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Abstract

A computer program is presented aiming at the calculation of bound and continuum states, reduced transition probabilities,
phase-shifts, photo-disintegration cross sections, radiative capture cross sections, and astrophysical S-factors, for a two-body
nuclear system. The code is based on a potential model of a Woods—Saxon, a Gaussian, or a M3Y, type. It can be used to
calculate nuclear reaction rates in numerous astrophysical scenarios.

Program summary

Title of program: RADCAP (RADiative CApture)

Catalogue identifier: ADSH

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADSH

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland

Computers: The code has been created on an IBM-PC, but also runs on UNIX machines

Operating systems: WINDOWS or UNIX

Program language used: Fortran-77

Memory required to execute with typical data: 8 Mbytes of RAM memory and 2 MB of hard disk space

No. of bitsinaword: 32 or 64

Memory required for test run with typical data: 2 MB

No. of bytesin distributed program: 376 817

No. of linesin distributed program, including test data, etc.: 3054

Distribution format: tar gzip file

Keywords: Potential model, photodissociation, radiative capture, astrophysical S-factors

Nature of physical problem: The program calculates bound and continuum wavefunctions, phase-shifts and resonance widths,
astrophysical S-factors, and other quantities of interest for direct capture reactions.

Method of solution: Solves the radial Schrédinger equation for bound and for continuum states. First the eigenenergy is
estimated by using the WKB method. Then, a Numerov integration is used outwardly and inwardly and a matching at the
nuclear surface is done to obtain the energy and the bound state wavefunction with good accuracy. The continuum states are
obtained by a Runge—Kutta integration, matching the Coulomb wavefunctions at large distances outside the range of the nuclear
potential.

Y This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect
(http://www.science.com/science/journal/00104%55
E-mail address: bertulani@nscl.msu.edu (C.A. Bertulani).
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Typical running time: Almost all the CPU time is consumed by the solution of the radial Schrédinger equation. It is about 1
min on a 1 GHz Intel P4-processor machine for a Woods—Saxon potential.
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In astrophysically relevant nuclear reactions two opposite reaction mechanisms are of importance, compound-
nucleus formation and direct reactions (for more details, see, e.g., [1]). At the low reaction energies occurring in
primordial and stellar nucleosynthesis the direct mechanism cannot be neglected and can even be dominant. The
reason for this behavior is that only a few levels exist for low excitations of the compound nucleus.

In order to calculate the direct capture cross sections one needs to solve the many body problem for the bound
and continuum states of relevance for the capture process. There are several levels of difficulty in attacking this
problem. The simplest solution is based on a potential model to obtain single-particle energies and wavefunctions.
In numerous situations this solution is good enough to obtain the cross sections within the accuracy required to
reproduce the experiments.

In this article a computer program is described which aims at calculating direct capture cross sections, based on
a potential model. The program calculates bound and continuum wavefunctions, phase-shifts, energy location of
resonances, as well as the particle-decay width, photodisintegration cross sections, radiative capture cross sections
and astrophysical S-factors. The formalism for this model has been developed in Refs. [2—-4].

2. Bound states

The computer code RADCAP calculates various quantities of interest for two-body fusion reactions of the type

a+b—c+y, or a(,y)c. (1)

The internal structure of the nucleiandb is not taken into account. Thus, the states of the nuclés®btained
by the solution of the Schrédinger equation for the relative motiom afidb in a nuclear+ Coulomb potential.
Particless, b, andc have intrinsic spins labeled Wy, I, andJ, respectively. The corresponding magnetic substates
are labeled by,, M, and M. The orbital angular momentum for the relative motioruof b is described by
andm. In most situations of interest, the partidlés a nucleon and is a “core” nucleus. Thus it is convenient to
couple angular momenta &g 1, =j andj + |, = J, whereJ is called the channel spin. Below we also use the
notations, instead of ,, for the intrinsic spin of particlé.

The bound state wavefunctions©ére specified by

uf;(r)

r

Wym(r) = Vs (2)

where r is the relative coordinate af and b, uljj(r) is the radial wavefunction and?le is the spin-angle
wavefunction

Vo= Y (mlaMalIM)|jm)| IeMa),  With [jm) =" Vi, (F)xas,. @3)
m,M, mp,Mp

wherey s, is the spinor wavefunction of particteand(jm1, M,|J M) is a Clebsch—Gordan coefficient.
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The ground-state wavefunction is normalized so that

o0
/d3r|w,M(r)|2=/dr|u,fj(r)|2=1. 4)
0
The wavefunctions are calculated using a spin-orbit potential of the form
V(r) = Vo(r) + Vs(r)(l.9) + Ve (r), (5)

whereVy(r) andVs(r) are the central and spin-orbit interaction, respectively,&n@) is the Coulomb potential
of a uniform distribution of charges:

ZaZpe?

forr > Rc,

(6)

,
Ve@r) = ZaZbez 72
3—— forr < Rc,

2Rc RZ

whereZ; is the charge number of nucleiis- a, b.
One can use two kinds of approach to build up the potentialg) and Vs(r). In a Woods—Saxon

parametrization they are given by

hn \%1d
Vo(r) = Vo fo(r), and Vs(r)=—Vso( );afs(r)

myc

-1
. —R;
with f;(r) = [1+exp(r ’>] . (7)
i
The spin-orbit interaction in Eq. (7) is written in terms of the pion Compton wavelehgth, c = 1.414 fm. The
parameterd, Vso, Ro, ao, Rso, andaso are adjusted so that the ground state enéfgy(or the energy of an

excited state) is reproduced.

