas. forj—even
o=(-11) o, for j =odd

where use has been made of the parity selection rule

(-1, for electric transitions

I = { . -,
(=11, for magnetic transitions

Eq. (96) becomes

We) = Y DM e @+ D@+ D@+ D

M,',k.K.Mf.M/f,

Ll ,m.m’

. Iy Iy k\(1f I &k
x(2]+1)(2k+1)(Mff iy K)(Mff o K>
. f .

Lo rjr A ° .

Using

e (LT A PN AT
> D (m 0 _m,>(1 0 _1)= VT ST,

m,m’

one gets
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we) = > (—1>l+”+’<\/ (2 + (2’ + D)2l + 1) (2k + Dai |

k=even
M Myl

Iy Iy k\(l j U Ik .
X<Mf —Mjy 0) (1 o -1)11 Iy I AjA} Pj(cos),

or in a more compact form

I 1 k
W(®) = Z (—1)Mf|aHf|2Fk(l,l’,Ig,If) (Mff —A}:If 0> N2k + 1 P (COSH) A A}, (100)
e, S

where

Fe(l, U I, 1) = (—1)’f*’r1\/(21 + 12 + 1) (25 + 1)(2k + 1)

I kN[l U &k
X(l -1 O>{If Iy Ig}' (101)

The angular distribution of -rays described above is in the reference frame of the excited nucleus. To obtain
the distribution in the laboratory one has to perform the transformation

0L = arctar{ __sinb } (102)
y[cosd + B]
and
W(BL) = y?(1+ B cosd)?W(8), (103)

wherey is given by Eq. (35), angg = \/1— 1/2. The photon energy in the laboratory &" = y ESf (1 +
B cosh).

10.1. Computer program and user’s manual

All nuclear guantities, either known from experiments or calculated from a model, as well as the conditions
realized in the experiment, are explicitly specified as input parameters. The program DWEIKO then computes the
optical potentials (if required), differential cross section for elastic scattering, and Coutomiglear excitation
probabilities and cross sections, as well as the angular distribution pfthgs.

The units used in the program are fm (femtometer) for distances and MeV for energies. The output cross sections
are given in millibarns.

10.1.1. Input parameters

To avoid exceeding use of computer’s memory, the file DWEIKO.DIM contains the dimension of the arrays
and sets in the maximum number of levels (NMAX), maximum total number of magnetic substates, (NSTMAX),
maximum number of impact parameters (NBMAX), and maximum number of coordinates points used in the optical
potentials and absorption factors, (NGRID). A good estimate is NSTMA®RJmax + 1)NST, whereJmax is the
maximum angular momentum of the input states.

Most integrals are performed by thg3tSimpson’s integration rule. It is required that NGRID teven number,
since an extra point (origin) is generated in the program.

The input file allows for comment lines. These should start with a ‘#’ sign.

The file DWEIKO.IN contains all other input parameters. These are

(1) AP, ZP, AT, ZT, which are the projectile and the target mass and charge numbers, respectively.
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(2) ECA, the bombarding energy per nucleon in MeV.

(3) EX(j) and SPIN(j): the energy and spins of the individual states j.

(4) MATEZL(j,k), MATE2(j,k), MATE3(],k), MATM1(j,k), MATM2(j,K) the reduced matrix elements for E1, E2,
E3 and M1, M2 excitations, — k, (as defined in (48)), in e fm (E1,M1), e fnjE2,M2), and e frft (E3) units.

(5) F(0,)), F(1,)), F(2,)), F(3,j), the fractions of sum rule of the deformation parameters for monopole, dipole,
quadrupole, and octupole nuclear excitations, entering Eq. (70).
To simplify the input, the deformation parameters are calculated internally in DWEIKO using the sum rules
(63)—(66), with E, replaced by the energy of the corresponding state, EX(j). The user needs to enter the
fraction of those sum rules exhausted by the state j, i.e. the programuseg.s;., with (0< fi < 1) entered
by the user, and, given by Egs. (63)—(66).

The input cards in file DWEIKO.IN are organized as following:

(1) AP, ZP, AT, ZT, ECA
Charges and masses (AP, ZP, AT, ZT), bombarding energy per nucleon in MeV/nucleon.

