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Abstract Few-body systems provide very useful tools to solve different problems for nuclear astrophysics.
This is the case of indirect techniques, developed to overcome some of the limits of direct measurements
at astrophysical energies. Here the Coulomb dissociation, the asymptotic normalization coefficient and the
Trojan Horse method are discussed.

1 Introduction

Over the past 40 years nuclear physicists have been trying to measure the rates of the most relevant reactions for
astrophysics, but there is still considerable uncertainty about their values. The main problem is the difficulty to
measure the rates at the thermal energies relevant to stellar interiors. Although these temperatures are high, on
the order of hundred million degrees, the corresponding reaction rates are extremely small making it difficult
for them to be measured directly in the laboratory. Indeed, the cross sections σ(E) at the relevant low energies
E are extremely small due to the Coulomb barrier for charged particle reactions and in many cases unstable
nuclei are involved in the reactions of astrophysical interest. As a consequence, direct experiments are very
demanding and special experimental techniques have to be developed. Often one relies on an extrapolation of
higher energy data to the relevant low energy range. This is accomplished by introducing the astrophysical
factor S(E) = σ(E)E exp(2πη) that shows a weak dependence on energy for non-resonant reactions. The
Sommerfeld parameter η = Z1 Z2e2/(h̄v) depends on the relative velocity v between the charged particles 1
and 2 in the initial state of the reaction. The extrapolation into unknown territory can be dangerous because of
missed resonances, bound state tails etc. An additional problem is the electron screening effect for some direct
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Fig. 1 Pole diagrams of the indirect methods: Coulomb dissociation (left), ANC method (center), and Trojan Horse Method
(right)

measurements in the laboratory [20]. At extremely low energies, the measured cross sections are enhanced as
compared to the cross sections for bare nuclei and correction have to be applied to the data. Unfortunately,
this effect is not fully understood theoretically and independent experimental information is required. Thus,
a number of indirect methods [1,2,11,20,21] have been introduced as alternative approaches for determining
the bare nucleus S(E) factors of astrophysical interest. They make use of direct reaction mechanisms, such
as transfer processes (stripping and pick-up) and quasi-free reactions (knock-out reactions). In this paper,
general characteristics in the description of three closely related and successful indirect methods (Coulomb
dissociation, asymptotic normalization coefficients, Trojan Horse method) are discussed. The first two meth-
ods mainly refer to radiative capture reactions b(x, γ )a and are complementary approaches to extract their
absolute astrophysical S factors as a function of the energy (CD) or at zero energy (ANC). The Trojan Horse
method (THM) is applied to charged particle reactions either resonant or non resonant where no photons are
involved and allows to extract the energy-dependence of their S(E) factors. All indirect approaches share some
common features. The astrophysically relevant two-body reaction at low energies is replaced by a high-energy
reaction usually with a three-body final state. In all cases a virtual particle (photon γ or nucleus x) is transferred
between the two subsystems in the reaction. This is clearly seen from the diagrams in Fig. 1. The virtuality
means that the transferred particle does not obey the usual dispersion relation of a free particle. For the ANC,
x can be transferred into a bound state of nucleus B, thus feeding a two body final state instead of a three-body
one (see Fig. 1 (center)).

The relation of the cross sections is found with the help of nuclear reaction theory. Approximations are
essential to factorize the cross sections of the “surrogate” reactions into a contribution that can be calculated
from theory and a quantity that more or less gives directly the cross section of the two-body reaction. This
factorization is related to the appearence of two vertexes in the diagrams of Fig. 1. The approximations exploit
the fact that the reaction mechanisms are dominated by peripheral processes where only the asymptotic part of
the wave functions is relevant. This also leads to a selection of specific kinematical conditions in the indirect
experiments.

2 Coulomb Dissociation Method

The Coulomb dissociation method [1,2], determines the absolute astrophysical S(E) factor of a radiative cap-
ture reaction b(x, γ )a by studying the reversing a(γ, x)b photodisintregration process. Instead of using real
photons in the breakup reaction, the Coulomb field of a heavy target nucleus A is used as a source of virtual
photons and the dissociation reaction A(a, bc)A is measured experimentally. For large impact parameters (i.e.
small scattering angles) in the projectile-target scattering, the nuclear contribution to the interaction potential
can be neglected.