Alternatively, and perhaps more adequate for some situations, one can construct the potentials using a more
microscopic approach. Among these models, the M3Y interaction is very popular. It has been shown to work quite
reasonably for elastic and inelastic scattering of heavy ions at low and intermediate energy nuclear collisions [5,6].
It has been applied to calculations of radiative capture cross sections with relative success (see, e.g., [7]).

In its simplest form the M3Y interaction is given by two direct terms with different ranges, and an exchange
term represented by a delta interaction:

e s B e B8
Bis Bas
where one of the possible set for these parameters is given by 45:6]7/999 MeV, B = —2134 MeV,C =
—276 MeVfn?, g1 =4 fm™1, andg, = 2.5 fm~1.

The central part of the potential is obtained by a folding of this interaction with the ground state depgities,

andpy, of the nucleiz andb:

t(s)=A + Ca(s), (8)

VY3Y (1) = 2VM3Y (1) = i / A1 P2 pa (D)o (r2)1 (5), ©)

with s = |r + r2 — r1|. Ag is @ hormalization factor which is close to unity. We assume that the densite®
spherically symmetric. The nuclear densities can be taken from, e.g., Ref. [8] for the charge matter densities. To

obtain the matter density one can use the relatign'/? = /(r3)) — (0.85)2, where(r3)Y/? and (r2)¥/? are the
charge and matter rms radii of the nucleus and the proton radius is taken as 0.85 fm.
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The spin-orbit part of the optical potential is parametrized as

n\°1d
V'Y (r) = —xso( ) =—vMY ). (10)
myc) rdr
The bound-state wavefunctions are calculated by solving the radial Schrédinger equation
2 [ 10+
—%[m - T]”ljj(") + [VO(”) + Ve(r) + <5~|>VSO(V)]”IJ]~(V) = Eiuljj("), (11)

where(sl)=[j(j +1) — I+ 1) —s(s + 1)]/2. This equation must satisfy the boundary conditiwfjnsr =0)=

u/j(r = 00) = 0 which is only possible for discrete energigsorresponding to the bound states of the nuclear
Coulomb potential.

3. Continuum states

The continuum wavefunctions are calculated with the potential model as described above. The parameters
are often not the same as the ones used for the bound states. The continuum states are now identified by the
notationuélj (r), where the (continuous) energyis related to the relative momentukof the systenu + b by
E = h%k%/2mqp.

The radial equation to be solved is the same as Eq. (11), but with the boundary conditions at infinity replaced
by (see, e.g., Ref. [9])

Map
2 ki?

wheresS;; = exg2i8;;(E)], with §;; (E) being the nuclear phase-shift and E) the Coulomb one, and

Wy (r — 00) =i [H 7 ¢) - S, ()] P, (12)

H®(r) = Gi(r) £iF(r). (13)

F; andG; are the regular and irregular Coulomb wavefunctions. If the pasidenot charged (e.g., a neutron) the
Coulomb functions reduce to the usual spherical Bessel functjagngandn, (r).

At a conveniently chosen large distance- R, outside the range of the nuclear potential, one can define the
logarithmic derivative

dul,./dr
ar=(=H=) a4)
r=R

UEij

The phase-shifts;;(E) are obtained by matching the logarithmic derivative with the asymptotic value obtained
with the Coulomb wavefunctions. This procedure yields

. G; —iFl/—Ol[](G[ —iF)

Sy = . —, 15
TG +iF — (G +iF) (13)
where the primes mean derivation with respect to the radial coordinate at the p&sition
The continuum wavefunctions are normalized so as to satisfy the relation
(“élj |MIJ5’l/j’> =8(E — E8;y8j81r, (16)

what means, in practice, that the continuum wavefunctigngr) are normalized te-,/ 2mab/7rh2k €% sin(kr +
8;7) at larger.
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A resonance in a particular chanidlis characterized by

d?s
L =0, and dal
dE2 ER dE

> 0. (17
Efy

The single-particle width of the resonance can be calculated from

E;;>l' (18)

4. Multipole matrix elements

The operators for electric transitions of multipolarity are given by (see, e.g., Ref. [11])

Opipu = e Y (P), (19)
where the effective charge, which takes into account the displacement of the center-of-mass, is
m » mp »
ekzzbe(——a> +Z, e( ) . (20)
me me

For magnetic dipole transitions

/3 m2Z, ~miZy
Omiu =,/ 1~ kN |:eMl/L + > gi(si)u], em = ( :1; + ;12 ) (21)
c

i=a,b c
wherel,, ands,, are the spherical components of orgefu = —1, 0, 1) of the orbital and spin angular momentum
(I=—ir x V, ands= ¢/2) andg; are the gyromagnetic factors of particleandb. The nuclear magneton is given

by uy =eh/2myc.
The matrix element for the transitioly Mo — J M, using the convention of Ref. [11], is given by
(J11OEx | Jo)
V2Ii+1

From the single-particle wavefunctions one can calculate the reduced matrix elgiig¢éis, ||lojo)s. The
subscript/ is a reminder that the matrix element depends on the channel/sfiacause one can use different
potentials in the different channels. The reduced matrix elemE®g; || Jo) can be obtained from a standard
formula of angular momentum algebra, e.g., Eq. (7.17) of Ref. [12]. One gets