(2) IW, IOPM, IOELAS, IOINEL, IOGAM
IW = 0(1) for projectile (target) excitation.
IOPM = 1(0) for output (none) of optical model potentials.
IOELAS = (0)[1]2 for (no output) [center of mass] laboratory elastic scattering cross section.
IOINEL = (0)[1]2 for (no output) [center of mass] laboratory inelastic scattering cross section.
IOGAM = (0)[1]2 for (no output) [output of statistical tensors] output of gamma-ray angular distributions.
The statistical tensors are calculated for each impact parameter, so that one can use them in the computation
of dPyny_m(D)/d$2, = Py(b).dW, N p/dS2,. If IW =0, a transformation to the laboratory system is
performed.

(3) NB, ACCUR, BMIN, I0B
NB = number of impact parameter points (NBNBMAX).
ACCUR = accuracy required for the time integration of the CC-equations for each impact parameter.
A reasonable value is ACCUR 0.001, i.e. 0.1%.
BMIN = minimum impact parameter (enter O for default. The program will integrate fren®, with strong
absorption included).
I0B = 1(0) prints (does not print) out impact parameter probabilities.

(4) IOPW, IOPNUC
IOPW is a switch for the optical potential model (OPM).
IOPW =0 (no OMP, IOELAS=0), 1 (Woods—Saxon), 2 (read), 34t- folding potential), 4 (M3Y folding
potential).
IOPNUC= 0 (no nuclear), 1 (vibrational excitations).
If the optical potential is provided (IOPW 2), it should be stored in ‘optw.in’ in rows of R Real[U(R)] x
Imag[U(R)]. The program makes an interpolation to obtain intermediate values.
The first line in ‘optw.in’ is the number of rows (maximusmNGRID).

(5) VO [MeV], r0 [fm], d [fm], VI [MeV], rO_I [fm], dI [fm]
If IOPW = 1, enter VO [VI]= real [imaginary] part £ 0) of Woods—Saxon potential, rO [rO_H radius
parameterR = r0*(APY/2 + AT1/3), d [dI] = diffuseness,
If IOPW is not equal to 1, place a ‘# sign at the beginning of this line, or delete it.

(6) VSO [MeV], r0_S [fm], dS [fm], V_surf [fm], a_surf [fm]
If IOPW = 1 and AP, or AT, equal to one (proton), enter here spin-orbit part. If not, place a ‘#' sign at the
beginning of this line, or delete it.
VSO0 = depth parameter of the spin-orbit potential Q), rO_S= radius parameter, dS diffuseness,
V_surf= depth parameter of the surface potentiall), a_surt= diffuseness.
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(7) Wrat
If IOPW = 4, enter Wrat= ratio of imaginary to real part of M3Y interaction.
If IOPW is not equal to 4, place a ‘#' sign at the beginning of this line, or delete it.
(8) THMAX, NTHETA
If IOELAS = 1,2 or IOINEL= 1, 2 enter here THMAX, maximum angle (in degrees and in the center of
mass), and NTHETAL NGRID), the number of points in the scattering angle.
If IOELAST or IOINEL are not 1, or 2, place a ‘#’ sign at the beginning of this line, or delete it.
(9) JINEL
If IOINEL = 1 enter the state (JINEL) for the inelastic angular distributior: INEL < NST).
If IOINEL is not 1, or 2 place a ‘# sign at the beginning of this line, or delete it.
(10) NST
NST (< NMAX) is the number of nuclear levels.
(12) 1, EX(1), SPIN(I)
Input of state labels (1), energy EX(I), and angular momentum SPIN(I). | ranges from 1 to NST and should
be listed in increasing value of energies.
(12) 1,3, El[e fm], E2[e frA], E3[e fm®], M1[e fm], M2[e fm?]
Reduced matrix elements for E1, E2, E3, M1 and M2 excitatidhg|O(E/M; L)||1;), j > i, for the
electromagnetic transitions. Matrices for reorientation effécts,i, can also be given.
Add a row of zeros at the end of this list. If no electromagnetic excitation is wanted just enter a row of zeros.
(13) J, FO, F1, F2, F3
If IOPNUC = 1 enter sum rule fraction of nuclear deformation parameters for monopole, dipole, quadrupole
nuclear excitations (ALPHAO, DELTE1, DELTEZ2, DELTES3) for each excited state J.
If IOPNUC = 0 insert a comment card (‘#’) in front of each entry row, or delete them.
(14) IFF, IGG, THMIN, THMAX, NTHETA
If IOGAM = 2, enter IFF, IGG= initial and final states (IFB IGG) for the gamma transition.
THMIN, THMAX = minimum and maximum values of gamma-ray angles (in degrees) in the laboratory
frame.
NTHETA = number of angle points{ NGRID).