Then, the measured CD cross section assumes the simple form

d2σ

d EdΩa A
= 1

Eγ

∑

λ

σEλ(a + γ → b + x)
dnEλ

dΩAa
(1)

with virtual photon numbers dnEλ
dΩAa

that can be calculated in quantal or semiclassical approximations. From the
indirect experiment it is possible to extract the photo dissociation cross section σEλ(a + γ → b + x) and to
convert it to the radiative capture cross section

σEλ(b + x → a + γ ) = 2(2Ja + 1)

(2Jb + 1)(2Jx + 1)

k2
γ

k2
bx

σEλ(a + γ → b + x) (2)
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using the theorem of detailed balance. Since the factor k2
γ /k2

bx is generally much smaller than one, the photo-
dissociation process has a much larger cross section as compared to the radiative capture reaction. In addition,
in a CD experiment the number of events is enhanced by large factors due to the huge virtual photon flux and
to the possibility to use thicker targets. The expression (1) corresponds to a first-order approximation in time-
dependent perturbation theory. It is only valid if higher-order contributions, i.e., multi-photon exchange with
a post-acceleration of the fragments in the final state, and nuclear contributions to the breakup are neglected.
These effects can be minimized by selecting appropriate kinematical conditions. In addition, large impact
parameters, namely small fragment detection angles should be considered to make the nuclear contribution to
the break-up negligible. Otherwise quantal calculations (DWBA/Eikonal) and optical potentials are needed.
Moreover, one has to take properly into account that different multipolarities can contribute with different
weights in the dissociation processes and radiative capture processes. This produces effects on angular dis-
tributions and on the slope of the extracted S factor [3–7]. This is the reason why a number of prescriptions
should be followed in the analysis of a CD experiment:

• reconstruction of the three body reaction channel in complete kinematics: b and x fragments must be
identified and detected in coincidence, measuring their energies and emission angles;

• detection of fragments at small angles (large impact parameters): this corresponds to bx relative angles of
few degrees at most;

• selection of elastic break up events: they contribute as a straight line in a Eb − Ex plot;
• reconstruction event by event of the Ebx relative energy by applying the so called magnifying glass effect:

it consists in the selection of the kinematical regions where a large variation in the Eb(Ex ) variable corre-
sponds to a small variation in Ebx . This provides an improvement of energy resolution in the Ebx variable
such that�(Ebx )/�(Eb) is about 5 %. To reach this number, the relative angle between the fragments must
be measured with good resolution;

• extraction of the angular distributions for different bins of Ebx : by fitting angular distributions with Eq. (1),
σEλ(a + γ → b + x) can be extracted;

• theorem of detailed balance to get back to the relevant σEλ(b + x → a + γ ).

3 ANC

The ANC technique [11] is based on the observation that direct proton-capture reactions of astrophysical
interest involve systems where the binding energy of a captured charged particle is low. Hence at stellar ener-
gies, the capture proceeds through the tail of the nuclear overlap function. The shape of the overlap function
in this tail region is determined by the Coulomb interaction, so the amplitude of the overlap function alone
dictates the rate of the capture reaction. The ANC, C , for A + p ↔ B specifies the amplitude of the tail of the
overlap function for the system. Astrophysical S factors for peripheral direct radiative capture reactions can
be determined through measurements of ANC’s using traditional nuclear reactions such as peripheral nucleon
transfer [11,12]. The ANC can also be used to determine the external part of 	γ for resonance capture [11].
Thus the ANC is connected to both the resonant and nonresonant capture amplitudes, and it can be used to
determine astrophysical S factors when the capture occurs through a subthreshold resonance state [11].

It is easy to get the connection between ANCs and a direct proton capture rate at low energies. At stellar
energies, the proton energy is small compared to the Coulomb barrier so the capture cross section is small.
The cross section for the direct capture reaction A + p → B + γ can be written as

σ = λ|< I B
Ap(r) | Ô(r) | ψ(+)i (r) >|2, (3)

where Ô is the electromagnetic transition operator, ψ(+)i is the scattering wave in the incident channel, λ
contains kinematical factors and I B

Ap is the overlap function for B → A + p. If the dominant contribution to
the matrix element comes from outside the nuclear radius, the overlap function may be replaced by