J
Jo

(JM|OgyulJoMo) = (JoMoh|J M) (22)

. j I . .
(J0Ex o) = (=1 et 44 (27 + 1 (2J0 + D] { oo n } (1O lojo) - (23)
To obtain (1j|Of; lllojo); one needs the matrix elemeddj ||r Y ||lojo); for the spherical harmonics, e.g.,
Eq. (A2.23) of Ref. [13]. Foip 4+ + A = even, the result is

(4 .
<lj||c9m||lojo>1=Jf:_n<—1>’°+l+f°*f joz)‘o / A uf ()i ). (24)

where we use here the notatiba: v/2k + 1, andk = JVk(k +1). Forlp+1+ A = odd, the reduced matrix element
is null.

Egs. (22) and (23) can also be used for the magnetic dipole excitations. In comparison with the electric dipole
transitions their cross sections are reduced by a factot/ef, wherev is the relative velocity of the + b system.
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At very low energiesy < ¢, and the M1 transitions will be much smaller than the electric transitions. Only in the
case of sharp resonances, the M1 transitions play a role, e.g., farshe" state in®B at Ex = 630 keV above

the proton separation threshold [4,14]. However, the potential model apparently is not good in reproducing the M1
transition amplitudes [15]. We only treat here the case in which the pattidea nucleon. For that one needs

the reduced matrix elements||/||o,jo)s and(lj||6 |10 jo)s Which are, e.g., given by Egs. (A2.20) and (A2.19) of

Ref. [13]. Forl = o one obtains

; 3 -~ J I
1j|Omlllojo)y = (—1yiHatiott [ = T ] 0 ta
{LjllOm1llojo)s = (=1 ek LD I A N

1 2jo —j jO
X 1 =em [T (108 jo,io+1/2 + (o + Do 19-1/2) + (=)ot 270 T8 1 0a1/28 16712
lo lo NZ)
4w Ll Cpyorizioz s (qyloria—j 0 g 5
8N =D Jodjjo — (=1 /2 oloE1/20)10¥1/2
0
o0
, e (I, T
+ ga(—=1)latiot /107 Iala{J‘(‘) L Jf}}fdruljj(r)uljoojo(r). (25)
0

The spin g-factor igy = 5.586 for the proton angy = —3.826 for the neutron. The magnetic moment of the
core nucleusis given by, = goun . If I # Ip the magnetic dipole matrix element is zero.

5. Theastrophysical S-factor

The multipole strength, or response functions, for a particular partial wave, summed over final channel spins, is
defined by

dB(wh: lojo — KLj) |k O]l Jo) |2 AN A .
= — = 2J +1 . kLj|Oxi |l
dk XJ: 2Jo+1 XJ:( +D Jo jo A |(kLj|Ox. L0 jo) s

2

. (26)

wherer = E, or M.

If the matrix elements are independent of the channel spin, this sum reduces to the usual single-particle strength
|(kLj || Oxx 0 jo) 12/ (2jo + 1). For transitions between the bound states the same formula as above can be used
to obtain the reduced transition probability by replacing the continuum wavefunmtigms) by the bound state

wavefunctioml]j(r). That s,

. 2
. . J 1 . .
B(ﬁ)»;lojofo—>ljf)=(21+1){JJO o ;’} (i 102l jo) |- (27)

For bound state to continuum transitions the total multipole strength is obtained by summing over all partial
waves,
dB(m M) Z dB(mA; lpjo — klj)

dE dE (28)

lj
The differential form of the response function in terms of the momentuis a result of the normalization of
the continuum waves according to Eq. (12).
The photo-absorption cross section for the reactione — a + ¢ is given in terms of the response function by
[10]

: (29)

)3 +1) (mab> (Ey >2)‘1dB(nk)

M(E ) = v\ v
o ED= e e\ ne )\ e dE
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whereE, = E + |Ep|, with |Ep| being the binding energy of the+ b system. For transitions between bound
states, one has

3
o0 (E,) = ZDC 4D (EV

Al2h + D12\ e
whereE; (E ) is the energy of the initial (final) state.

The cross section for the radiative capture proees® — ¢ + y can be obtained by detailed balance [10], and
one gets

EN?Y 2021+
@ gy _ [ Er c @)
E)= E,). 31
O (F) (hc) @l + DL +1)°77 (Ey) (31)

The total capture cross sectien, is determined by the capture to all bound states with the single particle
spectroscopic factor§2s; in the final nucleus

on(E) =Y _ (C28)i0(3) (E). (32)

1,70,A

2x—1
> Blh: lojoJo— Lj)S(Ey — Ei — Ey), (30)

Experimental information or detailed shell model calculations have to be performed to obtain the spectroscopic
factors(C2S);. For example, the code OXBASH [16] can used for this purpose.

For charged particles the astrophysical S-factor for the direct capture from a continuum state to the bound state
is defined as

SE) = Eon(E) exp[2nn(E)],  with n(E) = Z,Zpe?/hv, (33)

whereuv is the relative velocity betweenandb.