10.1.2. Computer program

The program starts with a catalogue of the nuclear levels by doing a correspondence of integers to each magnetic
substateJ = 1 corresponds to the lowest energy level, with the magnetic quantum number—11. J increases
with M1 and so on for the subsequent levels.

A mesh in impact parameter is done, reserving half of the impact parameter poim&Bj/2, to a finer mesh
around the grazing impact parameter, definetlpas 1.2(A},/3 + A;/3) fm. The intervalbg/3 fm < b < 2bg fm is
covered by this mesh. A second mesh, with the other half of points, extends fzo0Phg fm to » = 200 fm. Except
for the very low excitation energie&( <« 1 MeV), combined with very large bombarding energigss 1), this
upper value ob corresponds to very small excitation probabilities, and the calculation can be safely stopped. The
reason for a finer mesh at small impact parameters is to get a good accuracy at the region where both nuclear,
Coulomb, and absorption factors play equally important roles. At large impact parameters the probabilities fall off
smoothly withb, justifying a wider integration step.

A mesh of NGRID points in polar coordinates is implemented to calculate the nuclear excitation potentials and
absorption factors, according to the equations presented in Sections 2.2 and 2.3. The first and second derivatives of
the optical potentials are calculated by the routine DERIVATIVE. A 6-point formula is used for the purpose. The
routines TWOFOLD computes the folding over the densities, as used in Eq. (74). Routines RHOPP and RHONP
generate the liquid drop densities, and the routine PHNUC computes the eikonal integral appearing in Eqg. (73).
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Repeated factors for the nuclear and for the Coulomb potentials are calculated in the main program and stored
in the main program with the arrays PSITOT and PSINUC. These arrays are carried over in a common block to the
routine VINT which computes the functio@ﬁ'jﬁl (¢kj, T) + Qcrau(&j, ), used in Eq. (72).

The optical potentials are read in routine OMP_READ, or calculated in routines OMP_WS (Woods—Saxon),
OMP_DEN (tpp) and OMP_M3Y (M3Y). Routine TM3Y sets the M3Y interaction. DEFORM calculates the
effective potentials in the Bohr—Mottelson model. SIGNNE and PHNNE return the nucleon—nucleon cross sections
and the parameters of the nucleon—nucleon scattering amplitude 17. PHNUCF calculates the eikonal phase in the
“t- po” approximation with the help of the Fourier transform of the ground state densities, provided by FOURIER.

The time integrals are performed by means of an adaptive Runge—Kutta method. All routines used for this
purpose have been taken from the Numerical Recipes [38]. They are composed by the routines ODEINT, RKQS,
RKCK, and RK4. The routine ODEINT varies the time step sizes to achieve the desired accuracy, controlled by
the input parameter ACCUR. The right side of (72) is computed in the routine DCADT, used externally by the
fourth-order Runge—Kautta routine RK4. RKCK is a driver to increase time steps in RK4, and RKQS is used in
ODEINT for the variation of step size and accuracy control. The main program returns a warning if the summed
errors for all magnetic substates is larger thark IACCUR.

Elastic scattering is calculated within the routine ELAST for nucleus—nucleus, and ELASTP for proton—nucleus,
collisions. Inelastic scattering is calculated within the routine INELAST, @aAcy angular distributions are
calculated in the routine GAMDIS.

The routine THREEJ computes Wigner-3J coefficients (and Clebsh—Gordan coefficients), RACAH the
6j-symbols, or Racah coefficients, YLM is used to compute the spherical harmonics, LEGENGC the Legendre
polynomials, and BESSJO (BESSJ1) [BESSJN] the Bessel fundgish ) [J,].

