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Abstract. We study the effect of the spreading widths on the excitation probabilities of the double giant
dipole resonance. We solve the coupled-channels equations for the excitation of the giant dipole resonance
and the double giant dipole resonance. Taking Pb+Pb collisions as example, we study the resulting effect on
the excitation amplitudes, and cross sections as a function of the width of the states and of the bombarding
energy.

PACS. 24.10.Eq Coupled-channel and distorted wave models – 24.30.Cz Giant resonances – 25.70.De
Coulomb excitation

1 Introduction and theoretical background

Double giant dipole resonances have been mainly stud-
ied in heavy ion Coulomb excitation experiments at high
energies (for a recent review, see [1]). The feasibility of
such experiments has been predicted in 1986 [2,3] where
the magnitude of the cross sections for the excitation of
the Double Giant Dipole Resonance (DGDR) was calcu-
lated (see also [4]). In [3] a recipe was given for treating
the effect of the width of the giant resonances on the ex-
citation probabilities and cross sections. In this paper we
make a quantitative prediction of this effect using a realis-
tic coupled-channels calculation for the excitation ampli-
tudes. The coupling interaction for the nuclear excitation
i −→ f in a semiclassical calculation for a electric (π = E),
or magnetic (π = M), multipolarity, is given by (6)–(7) of
[5])

WC =
VC
ε0

=
∑
πλµ

Wπλµ (τ) , (1)

where

Wπλµ (τ) = (−1)λ+1 Z1e

~vbλ
1
λ

×
√

2π
(2λ+ 1)!!

Qπλµ (ξ, τ)M (πλ, µ) . (2)
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Above, b is the impact parameter, γ =
(
1− β2

)−1/2,
β = v/c, τ = γvt/b is a dimensionless time variable, ε0 =
γ~v/b sets the energy scale and Qπλµ (ξ, τ), with ξ ≡ ξif =
(Ef − Ei) /ε0, depends exclusively on the properties of
the projectile-target relative motion. The multipole oper-
ators, which act on the intrinsic degrees of freedom are, as
usual,

M(Eλ, µ) =
∫
d3r ρ(r) rλ Y1µ(r) , (3)

and

M(M1, µ) = − i

2c

∫
d3r J(r).L (rY1µ) , (4)

We treat the excitation problem by the method of Alder
and Winther [6]. We solve a time-dependent Schrödinger
equation for the intrinsic degrees of freedom in which
the time dependence arises from the projectile-target mo-
tion, approximated by the classical trajectory. For rela-
tivistic energies, a straight line trajectory is a good ap-
proximation. We expand the wave function in the set
{| k〉; k = 0, N} of eigenstates of the nuclear Hamiltonian,
where 0 denotes the ground state and N is the number of
intrinsic excited states included in the coupled-channels
(CC) problem. We obtain a set of coupled equations.

To simplify the expression we introduce the dimension-
less parameter Θ(λµ)

kj by the relation

Θ
(λµ)
kj = (−1)λ+1 Z1e

~vbλ
1
λ

√
2π

(2λ+ 1)!!
Mkj(Eλ) (5)
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Then we write the coupled channels equations for the
excitation amplitudes ak(τ) in the form [5]

dak(τ)
dτ

= −i
N∑
j=0

∑
πλµ

Qπλµ(ξkj , τ)Θ(λµ)
kj

× exp (iξkjτ) aj(τ) . (6)

In what follows we concentrate on the E1 excitation
mode. In this case, we have

QE10(ξ, τ) = γ
√

2
[
τφ3(τ)− iξ

(v
c

)2

φ(τ)
]

;

QE1±1(ξ, τ) = ∓φ3(τ) , (7)

where φ(τ) =
(
1 + τ2

)−1/2
.

Following [3] the inclusion of damping leads to the
coupled-channels equations with damping terms, i.e.,

dak(τ)
dτ

= −i
N∑
j=0

∑
µ

QE1µ(ξkj , τ)Θ(1µ)
kj

× exp (iξkjτ) aj(τ) − Γk
2ε0

ak(τ). (8)

These equations lead to master equations for the occupa-
tion probabilities, P̃j(τ) = |aj(τ)|2, in the form

dP̃k(τ)/dτ = Gk(τ)− Lk(τ) (9)

where

Gk(τ) = 2 =m
∑
j

∑
µ

QE1µ(ξkj , τ)Θ(1µ)
kj

× exp(iξkjτ) ak(τ) a∗j (τ) (10)

and
Lk(τ) = −Γk

ε0
P̃k(τ) . (11)

These equations can be integrated, yielding the con-
servation law,

∑
k

(
P̃k(τ) + F̃k(τ)

)
= 1 , where

F̃k(τ) =
Γk
ε0

∫ τ

−∞
P̃k(τ ′)dτ ′ (12)

Due to the exponential decay of the states with k > 1,
we have for t→∞ the limit P̃k(∞) = δj0P̃0(∞) and

P̃0(∞) +
∑
k

F̃k(∞) = 1 . (13)

This means that for t → ∞ there is a probability to
find the system in the ground state given by P̃0(∞) and a
probability that it has been excited and decayed through
the channel j which is given by F̃j(∞). Thus, the set of

equations 8 are shown to correctly describe the contribu-
tion to the excitation through channel j.