6. Nuclear reaction ratesin stellar environments

The nuclear reaction rate, measuring the number of reactions per particle i, per second in the stellar
environment can be calculated from the nuclear cross se¢tfona given reaction by folding it with the velocity
distribution of the particles involved. In most astrophysical applications the nuclei are in a thermalized plasma,
yielding a Maxwell-Boltzmann velocity distribution. The astrophysical reaction Rat¢ a temperatur& can
then be written as [17]

nanp
4
1+8ab<av>’ (34)

wheren; is the number density of the nuclear speaie$he denominator takes care of the special case of two
identical nuclei in the entrance channel. The quaritity) is given by

g \v2 1 ¥ E
o= (nmab> | “(E)Eexp(_ks_T) . =
0

with kg the Boltzmann constant.

The threshold behavior of radiative capture cross sections is fundamental in nuclear astrophysics because of the
small projectile energies in the thermonuclear region. For example, for neutron capture near the threshold the cross
section can be written [10] as

R(T) =

7w —4kR Imag

= : 36
k2 Jool? (30)

Uif =
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whereaqg is the logarithmic derivative for thewave, given by Eq. (14). Sine®) is only weakly dependent on the
projectile energy, one obtains for low energies the well-knoywrliehavior.

With increasing neutron energy higher partial waves with O contribute more significantly to the radiative
capture cross section. Thus the productbecomes a slowly varying function of the neutron velocity and one can
expand this quantity in terms ofor +/E around zero energy:

. 1..
ov=5"(0) +5"OVE+ ;3" OF +--. (37)

The quantityS"™ (E) = ov is the astrophysical S-factor for neutron-induced reactions and the dotted quantities

represent derivatives with respect#d/2, i.e. §" = 2J/E dg—? andS™ = 4E de;;) + ng;” . Notice that the above
astrophysical S-factor for neutron-induced reactions is different from that for charged-particle induced reactions. In
the astrophysical S-factor for charged-particle induced reactions also the penetration factor through the Coulomb
barrier has to be considered (Eq. (33)).

Inserting this into Eq. (35) we obtain for the reaction rate for neutron-induced reactions

4\12, 3.
(ov) = S(0) + <;> SO (kgT)Y? + ZS(O)kBT 4 (38)

In most astrophysical neutron-induced reactions, neutron s-waves will dominate, resulting in a cross section
showing a Jv-behavior (i.e.0(E) « 1/+/E). In this case, the reaction rate will become independent of
temperature R = const. Therefore it will suffice to measure the cross section at one temperature in order to
calculate the rates for a wider range of temperatures. The rate can then be computed very easily by using

R = (ov) = (o)rvr =const (39)
with
1/2
vr = (g> . (40)
m

The mean lifetimer, of a nucleus against neutron capture, i.e. the mean time between subsequent neutron
captures is inversely proportional to the available number of neutspasd the reaction ratg,,,, :

1
np Rny ’

Tn = (41)
If this time is shorter than the beta-decay half-life of the nucleus, it will be likely to capture a neutron before
decaying (r-process). In this manner, more and more neutrons can be captured to build up nuclei along an isotopic
chain until the beta-decay half-life of an isotope finally becomes shorter #hawith the very high neutron
densities encountered in several astrophysical scenarios, isotopes very far-off stability can be synthesized.

For low | Eg|-values, e.g., for halo nuclei, the simplgvtlaw does not apply anymore. A significant deviation
can be observed if the neutron energy is of the order of| fhg-value. In this case the response function in
Eq. (28) can be calculated analytically under simplifying assumptions (see Ref. [18]). For direct capture to weakly
bound final states, the bound-state wave functigiir) decreases very slowly in the nuclear exterior, so that
the contributions come predominantly from far outside the nuclear region, i.e. fromuthear halo. For this
asymptotic region the scattering and bound wave functions in Eq. (2) can be approximated by their asymptotic
expressions neglecting the nuclear potential [19]

wikr) oc jikr),  uip(r) ochi Y (i),

where j; andhl(;“) are the spherical Bessel, and the Hankel function of the first kind, respectively. The separation
energy| E | in the exit channel is related to the parametéy |E| = 1212/ (2map).
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Performing the calculations of the radial integrals in Eq. (24), one readily obtains the energy dependence of the
radiative capture cross section for halo nuclei [18,19]. For example, for a transitiop & becomes

1 (E+3|Eg)?
(rC)
42
while a transition p— s has the energy dependence
(ro) \/E
oy P— S)O<E+|EB|' (43)

If E « |Ep| the conventional energy dependence is recovered. From the above equations one obtains that the
reaction rate is not constant (for s-wave capture) or proportiondl (for p-wave capture) in the case of small
|Ep|-values. These general analytical results can be used as a guide for interpreting the numerical calculations
involving neutron halo nuclei.

In the case of charged particl§$E) is expected to be a slowly varying function in energy for non-resonant
nuclear reactions. In this cas®(E) can be expanded in a McLaurin series,

S(E) = S(0) + S(OE + %§(0)E2 4. (44)

Using this expansion in Eq. (35) and approximating the product of the exponentigls ExpsT) and
exp 27 n(E)] by a Gaussian centered at the enefigy Eq. (35) can be evaluated as [1]

o= (2)" 2 s expf 320 (45)
V=) GO0 kT
with
5 50 35E0 $(©) (., B89E?
Seff(Eg) = S(O —+—| Eo —E§+—) | 46
eff(£o) ()[ + +S(0)< + 121'>+2S(O)< Ty (46)
The quantityEq defines the effective mean energy for thermonuclear fusion reactions at a given temg@rature
Eo=1.22(22Z2maT8) " keV, (47)
whereTs measures the temperature irf3Q The quantitiegs andA are given by
=== A = —(EokT)Y/2. 48
T=—p Jé( okT) (48)

An analytical insight of the cross sections and astrophysical S-factors for proton-halo nuclei can also be
developed (see, e.g., Ref. [20]). However, due to the Coulomb field the expressions become more complicated.
The analytical formulas for direct capture cross sections involving neutron and proton-halo nuclei are very useful
to interpret the results obtained in a numerical calculation.