The routines SPLINE and SPLINT perform a spline interpolation of the excitation amplitudes, before they are
used for integration by means of the routines QTRAP and QSIMP, from Numerical Recipes [38].

11. Test input and thingsto do
A test input is shown below. It corresponds to the excitation of giant resonance states in Pb by means of the

reaction'’O (84 MeV/nucleon} 298pPb. Assuming that an isolated state is excited, and that it exhausts fully the
sum rules, one getB(EXL) = B(EX, Ey))

9 2 NZ
B(El)= ——— , 104
( ) 4r ZmN AEX ( )
and, for ¢. > 1)
3 R2 h2 2 . . .
B(EA) = —a(2h + 1) & « Z</A, for !soscalar exc!tat!oras (105)
A Ey 2my NZ/A, forisovector excitations

From these values, the reduced matrix elements can be calculated from the definition in Eq. (67).

Example 1. The input list below calculates the excitation cross sections for the isovector giant dipole (IVGDR) and
isoscalar giant quadrupole (ISGQR) resonances in Pb, for the above mentioned reaction. The user should first run
this sample case and verify that the output numbers check those in Ref. [37]. In particular, compare the results for
elastic scattering with the upper Fig. 2 of Ref. [37]. Also compare the inelastic excitation of the IVGDR with the
upper Fig. 3 of Ref. [37]. Following this it might be instructive to change the input of energies, spins, and excitation
strengths for low lying states, giant resonances, etc.

# Input of program ‘DWEIKO’
# Ap Zp At Zt Einc[MeV/u]
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17 8 208 82 84.
# IW=0(1) IOPM=0(1) IOELAS=0(1)[2] IOINEL=0(1)[2] IOGAM =0(1)[2]
11112
# NB ACCUR BMIN[fm] 10B =1(0)
200 0.001 0. O
# IOPW IOPNUC
11
# VO [MeV] rO[fm] d[fm] VI[MeV] rO_I[fm] dI[fm]
50. 1.067 0.8 58. 1.067 0.8
# VSO [MeV] rO_S[fm] dS[fm] Vsurf[fm] dsur
# 15. 1.02 0.650. 0.8
# Wrat
# 1.
# THMAX NTHETA
6. 150
# JINEL

0768 0 0O
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D
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o
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Q
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o
S
°©
Q
=
Q
3
D
—_
D
=
n
~

6 0

20. 70. 150

Example 2. Table 3 gives the results of an experiment on Coulomb excitation of S and Ar isotopes [39]. Choose
the minimum impact parameter, BMIN, so that it reproduces the maximum scattering &ngle-(4.1°) in the
experiment (use the formula= agcot(6/2) and read the last paragraph of Section 1). UsingitE2) values in

the table reproduce the cross section values (careful with the units!).

E?(?)fr?nental results on Coulomb excitation of S and Ar projectiles impinging]@ﬁ/m target [39]
Secondary beam 38g 40g 42g 44nr 46y
Ejap [MeV/nucleon] 392 395 406 335 352
Energy of the first excited state [MeV] .286(19) 0.891(13 0.890(15) 1.144(17) 1.554(26)
0(E2; 085 — 21 6jap > 4.1°) [mb] 59(7) 94(9) 128(19) 81(9) 53(10)

B(E2; 05, — 2]) [€? fm%] 235(30) 334(36) 397(63) 34541) 196(39)
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Example 3. Compare the results of this code with those from the ECIS code [40-42]. But notice that the
ECIS code has relativistic corrections in kinematic variables only. The relativistic dynamics in the Coulomb
and nuclear interaction are not accounted for. Thus, one should expect disagreements for high energy collisions
(Elab > 100 MeV/nucleon).

12. Output
The output of DWEIKO are in the files

(1) DWEIKO.OUT: Probabilities and cross sections;

(2) DWEIKO_OMP.OUT: Optical model potential;

(3) DWEIKO_ELAS.OUT: Elastic scattering cross section;

(4) DWEIKO_INEL.OUT: Inelastic scattering cross section;

(5) DWEIKO_STAT.OUT: Statistical tensors;

(6) DWEIKO_GAM.OUT: Angular distributions of gamma-rays.
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