I B
Ap(r) ≈ C

W−η,l+1/2(2κr)

r
, (4)

where C , the ANC, defines the amplitude of the tail of the radial overlap function I B
Ap, W is the Whittaker

function, η and l are the Coulomb parameter and orbital angular momentum for the bound state B = A+ p, and
κ is the bound state wave number. If resonance parameters are known either from measurements or calculations
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and ANCs are known, the resonant and nonresonant components can be used together in an R-matrix calcula-
tion to obtain capture cross sections. As mentioned, peripheral transfer reactions provide an excellent way to
determine ANCs. Consider the proton transfer reaction (p = x) a+ A → b+ B, where a = b+x, B = A+x .
Both the nucleus A in the initial state and the nucleus B in the final state are bound states of the transferred
nucleus x . In this approach, the cross section factorizes as [11]:

dσ

dΩBb
= ∣∣Ca

bx

∣∣2
∣∣∣C B

Ax

∣∣∣
2 dσ̃

dΩBb
(5)

with a reduced DWBA cross section that has to be calculated with carefully adusted optical potentials. If one
ANC is known, e.g. C B

Ax , the second one Ca
bx can be extracted from the indirect experiment and it is just the

one needed in Eq. 3 to determine the capture reaction cross section. In order to reduce the dependence of the
result on the potential (or nuclear phase shift) in the scattering state of the b + x system, only the S factor close
to zero energy is considered. This procedure is justified for reactions where the nuclei b and x are only weakly
bound in the ground state of a. In general, the relation between the ANC and the S factor is not unique. For
stronger bound systems, the final-state interaction can lead to sizable changes in the zero-energy S factor. For
a practical purposes, here some prescriptions to extract the ANCs from a transfer reaction:

• the reaction must be peripheral: this criterion can be checked with a DWBA code by changing the radius
and diffuseness parameters for the binding of the transferred particle to the core and determining the cross
section. In a peripheral transfer, the DWBA cross section will be nearly constant over a broad range of
parameters, otherwise it will change by large factors.

• Once a reaction has been verified as being peripheral, the next step is to obtain accurate absolute differential
cross sections.

• The final step for extracting ANCs requires good optical model parameters for the DWBA calculation.
For stable beams and targets, the optical model parameters can be obtained from measurements of elastic
scattering in the entrance channel. Exit channel parameters can similarly be obtained from elastic scattering
measurements using beams and targets of isotopes of the outgoing system.

4 Trojan Horse Method

The THM [20–22] determines the cross section of the binary A + x → c +C process at astrophysical energies
by measuring the two-body to three-body (2 → 3) process, A + a → b + c + C , in the quasifree (QF) kine-
matics regime, where the “Trojan Horse” particle, a has a strong (b x) cluster structure. The a + A interaction
takes place at energies above the Coulomb barrier, such that nucleus a undergoes breakup leaving particle x
already in the nuclear field of A, while b remains spectator to the binary reaction. The A + a relative motion
is compensated for by the x − s binding energy, determining the so called “quasi-free two-body energy” given
by

Eq. f. = E Aa − Bx−s (6)

where E Aa represents the beam energy in the center-of-mass system and Bx−s is the binding energy for the
x − s system. Then, a cutoff in the momentum distribution, which is related to the Fermi motion of s inside
the Trojan Horse a, fixes the range of energies around the “quasi-free two-body energy” accessible in the
astrophysical relevant reaction. In the impulse approximation either in plane wave or in distorted wave (this
does not change the energy dependence of the two-body cross section but only its absolute magnitude), the
three body-cross cross section can be factorized as:

d3σ

d EcdΩcdΩC
∝ [K F |ϕa(psx )|2]

(
dσ

dΩc.m.

)HOES

(7)

where KF is a kinematical factor containing the final state phase-space factor. It is a function of the masses,
momenta and angles of the outgoing particles [28]; ϕa(psx ) is proportional to the Fourier transform of the radial
wave function χ(r) for the x − s inter-cluster relative motion; (dσ/dΩc.m.)