For the case of resonances, whéfeis the resonance energy, we can approxineatg) by a Breit—Wigner
resonance formula [10,21]:

mh?  (2JIr+1) r,r,

2uE 2Ja +1)(2Jp+ 1) (Er — E)? + (I10t/2)?’
whereJg, J,, andJ, are the spins of the resonance and the nuchidb, respectively, and the total widtfot is
the sum of the particle decay partial width and they -ray partial widthl', . The particle partial width, or entrance

channel width,I", can be expressed in terms of the single-particle spectroscopic faetiod the single-particle
width I'sp. of the resonance state [22]

o (E) = (49)

I, =C?S x Isp, (50)
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where C is the isospin Clebsch—Gordan coefficient. The single-particle wigih can be calculated from the
scattering phase-shifts of a scattering potential with the potential parameters being determined by matching the
resonance energy (see Eq. (18)).

The gamma partial widthg,, are calculated from the electromagnetic reduced transition probabilitigsB
J¢; L) which carry the nuclear structure information of the resonance states and the final bound states [23]. The
reduced transition rates can be computed within the framework of the shell model.

Most of the typical transitions are M1 or E2 transitions. For these the relations are

Ie2[eV] =8.13x 107 'E> [MeV] B(E2) [¢*fm*] (51)
and
M1 [eV] =116 x 102E3 [MeV] B(M1) [15]. (52)

For the case of narrow resonances, with wifltk« E,, the Maxwellian exponent exp E/kgT) can be taken
out of the integral, and one finds

2 3/2 5 E,
= h — ], 53
(ov) (maka> (wy)R exp( kT) (53)
where the resonance strength is defined by
20 +1 r,r,
= 1456 . 54
Cr= G peh+ 0 T Ry >4

For broad resonances Eq. (35) is usually calculated numerically. An interference term has to be added. The total
capture cross section is then given by [24]

1/2
o(E) = oni(E) + 0, (E) + 2[on( E)o, (E)] " cofsr (E)]. (55)

In this equatiord g (E) is the resonance phase-shift. Close to a resonance, the phase-shift approaches#y@ value
Thus, close to a resonance one can use the expansion

T dé
SR(E) ~ 5 (Er — E)d_E
R

Thus, using the definition given by Eq. (18), one has

Sr(E) =arctan (56)

2(E—Eg)’
Only the contributions with the same angular momentum of the incoming wave interfere in Eq. (55).

7. Computer program and user’s manual

All nuclear quantities, either known from experiments or calculated from a model, as well as the conditions
realized in the experiment, are explicitly specified as input parameters. The program RADCAP then computes
the potentials, bound state energies, phase-shifts, transition probabilities, photo-dissociation cross sections and
astrophysical S-factors.

The units used in the program are fm (femtometer) for distances and MeV for energies. The output cross sections
are given in millibars and the S-factors in eV.h.

The program is very fast and does not require a complicated input. It asks the user the calculation one wants to
perform. It is divided in 5 modules and one enters the following options when prompted on the screen:
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1—for the calculation of M3Y potential,

2—for the calculation of energy and wavefunction of bound states,

3—for the calculation of reduced transition probabilities between bound states,

4—for the calculation of phase-shifts and wavefunctions of continuum states,

5—for the calculation of astrophysical S-factors, response functions, photo-dissociation, and direct capture cross
sections.

For each option, a different subroutine is used=AMP_M3Y, 2=EIGEN, 3=BVALUE, 4=CONT and
5=DICAP.

The inputs can be commented by using the symbol “*” at the first position of an input line.

Note that the angular momenta described in the text have the following correspondence in the grdgiam:
LO); j, jo (3, J0),1,, Ip(s) (AIA, AIB), J, Jo (AICF, AIC). The program notation for the other variables are easy
to recognize (see test cases below).
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Appendix A. The M3Y potential

To obtain the M3Y potential one selects the option 1. This calls the subroutine OMP_M3Y. The input file is
named M3Y.INP. If the densities are not parametrized either by a Gaussian or by a Woods—Saxon function, one can
enter them in the input file DENS.INP in rows ot p,(r) x pp(r). The first line of this input file should contain
only the number of points in. The function DENS_READ will read those densities and interpolate them for use in
the other routines. An example is calculation of the M3Y potential for the systeiBe as follows. For the proton
one can use a Gaussian density with radius parankete6.7 fm. For’Be a Gaussian density parametrization can
be used [8] with radius parametRr= 1.96. An appropriate input file is listed below.

* *

* Hkkkkkkk |nput of subroutine OMP_M3Y *rkrkx
* |OPT = Option for densities= 0 Gaussian or Woods—Saxon,
* = 1 densities entered in DENS.INP
* NPNTS = number of points in the radial mesk (L0000)
* RMAX = maximum radius size (fm)< 250 fm)
*IOPT NPTS RMAX
0 100 10.
*If IOPT = 0, enter density parameters:
* R1, D1 = Woods—Saxon form (radius and diffuseness)
* R2, D2 = Same but for density of nucleus 2
* For Gaussian densities, enter 8@, or D2=0
*R1 D1 R2 D2
0.7 0. 196 O.
* Mass numbers
*Al A2
1. 7.