The excitation probability of an intrinsic state | j〉 in
a collision with impact parameter b is obtained from an
average over the initial orientation and a sum over the
final orientation of the nucleus, as

Pj(b) =
1

2I0 + 1

∑
M0, Mj

|F̃j(∞)|2 , (14)

and the cross section is obtained by the classical expression

σj = 2π
∫
Pj(b) T (b) b db . (15)

Above, T (b) accounts for absorption according to the pre-
scription of [5], using the nucleon-nucleon cross sections
and the ground state density of Pb from experimental
data.

2 Results and discussion

We consider the excitation of giant resonances in 208Pb
projectiles, incident on 208Pb targets at 640 A·MeV. This
reaction has been studied at the GSI/SIS, Darmstadt [7].
For this system the excitation probabilities of the isovec-
tor giant dipole (GDR) at 13.5 MeV are large and, conse-
quently, higher order effects of channel coupling should be
relevant. To assess the importance of the damping effects,
we calculate the matrix elements assuming that the GDR
is an isolated state depleting 100% of the energy-weighted
sum-rule. The matrix element for the GDR→ DGDR tran-
sition incorporates the boson factor

√
2, as usual [3]. The

energy location of the DGDR state is taken as 27 MeV,
consistent with the experimental data. The spin and par-
ities of the states are given by 1− for the GDR, and 0+

and 2+ for the DGDR, respectively. The distribution of
the strength among the 0+ and 2+ DGDR states are sim-
ply obtained from Clebsh-Gordan coefficients [8].

In Fig. 1 we plot the time-dependent occupation prob-
abilities of the ground state, in Pb, N = 0, of the GDR
state, N = 1, and of the DGDR state, N = 2, respectively.
Figure 1(a) shows the occupation probabilities with the
widths equal to zero, ΓN = 0. In Fig. 1(b) we plot the
occupation probabilities of the GDR state, N = 1, and of
the DGDR state, N = 2, with ΓN = 0 (full lines), and
with ΓGDR = 4 MeV (experimental), and ΓDGDR = 5.7
MeV (dashed lines). The width of the DGDR is set to
ΓDGDR =

√
2ΓGDR, following the apparent trend of the

experimental data [7]. Note, that ΓDGDR = 2ΓGDR has a
better (and simpler) theoretical explanation [9]. But, the
time integrated population of the DGDR state will not be
much influenced by using the later parametrization.

We observe that the inclusion of damping leads to
strong modifications in the time-dependent occupation
probabilities of the GDR and DGDR states. One might
wrongly deduce from Fig. 1 that the excitation probabil-
ities are reduced proportionally to the difference between
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Fig. 1. Occupation probabilities in Coulomb excitation of Pb,
in Pb+Pb collisions at 640 MeV.A. N = 0 for the ground state,
N = 1 for the GDR state, N = 2, for the DGDR state, respec-
tively. Figure 1(a) shows the occupation probabilities with the
widths equal to zero, ΓN = 0. In Fig. 1(b) we plot the occupa-
tion probabilities of the GDR state, N = 1, and of the DGDR
state, N = 2, with ΓN = 0 (full lines), and with ΓGDR = 4
MeV, and ΓDGDR = 5.7 MeV (dashed lines). The width of the
DGDR is set to ΓDGDR =

√
2ΓGDR, according to the trend of

the experimental data [7]

the maximum value of P̃N (τ), with and without damp-
ing. However, the quantities shown in Fig. 1(b) includes
the loss of occupation probabilities of a given state, while
it is being populated by the time-dependent transitions.
Thus, the reduction of the excitation probabilities of the
GDR and the DGDR due to damping is smaller than de-
duced from Fig. 1. The relevant quantity to calculate the
excitation cross sections are the quantities F̃j(∞), which
account for the time-integrated transition probability, fol-
lowed by decay, of the state j.