HOES is the half-off-energy-shell
(HOES) differential cross section for the binary reaction at the center of mass energy Ec.m. = EcC − Q2b.
Here, Q2b is the Q-value of the binary reaction and EcC is the relative energy of the outgoing particles c and
C .
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The HOES nature of the binary cross section is a consequence of the virtual nature of the transferred particle
x . This means that its energy and momentum are not connected by the usual on-shell equation Ex = k2

x/(2 mx ).
In a typical THM experiment the decay products (c and C) of the virtual two-body reaction of interest are
detected and identified by means of telescopes (silicon detector or ionization chamber as�E step and position
sensitive detector as E step) placed at the so called quasi free angles. Data analysis follows a number of steps
that can be listed as:

• identification of the three body reaction. This is usually done by means of the standard �E-E technique;
• selection of the quasi free mechanism. Often other competitive processes can contribute in the phase space

region of interest [25,27,33]. The selection is done in several ways, mostly by looking at the shape of
the experimental momentum distribution for the b particle. If QF condition is fulfilled, this shape should
resemble the theoretical one that in PWIA is given by the Fourier transform of the radial wave function
describing the relative motion between x and b;

• extraction of the binary cross section σb(E) from the measured TH cross section in arbitrary units. At
sub-Coulomb energies the penetrability factor has to be introduced;

• normalization of σb(E) to σs(E) (from direct data) in a region where screening is still negligible;
• validity test comparing direct and indirect data in terms of both excitation functions, including resonances,

and angular distributions.

After these validations, THM data can be considered reliable where direct data are not available.

5 Recent Applications

CD, ANC and THM have been successfully applied to several reactions connected with fundamental astrophys-
ical problems (see references [3–10] for CD, [12–19] for ANC, [22–37,40–42] for THM). A list of the most

Table 1 Reactions studied via indirect methods

Indirect reactions Direct reactions Indirect method References

[1] 208Pb(8B, 7Bep)208Pb 1H(7Be, γ )8B CD [3–7]
[2] 208Pb(14O, 13N p)208Pb 1H(13N, γ )14O CD [8]
[3] 208Pb(6Li, αd)208Pb 2H(α, γ )6Li CD [9]
[4] 208Pb(15C, 14Cn)208Pb n(14C, γ )15C CD [10]
[5] 10B(14N)(7Be, 8B)9Be(13C) 1H(7Be, γ )8B ANC [13]
[6] 16O(3He, d)17F 1H(16O, γ )17F ANC [14]
[6] 14N(3He, d)15O 1H(14N, γ )15O ANC [16]
[7] 12C(d, p)13C n(12C, γ )13C ANC [15]
[8] 13C(6Li, d)17O 4He(13C, n)16O ANC [17]
[9] 14N(13N, 14O)13C 1H(13N, γ )14O ANC [8]
[10] 12N(3He, d)13O 1H(12N, γ )13O ANC [18]
[11] 15N(3He, d)16O 1H(15N, γ )16O ANC [19]
[12] 2H(7Li, αα)n 1H(7Li, α)4He THM [22]
[13] 3He(7Li, αα)d 2H(7Li, α)4He THM [23]
[14] 2H(6Li, α3He)n 1H(6Li, α)3He THM [24]
[15] 6Li(6Li, αα)4He 2H(6Li, α)4He THM [25]
[16] 2H(9Be, α6Li)n 1H(9Be, α)6Li THM [26]
[17] 2H(10B, α7Be)n 1H(10B, α)7Be THM [27]
[18] 2H(11B, α0

8Be)n 1H(11B, α)8Be THM [28,29]
[19] 2H(15N, α12C)n 1H(15N, α)12C THM [30]
[20] 2H(18O, α15N)n 1H(18O, α)15N THM [31]
[21] 2H(17O, α14N)n 1H(17O, α)14N THM [32]
[22] 6Li(3He, p4He)4He 2H(3He, p)4He THM [33]
[23] 2H(6Li, p3H)4He 2H(d, p)3H THM [34]
[24] 6Li(12C, α12C)2H 4He(12C, 12C)4He THM [35]
[25] 2H(6Li, t4He)1H n(6Li, t)4He THM [36,37]
[26] 2H(p, pp)n 1H(p, p)1H THM [38,39]
[27] 2H(3He, p(n)3H(3He))p 2H(2H, p(n))3H(3He) THM [40,41]
[28] 2H(19F, α16O)n 1H(19F, α)16O THM [42]
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relevant reactions studied so far is reported in Table 1. Some of the reactions have been studied with different
methods and results are consistent, as in the case pf the p(7 Be, γ )8 B reaction. The existing disagreement with
the direct results in the ultra-low energy region is still under debate. There might be a contribution due to the
electron screening in the direct experiment yet to be considered. We refer to the Bibliography (and references
therein) for a deeper analysis of the relevant features of each experimental study.
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