*kkk * Kk kkkkkkk *kk




134 C.A. Bertulani / Computer Physics Communications 156 (2003) 123-141

MeV]

u

r[fm]

Fig. 1. M3Y potential for the system + "Be.

The subroutine OMP_M3Y builds up the nuclear potential and calls the subroutine TWOFOLD which does all
the work. It does the integration appearing in Eq. (9). The outputs will appear in fles OMP.TXT and OMP.INP.
The later one is for use as input of the M3Y potential by the other subroutines (if required). Fig. 1 shows a plot of
the potential obtained with this input.

Appendix B. Eigenfunctionsand energies

The option 2 calls the subroutine EIGEN. If the real part of the potential is given as an input file OMP.INP
(e.g., the one generated by the subroutine OMP_M3Y) it should be written in rows &f(r). The first line of
this input file should contain only the number of points-inThe function OMP_READ will read and interpolate
the potential for use in the other routines. The subroutine DERIVATIVE calculates its derivative to be used in
the calculation of Eq. (10). Let us assume we want to find the ground st&®. dthe 2F ground state ofB
can be described as a fBproton coupled to the/2~ ground stat€ Be. The subroutine POTENT builds up the
potential. An example of the input file, named EIGEN.INP, which uses a Woods—Saxon potential, is shown as
follows.

* * *

* Fkkkkkkk |nput of subroutine EIGEN *rxxxxx
* |OPT = option for potentials: 1 (2) for Woods—Saxon (M3Y)
* NPNTS = no. of integration points in radial coordinate (L0000)
* RMAX = maximum radius size<{ 250 fm)
*IOPT NPTS RMAX
1 9999 250.
* N_0O = nodes of the Wave Function (exclude origin)
* JO = single-particle angular momentum
* L0 = orbital angular momentum
*N_O JO LO
0 15 1
*If IOPT =1, enter:
* V0 = depth of central potential
* VSO0 = depth of spin-orbit potential
* RO = radius of the potential
* AA = diffuseness of the potential
* RSO = radius of the spin-orbit potential
* AAS = diffuseness of the spin-orbit potential
* RC = Coulomb radius (usually, RE RO0)
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Fig. 2. The solid line shows the ground state wavefunctidtBdh the potential model and the dotted line shows the real part of the wavefunction
for the 1t resonance ifB at 630 keV (see text for detalils).

*

*WS = V_0 f(r,R0,AA) - V_SO (I.s) (r_0"2/r) d/dr f(r,RSO,AAS)
*f(r,R0,a)=[1 + exp((r - R_0)/a) ]*(-1)
*r_0 = 1.4138 fm is the Compton wavelength of the pion.
*,
*VO RO AA VSO RSO AAS RC
-44.658 2.391 052 -98 2391 052 2391
*If IOPT = 2, or else (but not 1), enter FC, FSO and RC
* (in this case, insert a **’ sign in above row, or delete it)
* FC = multiplicative factor of central part of M3Y potential
* FSO = multiplicative factor of spin-orbit part of M3Y potential
* RC = Coulomb radius
*FC FSO RC
*15 02 2391
*Z1, Z2 = charges of the nuclei
* Al, A2 = masses of the nuclei (in nucleon mass units)
*Z1 Al Z2 A2
1. 1. 4. 7.

* * * *

In the example input shown above the potential parameters were chosen so as to reproduce the proton separation
energy in®B which is equal to 0.136 MeV. If the M3Y potential was used, an input of the parametéFE), A.so
(FSO), andr¢ in Egs. (6), (9) and (10) is needed. Note that this input line was commented, as we did not use it.

The calculations are mainly done in the subroutine BOUNDWAVE which solves the Schrddinger equation for
the bound-state problem. When Woods—Saxon potentials are used they are constructed in the routine POTENTIAL.

The output of the wavefunction will be printed in EIGEN.TXT and GSWF.INP. The later is prepared for use as
input wavefunction for the subroutine BVALUE (reduced transition probabilities), or the subroutine DICAP (direct
capture subroutine). The solid line in Fig. 2 shows the ground state wavefuncfiBrobtained with this input.

Appendix C. Reduced transition probabilities
The option 3 calls the subroutine BVALUE which calculates reduced transition probabilities. To make and

example withfB we artificially generate a p2, 1t state, with excitation energy of 90 keV. This can be obtained
by changing the WS potential input of EIGEN.INP to the values shown below
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*VO RO AA VSO RSO AAS RC
-30.55 295 052 -853 295 052 295

The output yields a state with energy-60.05 MeV.
The input file with the option 3 is to be given in BVALUE.INP. To calculate the reduced transition probability
the input file should look like the example below.