In Fig. 2 we plot the flux functions, or time-integrated
transition probabilities to the GDR and the DGDR states
as a function of the width of the collective state, ΓGDR,
keeping constant the ratio ΓDGDR/ΓGDR =

√
2. We keep

the impact parameter fixed, b = 15 fm. We note that,
varying the width from 0 up to 4 MeV leads to a 10% de-
crease of the flux functions into GDR and DGDR states.
A similar tendency is observed for the total cross section,
integrated over impact parameters. The excitation prob-
ability decreases with about 1/b4, therefore the grazing
collisions are weighted most strongly.

1 2 3 4 5 6

ΓGDR (MeV)

0.0

0.1

1.0

F
N

N = 1

N = 2

Fig. 2. Flux functions, or time-integrated transition probabil-
ities to the GDR and the DGDR states in Pb as a function
of the width of the collective state, ΓGDR, keeping constant
the ratio ΓDGDR/ΓGDR =

√
2. We keep the impact parameter

fixed, b = 15 fm. N = 1 for the GDR state, N = 2, for the
DGDR state

In Fig. 3(a) we plot the effect of damping in the to-
tal cross sections, as a function of the bombarding energy.
We take ΓGDR = 0 (full line) and ΓGDR = 4 MeV (dashed
line), keeping constant the ratio ΓDGDR/ΓGDR =

√
2. We

observe that the effect of damping disappears, as the bom-
barding energy increases. At high energies the reaction is
fast, and the system does not have time to dissipate during
its excitation. In this regime the sudden approximation is
a valid approach to the calculation of the excitation am-
plitudes.

We note that our model is restricted to the excitation
of isolated resonant states, including a time-dependent
loss term on the far right of the coupled-channels equa-
tions 8. This is different from a study of the influence of
the fragmentation of the resonances into many neighbour-
ing states. In this case, the Coulomb excitation of the giant
resonances is obtained as a superposition of excitations to
states spread over an energy envelope, usually taken as a
Lorentzian shape. States at lower energy are more easily
excited than states at higher energies. Thus, the spread-
ing of the resonances may lead to another kind of effect
of the widths, not obtainable in the above treatment. To
study this effect in a simple way, we use the harmonic
model of [10]. The photo-nuclear cross sections which en-
ter in these calculations are of Lorentzian shapes, with
a cut at the low energy limit of 8 MeV, corresponding
to the threshold for neutron emission, since most of the
DGDR manifestation in experiments come from neutron
emission after relativistic Coulomb excitation. The mag-
nitude of the photo-nuclear cross sections are obtained
by using a 100% depletion of the Thomas-Reiche-Kuhn
energy-weighted sum-rule applied to the GDR.
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Fig. 3. (a) Total cross sections, as a function of the bombard-
ing energy. We take ΓGDR = 0 (full line) and ΓGDR = 4 MeV
(dashed line), keeping constant the ratio ΓDGDR/ΓGDR =

√
2.

N = 1 for the GDR state, N = 2, for the DGDR state. (b)
Results of the harmonic model [10] for the Coulomb excitation
cross sections of the GDR (N = 1) and the DGDR (N = 2).
The solid lines use ΓGDR = ΓDGDR = 0, while the dashed-lines
are for ΓDGDR = 5.7 MeV and ΓGDR = 4 MeV

The harmonic model provides a simple analytical for-
mula to calculate the excitation probabilities of the DGDR
[10]. The resulting cross sections are shown in Fig. 3(b)
where in the solid line we take ΓGDR = ΓDGDR = 0, while
the dashed-lines are for ΓDGDR = 5.7 MeV and ΓGDR = 4
MeV. Except for the very low bombarding energies, we ob-
serve a similar effect as in Fig. 3(a). This is understood as
a reduction due to the spread of states at energies above
the energy centroid of the Lorentzian envelope. The exci-
tation amplitude for these states are smaller, thus leading

to a net reduction of the energy integrated Coulomb ex-
citation cross sections. A similar result has been obtained
in [11].

3 Conclusion

In conclusion, we have obtained the dependence of the ex-
citation amplitudes on the width of the giant resonance
states. We show that the effect reduces excitation prob-
abilities, and cross sections. We have developed an ap-
proach to solve this problem in realistic situations. It is
demonstrated that the dynamical effect of the widths of
the GR’s in a time-dependent picture leads to a decrease
of the cross sections, more accentuated for low energy col-
lisions. The energy fragmentation of the giant resonances
can be studied in a simple fashion within the harmonic
model. The net effect is also to decrease the cross sections
with increasing width, specially at low energy collisions.

This work was supported in part by the Brazilian funding agen-
cies CNPq, FAPERJ, FUJB/UFRJ, and PRONEX, under con-
tract 41.96.0886.00.
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