* * *

* Fkkkkkkk Input of subroutine BVALUE *******
* AIA = spin of the particle A (core)
* AIB = intrinsic spin of the particle B
* AIC = total angular momentum of the ground state c£@ + B
* (channel spin)
* JO = single particle angular momentum of B respective to A
* L0 = relative orbital angular momentum of the ground state
*AIA  AIB AIC JO LO
15 05 2 15 1
*N_1 = nodes of the excited state wave function (exclude origin)
* J = single-particle angular momentum
* L = orbital angular momentum
* AICF = spin of the excited state after all angular momentum coupling
* (channel spin)
*N.1 J L AICF
0 15 1 1
* JOPT= 1 (0) if final state angular momentum, AICF, is (is not) to be
* summed over all possible values. If JORT, AICF in the
* previous line can be entered as any value.
*JOPT
0
*Z1, Z2 = charges of the nuclei
* Al, A2 = masses of the nuclei (in nucleon mass units)
*Z1 Al Z2 A2
1. 1. 4. 7.
* |OPT = option for potentials: 1 (2) for Woods—Saxon (M3Y)
* Integration parameters for radial wavefunctions:
* NPNTS = no. of integration points in radial coordinate (0000)
* RMAX = maximum radius size (250 fm)
*|OPT NPTS RMAX
1 9999 250.
*VO0 = depth of central potential
* RO = radius of the central potential
* AA = diffuseness of the central potential
* VSO0 = depth of spin-orbit potential
* RSO = radius of the spin-orbit potential
* AAS = diffuseness of the spin-orbit potential
* RC = Coulomb radius (usually, RE& RO0)
*WS = V_0 f(r,R0,AA) - V_SO (I.s) (r_0"2/r) d/dr f(r,RSO,AAS)
*f(r,R0,a) = [ 1 + exp((r-R_0)/a) ]*(-1)
*r_0 = 1.4138 fm is the Compton wavelength of the pion.

*
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*VO RO AA VSO RSO AAS RC
-30.55 295 052 -853 295 0.52 295
*If IOPT = 2, or else (but not 1), enter FC, FSO and RC:
* (in this case, insert a **’ sign in above row, or delete it)
* FC = multiplicative factor of central part of M3Y potential
* FSO = multiplicative factor of spin-orbit part of M3Y potential
* RC = Coulomb radius
*FC FSO RC
*15 02 2391
* MP = multipolarity: 0 (M1), 1 (E1), 2 (E2)
*MP
2
* GA = magnetic moment (in units of the nuclear magneton) of
* particle A (core)
* GB = magnetic moment of particle B
*GA GB
279 -1.7

* *

The output of this run yield8(E2 i — f) = 3.76 & fm*. The spectroscopic factors for the initial and final
states are taken as the unity. If they are known one just multiply this result by their corresponding values.

The bound state is calculated by the routine BOUNDWAVE and the 3-j and 6-j coefficients are calculated in the
routines THREEJ and SIXJ, respectively.

Appendix D. Phase-shiftsand resonances

If one uses the option 4 the program will calculate the scattering phase-shifts for a given set of potential
parameters and angular momentum quantum numbers for the continuum waves. For example, one might want
to calculate the phase-shifts for the-$Be system in the energy interval= 0-3 MeV. The input file CONT.INP
could be written as follows.

* * *

* dkkkkkkk Input of subroutine CONT ¥k
* |OPT = option for potentials: 1 (2) for Woods—Saxon (M3Y)
* NPNTS = no. of integration points in radial coordinate (L0000)
* RMAX = maximum radius size< 250 fm)
* NEPTS = number of points in energy<( 1000)
*JOPT NPNTS RMAX NEPTS
1 9999 250. 200
* VO = depth of central potential
* VSO0 = depth of spin-orbit potential
* RO = radius of the potential
* AA = diffuseness of the potential
* RSO = radius of the spin-orbit potential
* AAS = diffuseness of the spin-orbit potential
* RC = Coulomb radius (usually RE RO)
*WS = V_0 f(r,R0,AA) - V_SO0 (l.s) (r_0"2/r) d/dr f(r,RS0,AAS)
*f(r,R0,A) =[ 1 + exp((r-R0)/a) 1"(-1)
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*r_0 = 1.4138 fm is the Compton wavelength of the pion.
*V0 RO AA VSO RSO AAS RC
-42.3 2391 052 -98 2391 052 2391
*If IOPT = 2, or else (but not 1), enter FC, FSO and RC:
* (in this case, insert a **’ sign in above row, or delete it)
* FC = multiplicative factor of central part of M3Y potential
* FSO = multiplicative factor of spin-orbit part of M3Y potential
* RC = Coulomb radius
*FC FSO RC
*15 02 2391
* 71, Z2 = charges of the nuclei
* Al, A2 = masses of the nuclei (in nucleon mass units)
*Z1 Al Z2 A2
1. 1. 4. 7.
* El, EF = initial energy, final energy
* L, J = orbital angular momentum, angular momentum j (I+s)
*El EF L J
0. 3. 1 15

* * * *

A run with this input file will show the presence of a sharp resonance at 631 keV with a width of approximately
50 keV. As for the case of bound states, the same resonance can be obtained with a different set of WS potential
parameters, e.g., with the parameters shown below.

*VO RO AA VSO RSO AAS RC
-2865 295 052 -85 295 052 295

The continuum states are calculated by the subroutine CONTWAVE and the Coulomb wavefunctions are
calculated by the subroutine COULOMB.

The phase-shifts and their derivatives with respect to energy are printed in the output file CONT.TXT. Fig. 3
shows these quantities for the test case above.

The program also allows for the output of the continuum wavefunction for a given energy. The output of the
wavefunction is printed in CWAVE.TXT. The real part of the continuum wave function of theesonance state
at 630 keV is shown in Fig. 2 (dotted line).

phase shifts

Fig. 3. Phase-shift (solid line) and its derivative (dashed line) for the7Be system with the potential parameters described in the text. The
1% resonance at 630 keV is observed.
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Appendix E. Direct capture cross sections

By choosing the option 5 the program calculates the direct capture cross sections and related quantities. The in-
put file is DICAP.INP. The calculations are done in the subroutine DICAP. The output files are DICAP.TXT where
the strength functions (in units of én?"), photo-dissociation cross sections (in mb), direct capture cross sections
(in mb), and the astrophysical S-factors (in eV.b) are printed; DICAPL.TXT where the same output is printed, pre-
pared for using in a plot program; and SFAC.TXT where the S-factor and its first and second derivatives with respect
to the energy are printed. These can be used in the calculation of the reaction rates by using Egs. (44), (45) and (46).

An input example is presented below.

* * *

* kkkkkkkk Input Of program DICAP *kkkkkk
* |OPT = option for potentials: 1 (2) for Woods—Saxon (M3Y)
* NPNTS = no. of integration points in radial coordinate (L0000)
* RMAX = maximum radius size<{ 250 fm).
* NEPTS = number of points in energy<( 1000)
*IOPT NPNTS RMAX NEPTS
1 9999 250. 200
* N_0O = nodes of the ground state wave function
* AIA = spin of the particle A (core)
* AIB = intrinsic spin of the particle B
* AIC = total angular momentum of the ground state c£@ + B
* (channel spin)
* JO = single-particle angular momentum
* L0 = orbital angular momentum
* EBOUND = binding energy of the ground state (absolute value)
*N_O AIA AB AIC AJ0 LO EBOUND
0 15 05 2 15 1 0.14
* JOPT= 1 (0) if final state angular momentum, AICF, is (is not) to be
* summed over all possible values. If JORT, AICF can be
* entered as any value.
* AICF = spin of the excited state after all angular momentum coupling
* (channel spin)
*JOPT AICF
1 1.
*Z1, Z2 = charges of the nuclei
* Al, A2 = masses of the nuclei (in nucleon mass units)
*Z1 Al Z2 A2
1. 1. 4. 7.
*VO = depth of central potential
* RO = radius of the central potential
* AA = diffuseness of the central potential
* VSO0 = depth of spin-orbit potential
* RSO = radius of the spin-orbit potential
* AAS = diffuseness of the spin-orbit potential
* RC = Coulomb radius (usually, RE& RO0)
*WS = V_0 f(r,R0,AA) - V_SO (I.s) (r_0"2/r) d/dr f(r,RSO,AAS)
*f(r,R0,a)=[1 + exp((r - R_0)/a) 1"(-1)
*r_0 = 1.4138 fm is the Compton wavelength of the pion.

*
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*VO RO AA VSO RSO AAS RC
-44658 2391 052 -98 2391 052 2391
*If IOPT = 2, or else (but not 1), enter FC, FSO and RC:
* (in this case, insert a **’ sign in above row, or delete it)
* FC = multiplicative factor of central part of M3Y potential
* FSO = multiplicative factor of spin-orbit part of M3Y potential
* RC = Coulomb radius
*FC FSO RC
* 15 02 2391
* EILEF = initial relative energy, final relative energy
*El EF
0. 3.
*NS1,NP1,NP3,ND3,ND5,NF5,NFZ (1) [0] for inclusion (no inclusion)
*of s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, and f7/2 partial waves
*NS NP1 NP3 ND3 ND5 NF5 NF7
1 0 0 1 1 0 O
* MP = multipolarity: 0 (M1), 1 (E1), 2 (E2)
* SF = Spectroscopic factor
*MP  SF
1 1
* GA = magnetic moment (in units of the nuclear magneton) of
* particle A (core)
* GB = magnetic moment of particle B (proton, neutron, alpha, etc.)
*GA GB
-1.7 5.58

* * *

Only the results for the astrophysical S-factogz,Sor the reaction pr 8B will be shown. They are plotted in
Fig. 4, together with the experimental data of several experiments [25-28]. The first three set of data (MSU, GSI-1,
and GSI-2) were obtained by using the Coulomb dissociation method [29]. The other experimental results [28]
were obtained via a direct measurement. The dashed line shows the result of the calculated S-factor, obtained with
the bound state wavefunction calculated with the same Woods—Saxon parameters as in the above input file. The
dashed line represents the S-factor one obtains by changing the bound and continuum states using another set of
Woods—Saxon potential parameters, which yields the same bindifiB foamely:

*VO RO AA VSO RSO AAS RC
-3055 295 052 -853 295 052 295

(]
o
T

g
= MSU

o GSI1

e GSI-2

o Weizmann
| L | |

0 0.5 1 15
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S

—_
o
I
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Fig. 4. Astrophysical S-factor for the reactiorﬂ?B. The data are the experimental points of recent experiments [25-28]. The solid and dashed
curves are results of calculations with different choices of the Woods—Saxon potential which reproduces the bifling of
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8. Thingstodo

(1) Use the input files described above and reproduce Figs. 1-4.

(2) Try to reproduce some of the radiative capture cross sections presented in the compilation of Ref. [30].

(3) Show that for neutron halo nuclei the radiative capture cross sections follow the dependence described by
Egs. (42) and (43).
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